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Figure 1: Segmentation results predicted by the previous SOTA UDA methods [3, 4], the VLM-based method [8], the CCDA
method [2], and our presented framework on the SYNTHIA→ IDD benchmark. The novel classes are highlighted by white
dashed boxes.

1 OVERVIEW
In this supplementary material, we provide more information to
support our proposed method. In Sec. 2, we extend the SOTA com-
parison on the SYNTHIA → IDD benchmark and qualitatively
discuss the generalizability of our proposed method with various
UDA frameworks. In Sec. 3, we illustrate the potential limitations
and promising future directions.

2 ADDITIONAL EXPERIMENTS
In our main paper, we validate the effectiveness and applicability of
our method across various UDA frameworks and different CCDA
scenarios. To further support the claims made in our main paper,
here, we will provide qualitative results of various methods on the
SYNTHIA → IDD benchmark, as well as the performance gains of
our method under different UDA frameworks.

2.1 Comparison with SOTA methods
In our main paper, we only report the quantitative results of our
proposed method and previous competitive methods [1–5] on the
SYNTHIA→ IDD benchmark. Thus, in this section, we delve into
a qualitative analysis of our proposed elements. As demonstrated
in Figure 1, previous UDA methods [3, 4] often recognize novel
classes as shared ones. In contrast, our proposed method addresses
these issues by relabeling and augmenting pseudo labels with mask
proposals for novel classes. For example, in the first row, both

DAFormer [3] and MIC [4] erroneously segment the “wall” as a
“building”, due to their visual similarities. Instead, our proposed
label alignment and novel class resampling methods provide nu-
merous annotations for these novel classes, enabling our model
to learn discriminative features from visually similar classes and
consequently distinguish them from images. When comparing with
the VLM-based method [8] and the CCDA method [2], our method
also exhibits notable advantages in shared classes. Specifically, SAN
[8] and TACS [2] tend to generate inaccurate predictions for shared
classes, such as misidentifying the “sky” in the second row or the
“trees‘” in the fourth row. However, our method effectively learns
novel classes without compromising the segmentation performance
on shared classes.

2.2 Generalization for various UDA methods
To further validate the robustness and generalizability of ourmethod
with various UDA frameworks [3, 4, 7], we present qualitative seg-
mentation results in Figure 2. These results confirm that the positive
impact brought by our method is not limited by UDA frameworks.
Firstly, our approach demonstrates significant improvements in
handling shared classes. For example, compared to DACS [7], our
method notably contributes to restoring the complete visual shapes
of shared classes like “road” in the second column and “sidewalk”
in the last column. Secondly, our method excels in segmenting
novel classes, as evidenced in the third column where “truck” and
“terrain” are accurately distinguished from similar-looking shared
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Figure 2: Qualitative results of previous UDAmethods [3, 4, 7] and our method with different UDA frameworks on the SYNTHIA
→ Cityscapes benchmark. The novel classes are highlighted by white dashed boxes.

classes like “car” and “vegetation”, showcasing the robustness of
our method in handling intricate semantic differences. These com-
pelling findings collectively affirm the effectiveness of our proposed
method and its commendable generalization capabilities across a
spectrum of UDA frameworks.

3 LIMITATIONS AND FUTUREWORK
Limitations. In our CCDA setup, the novel classes in the target
domain are predetermined. Relying on the names of these novel
classes, we employ VLMs [1, 6] to localize the novel classes within
unlabeled target images. However, in real-world scenarios, some-
times the names of novel classes are not known in advance. In this
case, VLMs can not provide novel-class mask proposals for pseudo
labels, leading to the limited applicability of our method in more
challenging scenarios.

Future work. In our upcoming research, we aim to devise a
method for achieving accurate segmentation of both shared and
novel classes, even in cases where the names of the novel classes re-
main unknown. Specifically, developing a self-promoting approach

tailored for VLMs holds promise as a dependable solution to address
the above limitation.
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