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A The Canonical Model of Bandits

We extend the general canonical model of bandits (Chapter 4, Lattimore and Szepesvári (2018)) with
ϵ-global differential privacy. The canonical model with ϵ-global DP consists of a privacy-preserving
policy πϵ and an environment ν. The policy interacts with the environment up to a given time horizon
T to produce a history HT ≜ {(At, Rt)}Tt=1. The iterative steps of this interaction process are:

1. the probability of choosing an action At = a at time t is dictated only by the policy πϵt (a|Ht−1),
2. the distribution of reward Rt is PAt and is conditionally independent of the previous observed

history Ht−1.

Let us formalise this interaction by defining an ϵ-global DP policy, the environment and the probability
space produced by this interaction.

Let T ∈ N be the horizon. Let ν = (Pa : a ∈ [K]) a bandit instance with K arms. For each t ∈ [T ],
let Ωt = ([K]× R)t ⊂ R2t and Ft = B(Ωt) with B being the Borel set.
Definition 3. A policy π is a sequence (πt)

T
t=1 , where πt is a probability kernel from (Ωt,Ft) to

([K], 2[K]). Since [K] is discrete, we adopt the convention that for i ∈ [K],

πt(i | a1, r1, . . . , at−1, rt−1) = πt({i} | a1, r1, . . . , at−1, rt−1)

and for a sequence of actions aT ≜ [a1, . . . , aT ] and a sequence of rewards rT ≜ [r1, . . . , rT ]:

π(aT | rT ) =
T∏
t=1

πt(at | a1, r1, . . . , at−1, rt−1)

A policy πϵ is ϵ-global DP, if
πϵ(aT | rT ) ≤ eϵπϵ(aT | r′T )

for every sequence of actions aT and every two neighbouring reward streams rT , r′T : ∃j ∈ [1, T ]
such that rj ̸= r′j and ∀ t ̸= j rt = r′t.

Let λ be a σ-finite measure on (R,B(R)) for which Pa is absolutely continuous with respect to
λ for all a ∈ [K]. Let pa = dPa/dλ be the Radon–Nikodym derivative of Pa with respect to λ,
which is a function pa : R → R such that

∫
B
padλ = Pa(B) for all B ∈ B(R). Letting ρ be the

counting measure with ρ(B) = |B|, the density pνπϵ : ΩT → R can now be defined with respect to
the product measure (ρ× λ)T by

pνπϵ(a1, r1, . . . , aT , rT ) ≜
T∏
t=1

πt(at | a1, r1, . . . , at−1, rt−1)pat(rt)

and Pνπϵ be defined by

Pνπϵ(B) ≜
∫
B

pνπϵ(ω)(ρ× λ)T ( dω) for all B ∈ FT

Hence (ΩT ,FT ,Pνπϵ) is a probability space over histories induced by the interaction between πϵ
and ν.

We define also a marginal distribution over a sequence of actions by

mνπϵ(a1, . . . , aT ) ≜
∫
r1,...,rT

pνπϵ(a1, r1, . . . , aT , rT ) dr1 . . . drT ,

and for all C ∈ P([K]T ),

Mνπϵ(C) ≜
∑

(a1,...,aT )∈C

mνπϵ(a1, a2, . . . , aT ).

Hence, ([K]T ,P([K]T ),Mνπϵ) is a probability space over sequence of actions produced when πϵ
interacts with ν for T time-steps.
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B Distinguishing Environments with Partial Information and Global DP

In this section, we first revisit the Karwa-Vadhan Lemma (Lemma 6.1, (Karwa and Vadhan, 2017))
that bounds the multiplicative distance between marginal distributions induced by a differentially
private mechanism, when the datasets are generated using two different distributions P and Q. We
generalise this result to the setting where the inputs are not identically distributed. We call this
Sequential Karwa-Vadhan Lemma (Lemma 2) and apply it to upper bound the Kullback-Leibler (KL)
divergence between the marginal distributions Mνπϵ and Mν′πϵ , when πϵ is an ϵ-global DP policy,
and ν and ν′ are two different environments (Theorem 10).

Karwa-Vadhan Lemma. Let P and Q be two distributions, and TV (P ∥ Q) be the total vari-
ation distance between these two distributions. Let M be an (ϵ, δ)-differentially private mech-
anism that runs on the set of samples {x1, . . . , xT }. For any event E in M’s output space,
M(E|X1 = x1, . . . , XT = xT ) denotes the probability that M outputs an element in E given
the input x1, . . . , xT , and

MP(E) ≜
∫

M(E|X1, . . . , XT ) dP(X1, . . . , XT )

is the marginal distribution induced by the DP mechanism when the data is generated from the
distribution P.
Theorem 9 (Lemma 6.1, Karwa and Vadhan (2017)). If a mechanism M satisfies (ϵ, δ)-DP, then for
every event E in the output space of M, the marginal distributions induced by distributions P and Q
satisfy

MP(E) ≤ eϵ
′
MQ(E) + δ′,

where ϵ′ ≜ (6ϵT )TV (P ∥ Q) and δ′ ≜ (4eϵ
′
Tδ)TV (P ∥ Q).

We extend this result for the setting where the data is not identically distributed.

B.1 Sequential Karwa-Vadhan Lemma

Let {P1, . . . ,PT } and {Q1, . . . ,QT } two sets of independent distributions.

Given the samples X1, . . . , XT generated from the distributions P1, . . . ,PT , we define the corre-
sponding marginal distribution induced by M as

MP1,...,PT
(E) ≜

∫
M(E|X1, . . . , XT ) dP1(X1) dP2(X2) . . . dPT (XT )

Lemma 2 (Sequential Karwa-Vadhan Lemma). If M is a mechanism satisfying (ϵ, δ)-DP, then
for every event E in the output space of M, the marginal distributions induced by the two sets of
independent distributions {P1, . . . ,PT } and {Q1, . . . ,QT } satisfy

MP1,...,PT
(E) ≤ eϵ

′
MQ1,...,QT

(E) + δ′,

where ϵ′ = 6ϵ
∑T
i=1 TV (Pi ∥ Qi) and δ′ = 4eϵ

′
δ
∑T
i=1 TV (Pi ∥ Qi)

Proof. We extend the proof proposed by (Karwa and Vadhan, 2017) to the non-identical distribution
setting. The main observation is that the proof follows naturally if the data is generated from different
distributions by just adapting the coupling to the case of different distributions. For completeness, we
present the whole proof with all the adapted changes.

We construct a coupling between
⊗T

i=1 Pi and
⊗T

i=1 Qi that allows us to control the hamming
distance between samples generated from this distributions.

Let us denote pi ≜ TV (Pi ∥ Qi), Fi ≜ max(Pi − Qi, 0), Gi ≜ max(Qi − Pi, 0), and Ci ≜
min(Pi,Qi). It is easy to see that Pi = Fi + Ci and Qi = Gi + Ci.

Given the aforementioned notations, we consider the following algorithm to generate 2T samples:

For i = 1 to T , generate Hi from Bernoulli(pi)
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(a) If Hi = 1, sample Xi ∝ Fi and X ′
i ∝ Gi

(b) If Hi = 0, sample Xi ∝ Ci and set X ′
i = Xi.

Here Xi ∝ Fi means that Xi is generated from a distribution defined by normalizing Fi.

This construction satisfies the following properties:

1. X ≜ (X1, . . . , XT )∼
⊗T

i=1 Pi ≜ D0.

2. X ′ ≜ (X ′
1, . . . , X

′
T )∼

⊗T
i=1 Qi ≜ D1.

3. ∥X −X ′∥Hamming =
∑T
i=1Hi ≜ H .

Now, we introduce the following shorthand for the marginal distributions at step h

mj(h) ≜
∫
x

M(E|X = x) dDj(X|H = h)

for j ∈ {0, 1} and p(h) = P(H = h). For j ∈ {0, 1} and any event E, we have, by definition,

Mj(E) =

T∑
h=0

mj(h)p(h)

Fact 1: For j ∈ {0, 1}, mj(h) ≤ eϵmj(h− 1) + δ for h = 1, . . . , T , and m1(0) = m0(0).

We defer the proof of Fact 1 to the end of this proof.

By Fact 1, for j ∈ {0, 1}, we have

mj(h) ≤ ehϵmj(0) +
ehϵ − 1

eϵ − 1
δ

Now, we obtain

Mj(E) =

T∑
h=0

p(h)mj(h)

= E[mj(H)]

≤ E[eHϵmj(0) +
eHϵ − 1

eϵ − 1
δ]

= mj(0) · E[eHϵ] +
δ

eϵ − 1
·
(
E[eHϵ]− 1

)
= mj(0) ·

T∏
i=1

(1− pi + pi · eϵ) +
δ

eϵ − 1
·

(
T∏
i=1

(1− pi + pi · eϵ)− 1

)
(9)

The last equality holds due to that fact that for any t > 0, E[etH ] =
∏T
i=1(1− pi + pi · et).

Similarly, we obtain

Mj(E) ≥ mj(0)

T∏
i=1

(1− pi + pi · e−ϵ) +
δ

e−ϵ − 1
·

(
T∏
i=1

(1− pi + pi · e−ϵ)− 1

)
(10)

Combining inequalities 9 and 10, we get

M0(E) ≤

[
T∏
i=1

(
1− pi + pi · eϵ

1− pi + pi · e−ϵ

)]
·

(
M1(E) +

1−
∏T
i=1(1− pi + pi · e−ϵ)

1− e−ϵ
· δ

)
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+

∏T
i=1(1− pi + pi · e−ϵ)− 1

eϵ − 1
· δ (11)

From Lemma 6.1 of (Karwa and Vadhan, 2017), we know that

log

(
1− pi + pi · eϵ

1− pi + pi · e−ϵ

)
≤ 6ϵpi,

Thus,

T∏
i=1

(
1− pi + pi · eϵ

1− pi + pi · e−ϵ

)
≤ e6ϵ

∑T
i=1 pi ≜ eϵ

′
, (12)

and

eϵ
′
·
1−

∏T
i=1(1− pi + pi · e−ϵ)

1− e−ϵ
· δ +

∏T
i=1(1− pi + pi · eϵ)− 1

eϵ − 1
· δ (13)

≤ eϵ
′
·
1− exp(2(

∑T
i=1 pi) · (e−ϵ − 1))

1− e−ϵ
· δ +

exp(2(
∑T
i=1 pi) · (eϵ − 1))− 1

eϵ − 1
· δ (14)

≤ eϵ
′
· 2(

T∑
i=1

pi) · δ + 2(

T∑
i=1

pi) · δ (15)

≤ eϵ
′
· 4

T∑
i=1

pi · δ. (16)

Substituting Equations (12) and (16) in Equation 11, we obtain

M0(E) ≤ eϵ
′
M1(E) + δ′,

where ϵ′ = 6ϵ(
∑T
i=1 pi) and δ′ = 4eϵ

′
δ(
∑T
i=1 pi).

Now, we prove Fact 1.

Fact 1. For j ∈ {0, 1}, mj(h) ≤ eϵmj(h− 1) + δ for h = 1, . . . , T , and m1(0) = m0(0).

Proof. We prove the claim for j = 0, the other case is similar.

First, let us introduce some notations. Fix a (h1, . . . , hT ) ∈ {0, 1}T . Let I ′ ≜ {i : hi = 1},
J ≜ {i : hi = 0}, and r be any fixed index in I ′. Let I = I ′/{r} and consider the following partition
of X into three parts:

X = (XI , Xr, XJ),

where XI is the vector X specified by the indices in I . By definition of the coupling, XI ∼⊗
i∈I Fi ≜ FI , Xr ∼ Fr, XJ ∼

⊗
i∈J Ci ≜ CJ . Now, let X ′

r ∼ Cr and

X ′ = (XI , X
′
r, XJ).

Also, let h′1, . . . , h
′
T be the binary indicators corresponding to X ′. By construction, we have the

following properties:

1. hi = h′i for all i ̸= r

2. hr = 1 and hr = 0

3.
∑T
i=1 hi = h and

∑T
i=1 h

′
i = h− 1

4. Dj(X|H1 = h1, . . . ,HT = hT ) = PFI
(XI)PFr (Xr)PCJ

(XJ)

5. Dj(X ′|H1 = h′1, . . . ,HT = h′T ) = PFI
(XI)PCr

(X ′
r)PCJ

(XJ)
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Thus, we obtain∫
x

M(E|X = x) dDj(X|H1 = h1, . . . HT = hT )

=

∫
xI

∫
xr

∫
xJ

M(E|xI , xr, xJ) dPFI
(XI) dPFr (Xr) dPCJ

(XJ)

≤
∫
x′
r

∫
xI

∫
xr

∫
xJ

(eϵM(E|xI , x′r, xJ) + δ) dPFI
(XI) dPFr

(Xr) dPCr
(X ′

r) dPCJ
(XJ)

≤
∫
xI

∫
x′
r

∫
xJ

(eϵM(E|xI , x′r, xJ) + δ) dPFI
(XI) dPCr

(X ′
r) dPCJ

(XJ)

≤ eϵ
∫
x′
M(E|X = x′) dDj(X ′|H1 = h′1, . . . HT = h′T ) + δ.

Taking expectations on both sides with respect to (H1, . . . ,HT ) proves the claim.

B.2 KL-divergence Decomposition with ϵ-global DP

The Sequential Karwa-Vadhan Lemma (Lemma 2) allows us to show the maximum KL-divergence
induced in the distributions of actions by a global DP policy πϵ. The upper bound allows us to show
how different the final distributions over actions induced by a global DP policy are for two different
environments. Thus, in turn, it provides an information-theoretic limit on distinguishability of two
environments if πϵ is played.
Theorem 10 (Upper Bound on KL-divergence for Bandits with ϵ-global DP). When an ϵ-global DP
policy πϵ interacts with two bandit instances ν = (Pa : a ∈ [K]) and ν′ = (P ′

a : a ∈ [K]) we have:

DKL (Mνπϵ ∥Mν′πϵ) ≤ 6ϵEνπϵ

[
T∑
t=1

TV
(
Pat

∥∥ P ′
at

)]

Proof. We define the marginal over the sequence of actions induced by πϵ for a given environment ν
as

mνπϵ(a1, . . . , aT ) ≜
∫
r1,...,rT

πϵ(a1, . . . , aT | r1, . . . , rT )Pa1 dr1 . . . PaT drT

Since πϵ is ϵ-global DP, using Lemma 2, we obtain

log

(
mνπϵ(a1, a2, . . . , aT )

mν′πϵ(a1, a2, . . . , aT )

)
≤ 6ϵ

T∑
t=1

TV
(
Pat

∥∥ P ′
at

)
for every action sequence (a1, . . . , aT ) ∈ [K]T .

Thus,

DKL (Mνπϵ ∥Mν′πϵ) = Eνπϵ

[
log

(
mνπϵ(A1, A2, ..., AT )
mν′πϵ(A1, A2, ..., AT )

)]
≤ 6ϵEνπϵ

[
T∑
t=1

TV
(
Pat

∥∥ P ′
at

)]

This lemma explicates how the distinguishability of two environments ν and ν′ under πϵ is dic-
tated by a joint effect of global DP, in terms of the privacy budget ϵ, and the partial informa-
tion available in bandits, in terms of the total variation distance between the rewards of the arms
Eνπϵ

[∑T
t=1 TV

(
Pat

∥∥ P ′
at

)]
. We leverage this lemma further to construct the minimax and

problem-dependent regret lower bounds for stochastic and linear bandits with ϵ-global DP.
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C Lower Bounds on Regret: Stochastic and Linear Bandits with ϵ-global DP

In order to prove the lower bounds, we adopt the general canonical bandit model introduced in
Section A. The high level idea of proving bandit lower bounds is selecting two problem instances
that are similar (the policy cannot statistically distinguish between them) but conflicting (actions that
may be good in one instance are not good for the other).

Under ϵ-global differential privacy, a new source of "confusion" is added to the problem, i.e. any
sequence of actions induced by neighbouring reward streams must be ϵ-indistinguishable. In the
canonical bandit framework, this is expressed by our Theorem 10.

In the following, we plug this upper bound on KL-divergences in the classic proofs of regret lower
bounds in bandits Lattimore and Szepesvári (2018) to derive our minimax and problem-dependent
regret lower bounds.

Notations. Let Π be the set of all policies, and Πϵ be the set of all ϵ-global DP policies.

C.1 Stochastic Bandits: Minimax Lower Bound

Theorem 2 (Minimax lower bound). For any K > 1 and T ≥ K − 1, and ϵ > 0, the minimax regret
of stochastic bandits with ϵ-global DP satisfies

Regminimax
T,ϵ ≥ max

{
1

27

√
T (K − 1)︸ ︷︷ ︸

without global DP

,
1

131

K − 1

ϵ︸ ︷︷ ︸
with ϵ-global DP

}
.

Proof. We denote the environment corresponding to the set of K-Gaussian reward distributions with
unit variance and means µ ∈ RK as EKN (1) ≜

{
(N (µi, 1))

K
i=1 : µ = (µ1, . . . , µK) ∈ RK

}
.

Since Πϵ ⊂ Π, we can have that

Regminimax
T,ϵ ≥ inf

π∈Π
sup

ν∈EK
N (1)

RegT (π, ν) ≥
1

27

√
T (K − 1)

The second inequality is due to Theorem 15.2 in (Lattimore and Szepesvári, 2018).

Step 1: Choosing the ‘Hard-to-distinguish’ Environments. First, we fix a policy πϵ in Πϵ.

Let ∆ be a constant (to be specified later), and ν be a Gaussian bandit instance with unit variance and
mean vector µ = (∆, 0, 0, ..., 0).

To choose the second bandit instance, let i ≜ argmina>1 Eν,πϵ [Na(T )] be the least played arm in
expectation other than the optimal arm 1.

The second environment ν′ is then chosen to be a Gaussian bandit instance with unit variance and
mean vector µ′ = (∆, 0, 0, . . . 0, 2∆, 0 . . . , 0), where µ′

j = µj for every j except for µ′
i = 2∆.

The first arm is optimal in ν and the arm i is optimal in ν′.

Since T = Eνπϵ [N1(T )] +
∑
a>1 Eνπϵ [Na(T )] ≥ (K − 1)Eνπϵ [Ni(T )], we observe that

Eνπϵ [Ni(T )] ≤
T

K − 1

Step 2: From Lower Bounding Regret to Upper Bounding KL-divergence. Now by the classic
regret decomposition and Markov Inequality 6, we get7

RegT (π
ϵ, ν) = (T − Eνπϵ [N1(T )])∆ ≥ Mνπϵ (N1(T ) ≤ T/2)

T∆

2
,

and

RegT (π
ϵ, ν′) = ∆Eν′πϵ [N1(T )] +

∑
a/∈{1,i}

2∆Eν′πϵ [Na(T )] ≥ Mν′πϵ (N1(T ) > T/2)
T∆

2
.

7In all regret lower bound proofs, we are under the probability space over sequence of actions, produced
when πϵ interacts with ν for T time-steps. We do this to use the KL-divergence decomposition of Mνπϵ
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Let us define the event A ≜ {N1(T ) ≤ T/2} = {(a1, a2, . . . , aT ) : card({j : aj = 1}) ≤ T/2}.

By applying the Bretagnolle–Huber inequality, we have:

RegT (π
ϵ, ν) + RegT (π

ϵ, ν′) ≥ T∆

2
(Mνπϵ(A) +Mν′πϵ(Ac))

≥ T∆

4
exp(−DKL (Mνπϵ ∥Mν′πϵ))

Step 3: KL-divergence Decomposition with ϵ-global DP. Now, we apply Theorem 10 to upper-
bound the KL-Divergence between the marginals.

DKL (Mνπϵ ∥Mν′πϵ) ≤ 6ϵEνπϵ

[
T∑
t=1

TV
(
Pat

∥∥ P ′
at

)]
≤ 6ϵEνπϵ [Ni(T )] TV (pi ∥ p′i)

since ν and ν′ only differ in the arm i.

Finally, using Pinsker’s Inequality 9, we obtain

TV (pi ∥ p′i) ≤
√

1

2
DKL (N (0, 1) ∥ N (2∆, 1)) = ∆

Step 4: Choosing the Worst ∆. Plugging back in the regret expression, we find

RegT (π
ϵ, ν) + RegT (π

ϵ, ν′) ≥ T∆

4
exp (−6ϵEνπϵ [Ni(T )]∆)

≥ T∆

4
exp

(
− 6ϵT∆

K − 1

)
By optimising for ∆, we choose ∆ = K−1

6ϵT .

We conclude the proof by lower bounding exp(−1) with 48
131 , and using 2max(a, b) ≥ a+ b.

C.2 Stochastic Bandits: Problem-dependent Lower Bound

Theorem 3 (Problem-dependent Regret Lower Bound). Let the environment E be a set of K reward
distributions with finite means and a policy πϵ ∈ Πcons (E) ∩ Πϵ be a consistent policy8 over E
satisfying ϵ-global DP . Then, for all ν = (Pi)

K
i=1 ∈ E , it holds that

lim inf
T→∞

RegT (π
ϵ, ν)

log(T )
≥

∑
a:∆a>0

∆a

min

(
dinf (Pa, µ

∗,Ma)︸ ︷︷ ︸
without global DP

, 6 ϵ tinf (Pa, µ
∗,Ma)︸ ︷︷ ︸

with ϵ-global DP

) .

Proof. Let µa be the mean of the a-th arm in ν, ta = tinf (Pa, µ
∗,Ma) and πϵ ∈ Πcons (E) ∩Πϵ.

Since πϵ is consistent, by (Theorem 16.2, Lattimore and Szepesvári (2018)), it holds that

lim inf
T→∞

RegT (π
ϵ, ν)

log(T )
≥

∑
a:∆a>0

∆a

dinf (Pa, µ∗,Ma)
.

The theorem will follow by showing, for every suboptimal arm a:

lim inf
T→∞

Eνπϵ [Na(T )]

log(T )
≥ 1

6 ϵ ta

Fix a suboptimal arm a, and let α > 0 be an arbitrary constant.
8A policy π is called consistent over a class of bandits E if for all ν ∈ E and p > 0, it holds that

limT→∞
RT (π,ν)

Tp = 0. We denote the class of consistent policies over a set of environments E as Πcons (E).
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Step 1: Choosing the ‘Hard-to-distinguish’ Environment. Let ν′ ≜
(
P ′
j

)K
j=1

∈ E be a bandit with
P ′
j = Pj for j ̸= a and P ′

a ∈ Ma be such that TV (Pa ∥ P ′
a) ≤ ta + α and µ (P ′

a) > µ∗, which
exists by the definition of ta. Let µ′ ∈ RK be the vector of means of distributions of ν′.

Step 2: From Lower Bounding Regret to Upper Bounding KL-divergence. For simplicity
of notations, we use RegT = RegT (π

ϵ, ν), Reg′T = RegT (π
ϵ, ν), and A = {(a1, a2, . . . , aT ) :

card({j : aj = 1}) ≤ T/2}.

Then, by regret decomposition and Markov Inequality 6, we obtain

RegT +Reg′T ≥ T

2
(Mνπϵ(A)∆a +Mν′πϵ (Ac) (µ′

a − µ∗)) (17)

≥ T

2
min {∆a, µ

′
a − µ∗} (Mνπϵ(A) +Mν′πϵ (Ac))

≥ T

4
min {∆a, µ

′
a − µ∗} exp(−DKL (Mνπϵ ∥Mν′πϵ))

Step 3: KL-divergence Decomposition with ϵ-global DP. By Theorem 10 and the construction of
the ‘hard-to-distinguish’ environments, we obtain

DKL (Mνπϵ ∥Mν′πϵ) ≤ 6ϵEνπϵ [Na(T )] TV (Pa ∥ P ′
a)

≤ 6ϵEνπϵ [Na(T )] (ta + α)

Step 4: Rearranging and taking the limit inferior. Thus, we get

RegT +Reg′T ≥ T

4
min {∆a, µ

′
a − µ∗} exp (−6ϵEνπϵ [Na(T )] (ta + α))

Now, taking the limit inferior on both sides leads to

lim inf
T→∞

Eνπϵ [Na(T )]

log(T )
≥ 1

6ϵ (ta + α)
lim inf
T→∞

log

(
T min{∆a,µ

′
a−µ

∗}
4(RegT+Reg′

T )

)
log(T )

=
1

6ϵ (ta + α)

(
1− lim sup

T→∞

log
(
RegT +Reg′T

)
log(T )

)
=

1

6ϵ (ta + α)
.

The last equality follows from the definition of consistency, which says that for any p > 0, there
exists a constant Cp such that for sufficiently large T , RegT +Reg′T ≤ CpT

p. This property implies
that

lim sup
T→∞

log
(
RegT +Reg′T

)
log(T )

≤ lim sup
T→∞

p log(T ) + log (Cp)

log(T )
= p,

which gives the result since p > 0 was an arbitrary constant.

We arrive at the claimed result by taking the limit as α tends to zero.

Remark 2. For Bernoulli distributions, ta is equal to ∆a, so the private lower bound simplifies to:

O

( ∑
a:∆a>0

∆a
1

ϵ∆a
log(T )

)
= O

(
K log(T )

ϵ

)
Thus, our problem-dependent regret lower bound retrieves as a special case the lower bound found
in (Shariff and Sheffet, 2018) and established for Bernoulli distributions of rewards.
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C.3 Stochastic Linear Bandits: Minimax Lower Bound

Theorem 4 (Minimax Regret Lower Bound). Let A = [−1, 1]d and Θ = Rd. Then, for any ϵ-global
DP policy, we have that

Regminimax
T (A,Θ) ≥ max

{exp(−2)

8
d
√
T︸ ︷︷ ︸

without global DP

,
exp(−6)

4

d

ϵ︸ ︷︷ ︸
with ϵ-global DP

}
.

Proof. Due to Theorem 24.1,(Lattimore and Szepesvári, 2018), it holds that,

Regminimax
T (A,Θ) ≥ exp(−2)

d

8

√
T .

Now, we focus on proving the ϵ-global DP part of the lower bound.

Let Θ =
{
− 1
ϵT ,

1
ϵT

}d
. For θ, θ′ ∈ Θ, let ν and ν′ be the bandit instances corresponding resp. to θ

and θ′. We denote Mθ = Mν,πϵ and Mθ′ = Mν′,πϵ . Let Eθ and Eθ′ the expectations under Mθ and
Mθ′ respectively.

Step 1: From Lower Bounding Regret to Upper Bounding KL-divergence We begin with

RegT (A, θ) = Eθ

[
T∑
t=1

d∑
i=1

(sign (θi)−Ati) θi

]

≥ 1

ϵT

d∑
i=1

Eθ

[
T∑
t=1

I {sign (Ati) ̸= sign (θi)}

]

≥ 1

ϵ

d∑
i=1

Mθ

(
T∑
t=1

I {sign (Ati) ̸= sign (θi)} ≥ T/2

)

In this derivation, the first equality holds because the optimal action satisfies a∗i = sign (θi)
for i ∈ [d]. The first inequality follows from an observation that (sign (θi)−Ati) θi ≥
|θi| I {sign (Ati) ̸= sign (θi)}. The last inequality is a direct application of Markov’s inequality 6.

For i ∈ [d] and θ ∈ Θ, we define

pθ,i ≜ Mθ

(
T∑
t=1

I {sign (Ati) ̸= sign (θi)} ≥ T/2

)
.

Now, let i ∈ [d] and θ ∈ Θ be fixed. Also, let θ′j = θj for j ̸= i and θ′i = −θi. Then, by the
Bretagnolle-Huber inequality,

pθ,i + pθ′,i ≥
1

2
exp (−DKL (Mθ ∥ Mθ′)) .

Step 2: KL-divergence Decomposition with ϵ-global DP. From Theorem 10, we obtain that

DKL (Mθ ∥ Mθ′) ≤ 6ϵEνπϵ

[
T∑
t=1

TV (N (⟨At, θ⟩ , 1) ∥ N (⟨At, θ′⟩ , 1))

]

≤ 6ϵEνπϵ

[
T∑
t=1

√
1

2
DKL (N (⟨At, θ⟩ , 1) ∥ N (⟨At, θ′⟩ , 1))

]

= 6ϵEνπϵ

[
T∑
t=1

√
1

4

[
⟨At, θ − θ′⟩2

]]

= 3ϵEνπϵ

[
T∑
t=1

|⟨At, θ − θ′⟩|

]
(18)
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= 3ϵEνπϵ

[
T∑
t=1

|At,i| (2 |θi|)

]

≤ 3ϵEνπϵ

[
T × 2

1

ϵT

]
= 6 (19)

Here, the second inequality is a consequence of Pinsker’s inequality (Lemma 9). The last inequality
holds true because At ∈ [−1, 1]d and θ, θ′ ∈

{
− 1
ϵT ,

1
ϵT

}d
Step 3: Choosing the ‘Hard-to-distinguish’ θ. We already have that

pθ,i + pθ′,i ≥
1

2
exp (−6)

Now, we apply an ‘averaging hammer’ over all θ ∈ Θ, such that |Θ| = 2d, to obtain

∑
θ∈Θ

1

|Θ|

d∑
i=1

pθ,i =
1

|Θ|

d∑
i=1

∑
θ∈Θ

pθ,i ≥
d

4
exp(−6).

This implies that there exists a θ ∈ Θ such that
∑d
i=1 pθ,i ≥ d exp(−6)/4.

Step 4: Plugging Back θ in the Regret Decomposition. With this choice of θ, we conclude that

RegT (A, θ) ≥
1

ϵ

d∑
i=1

pθ,i

≥ exp(−6)

4

d

ϵ

C.4 Stochastic Linear Bandits: Problem-dependent Lower Bound

Theorem 5 (Problem-dependent Regret Lower Bound). Let A ⊂ Rd be a finite set spanning Rd and
θ ∈ Rd be such that there is a unique optimal action. Then, any consistent and ϵ-global DP bandit
algorithm πϵ satisfies

lim inf
T→∞

RegT (A, θ)
log(T )

≥ c(A, θ),

where the structural distinguishability gap is the solution of a constraint optimisation

c(A, θ) ≜ inf
α∈[0,∞)A

∑
a∈A

α(a)∆a, such that ∥a∥2
H−1

α
≤ min

{
0.5∆2

a︸ ︷︷ ︸
without global DP

, 3ϵρa(A)∆a︸ ︷︷ ︸
with ϵ-global DP

}

for all a ∈ A with ∆a > 0, Hα =
∑
a∈A α(a)aa

⊤, and an arm-structure dependent constant
ρa(A).

Proof. Let a∗ = argmaxa∈A⟨a, θ⟩ be the optimal action, which we assumed to be unique.

By Theorem 25.1, Lattimore and Szepesvári (2018),

lim sup
T→∞

log(T ) ∥a− a∗∥2Ḡ−1
T

≤ 1

2
∆2
a. (20)

Let M and M′ be the measures on the sequence of outcomes A1, . . . , AT induced by θ and θ′
respectively. Let E[·] and E′[·] be the expectation operators of M and M′, respectively.

Step 1: Choosing the ‘Hard to distinguish’ θ′. Let θ′ ∈ Rd be an alternative parameter to be chosen
subsequently. We follow the usual plan of choosing θ′ to be close to θ, but also ensuring that the
optimal action in the bandit determined by θ′ is not a∗. Let ∆min = min {∆a : a ∈ A,∆a > 0},
α ∈ (0,∆min) and H be a positive definite matrix (to be chosen later) such that ∥a− a∗∥2H > 0.
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Given this setting, we define

θ′ ≜ θ +
∆a + α

∥a− a∗∥2H
H (a− a∗) ,

which is chosen such that ⟨a− a∗, θ′⟩ = ⟨a− a∗, θ⟩+∆a + α = α.

This means that a∗ is α-suboptimal for the environment corresponding to θ′.

Step 2: From Lower Bounding Regret to Upper Bounding KL-divergence. For simiplicity, we
abbreviate RegT = RegT (A, θ) and Reg′T = RegT (A, θ′).
Then, by applying the classic regret decomposition and Markov’s inequality 6, we obtain

RegT = E

[∑
a∈A

Na(T )∆a

]
≥ T∆min

2
M (Na∗(T ) < T/2) ≥ Tα

2
M (Na∗(T ) < T/2) ,

Since a∗ is α-suboptimal in bandit θ′, it implies that

Reg′T ≥ Tα

2
M′ (Na∗(T ) ≥ T/2) .

Now, Bretagnolle–Huber inequality implies that

RegT +Reg′T ≥ Tα

2
(M (Na∗(T ) < T/2) +M′ (Na∗(T ) ≥ T/2))

≥ Tα

4
exp (−DKL (M ∥ M′))

Step 3: KL-divergence Decomposition with ϵ-global DP. By Equation 18, we have that

DKL (M ∥ M) ≤ 3ϵEνπϵ

[
T∑
t=1

|⟨At, θ − θ′⟩|

]

= 3ϵEνπϵ

[
T∑
t=1

∣∣∣∣∣
〈
At,

∆a + α

∥a− a∗∥2H
H (a− a∗)

〉∣∣∣∣∣
]

= 3ϵ
∆a + α

∥a− a∗∥2Ḡ−1
T

ρT (H),

where we define

ρT (H) ≜
∥a− a∗∥2Ḡ−1

T

∥a− a∗∥2H
Eνπϵ

[
T∑
t=1

|⟨At, H (a− a∗)⟩|

]

Thus, after re-arrangement, we get

3ϵ (∆a + α)

log(T ) ∥a− a∗∥2Ḡ−1
T

ρT (H) ≥ 1− log ((4RT + 4R′
T ) /α)

log(T )
. (21)

Step 4: Choosing H and Taking the Limit. The definition of consistency means that RegT and
Reg′T are both sub-linear in T . This implies that the second term in Equation (21) tends to zero for
large T . Thus, by tending T to ∞ and α to zero, we obtain

lim inf
T→∞

ρT (H)

log(T ) ∥a− a∗∥2Ḡ−1
T

≥ 1

3ϵ∆a
.

We now choose H to be a cluster point of the sequence
(
Ḡ−1
T /

∥∥Ḡ−1
T

∥∥)
T∈S where

∥∥Ḡ−1
T

∥∥ is the
spectral norm of the matrix Ḡ−1

T .
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Fact 2: For this choice of H ,
lim inf
T→∞

ρT (H) ≤ ρa(A),

where

ρa(A) ≜
K∑

j=1,∥aj∦=0

∣∣aTj (a− a∗)
∣∣

∥aj∥2
.

Finally,

lim sup
T→∞

log(T ) ∥a− a∗∥2Ḡ−1
T

≤ 3ϵ∆aρa(A).

Combined with Equation 20, we get that

lim sup
T→∞

log(T ) ∥a− a∗∥2Ḡ−1
T

≤ min

(
1

2
∆2
a, 3ϵ∆aρa(A)

)
.

Using that

lim
T→∞

∥a− a∗∥Ḡ−1
T

∥a∥Ḡ−1
T

= 1

from Theorem 25.1, Lattimore and Szepesvári (2018), we get that

lim sup
T→∞

log(T ) ∥a∥2Ḡ−1
T

≤ min

(
1

2
∆2
a, 3ϵ∆aρa(A)

)
.

Step 5: Getting Back to the Regret. We conclude using the same steps as in the Corollary
2 (Lattimore and Szepesvari, 2017).

Now, we prove Fact 2.

Fact 2. If H is a cluster point of the sequence
(
Ḡ−1
T /

∥∥Ḡ−1
T

∥∥)
T∈S and

∥∥Ḡ−1
T

∥∥ is the spectral norm
of the matrix Ḡ−1

T , then the following inequality holds true:

lim inf
T→∞

ρT (H) ≤ ρa(A),

where

ρa(A) ≜
K∑

j=1,∥aj∦=0

∣∣aTj (a− a∗)
∣∣

∥aj∥2
.

Proof. We let S be a subset so that Ḡ−1
T /

∥∥Ḡ−1
T

∥∥ converges to H on T ∈ S. Then,

lim inf
T→∞

ρT (H) ≤ lim inf
T∈S

ρT (Ḡ
−1
T /

∥∥Ḡ−1
T

∥∥)
= lim inf

T∈S
Eθ

[
T∑
t=1

∣∣〈At, Ḡ−1
T (a− a∗)

〉∣∣]

= lim inf
T∈S

K∑
j=1

Eθ(Nj(T ))
∣∣aTj Ḡ−1

T (a− a∗)
∣∣

= lim inf
T∈S

K∑
j=1,∥aj∦=0

Eθ(Nj(T ))
∣∣aTj Ḡ−1

T (a− a∗)
∣∣

25



Let j be such that ∥aj∥ ≠ 0.

Now, we aim to upper bound the term
∣∣aTj Ḡ−1

T (a− a∗)
∣∣

First, we decompose a− a∗ into two orthogonal components, which are aligned and orthogonal to aj
respectively.

a− a∗ = αjaj + bj ,

where a⊤j bj = 0 and αj =
aTj (a−a∗)

∥aj∥2 .

On the other hand, we have that

ḠT = Eθ

[
T∑
t=1

AtA
⊤
t

]
=

K∑
j=1

Eθ(Nj(T ))aja⊤j ⪰ Eθ(Nj(T ))aja⊤j

Since

(
Eθ(Nj(T ))aja⊤j

)†

=
1

Eθ(Nj(T ))(a⊤j aj)2
aja

⊤
j ,

and

(
Eθ(Nj(T ))aja⊤j

)†

bj = 0,

only the component of a−a∗ in the direction of aj matters in the dot product aTj Ḡ
−1
T (a− a∗). Thus,∣∣aTj Ḡ−1

T (a− a∗)
∣∣ ≤ |αj |

Eθ(Nj(T ))(a⊤j aj)2
aTj aja

T
j aj

=
|αj |

Eθ(Nj(T ))

Consequently,

lim inf
T→∞

ρT (H) ≤
K∑

j=1,∥aj∦=0

∣∣aTj (a− a∗)
∣∣

∥aj∥2
≜ ρa(A)

Example 3 (ρa(A) for an orthogonal set of arms). If the action space is the orthogonal basis, then
ρa(A) = 2, because:

ḠT =

E(N1(T ))
. . .

E(Nd(T ))


and: ∣∣〈At, Ḡ−1

T (a− a∗)
〉∣∣ = 1

E(Na(T ))
IAt=a +

1

E(Na⋆(T ))
IAt=a⋆

so:

E

[
T∑
t=1

∣∣〈At, Ḡ−1
T (a− a∗)

〉∣∣] = 2
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D Privacy Analysis of Algorithm 1

In this section, we prove that any bandit algorithm designed using the framework of Algorithm 1
satisfies ϵ-global DP. We establish the claim by proving ϵ-global DP for the set of private indices
computed in Algorithm 1 and the final result is a consequence of the post-processing property of DP
(Lemma 5).
Lemma 1 (Privacy of the (l + 1)-means Computed in Algorithm 1). Let us define the private
empirical mean of the rewards between steps i and j (i < j) as

f ϵ{ri, . . . , rj} ≜
1

j − i

j∑
t=i

rt + Lap

(
1

(j − i)ϵ

)
. (22)

If 1 < t1 < · · · < tℓ < T and rt ∈ [0, 1], the mechanism gϵ mapping the sequence of rewards
(r1, r2, . . . , rT−1, rT ) to (ℓ + 1)-private empirical means (f ϵ{r1, . . . , rt1−1}, f ϵ{rt1 , . . . , rt2−1},
. . . , f ϵ{rtℓ−1

, . . . , rtℓ−1}, f ϵ{rtℓ , . . . , rT }) satisfies ϵ-DP.

Proof. Let rT ≜ (r1, . . . , rT ) and r′T ≜ (r′1, . . . , r
′
T ) be two neighbouring reward sequences in

[0,1]. This implies that ∃j ∈ [1, T ] such that rj ̸= r′j and ∀t ̸= j, rt = r′t.

Let ℓ′ be such that tℓ′ ≤ j ≤ tℓ′+1 − 1, and follows the convention that t0 = 1 and tℓ+1 = T + 1.

Let µ ≜ (µ0, . . . , µℓ) a fixed sequence of outcomes obtained using Equation (22). Then,

P(gϵ(rT ) = µ)

P(gϵ(r′T ) = µ)
=

P
(
f ϵ{rtℓ′ , . . . , rtℓ′+1−1} = µℓ′

)
P
(
f ϵ{rtℓ′ , . . . , rtℓ′+1−1} = µℓ′

) ≤ eϵ,

where the last inequality holds true because f ϵ satisfies ϵ-DP following Theorem 1.

Theorem 6 (ϵ-global DP for Algorithm 1). For any index Iϵa computed using the private empirical
mean of the rewards collected in the last active episode of arm a, Algorithm 1 satisfies ϵ-global DP.

Proof. Fix two neighboring reward streams rT = {r1, . . . , rT } and r′T = {r′1, . . . , r′T }.
This implies that ∃j ∈ [1, T ] such that rj ̸= r′j and ∀t ̸= j, rt = r′t.
We also fix a sequence of actions aT = {a1, . . . , aT }.
We want to show that: Pr(π(rT ) = aT ) ≤ eϵPr(π(r′T ) = aT ).

The main idea is that the change of reward in the j-th reward only affects the empirical mean
computed in one episode, which is made private using the Laplace Mechanism and Lemma 1.

• Since rj−1 = r′j−1, Pr(π(rj−1) = aj−1) = Pr(π(r′j−1) = aj−1).

• Let tℓ ≤ j < tℓ+1 and tℓ′ ≤ j < tℓ′+1 be the episodes corresponding to the jth reward
in rT and r′T respectively. Since rj−1 = r′j−1, we get that ℓ = ℓ′. Thus, Pr(π(rtℓ+1) =
atℓ+1) = Pr(π(r′tℓ+1) = atℓ+1).

• Let µ̃ℓa,ϵ and µ̃
′ℓ
a,ϵ be the private means of arm a computed in the episode [tℓ, tℓ+1], by the

Laplace mechanism, for every interval I ∈ R, Pr(µ̃ℓa,ϵ ∈ I) ≤ eϵPr(µ̃
′ℓ
a,ϵ ∈ I).

• Finally, since {rj+1, . . . , rT } = {r′j+1, . . . , r
′
T }, Pr(π(rT ) = aT |µ̃ℓa,ϵ ∈ I) =

Pr(π(r′T ) = aT |µ̃′ℓ
a,ϵ ∈ I)

Now, we conclude the argument by using a chain rule.

Since Theorem 6 holds for any index-based bandit algorithm that uses only private empirical means
of rewards (Equation (22)) of the last active episode to compute the indices, it also implies that
AdaP-UCB and AdaP-KLUCB satisfy ϵ-global DP.
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E Upper Bounds on Regret: AdaP-UCB and AdaP-KLUCB

E.1 Concentration Inequalities

Lemma 3. Assume that (Xi)1≤i≤n are iid random variables in [0, 1], with E(Xi) = µ. Then, for
any δ ≥ 0,

P

µ̂n + Lap

(
1

nϵ

)
−

log
(
1
δ

)
nϵ

−

√
log
(
1
δ

)
2n

≥ µ

 ≤ 3

2
δ, (23)

and

P

µ̂n + Lap

(
1

nϵ

)
+

log
(
1
δ

)
nϵ

+

√
log
(
1
δ

)
2n

≤ µ

 ≤ 3

2
δ, (24)

where µ̂n = 1
n

∑n
t=1Xt

Proof. We have that

p1 ≜ P

µ̂n + Lap

(
1

nϵ

)
−

log
(
1
δ

)
nϵ

−

√
log
(
1
δ

)
2n

≥ µ


≤ P

µ̂n −

√
log
(
1
δ

)
2n

≥ µ

+ P

(
Lap

(
1

nϵ

)
−

log
(
1
δ

)
nϵ

≥ 0

)

≤ δ +
δ

2
=

3

2
δ,

where the last inequality is due to Lemma 11 and Lemma 10.

Similarly,

p2 ≜ P

µ̂n + Lap

(
1

nϵ

)
+

log
(
1
δ

)
nϵ

+

√
log
(
1
δ

)
2n

≤ µ


≤ P

µ̂n +

√
log
(
1
δ

)
2n

≤ µ

+ P

(
Lap

(
1

nϵ

)
+

log
(
1
δ

)
nϵ

≤ 0

)

≤ δ +
δ

2
=

3

2
δ,

where the last inequality is due to Lemma 11 and Lemma 10.

Lemma 4. Let X1, X2, . . . , Xn be a sequence of independent random variables sampled from a
Bernoulli distribution with mean µ, and let µ̂n = 1

n

∑n
t=1Xt be the sample mean. Let

µ̆n(δ) ≜ Clip0,1

(
µ̂n + Lap

(
1

nϵ

)
+

log( 1δ )

nϵ

)
(25)

for δ > 0 be the clipped and private empirical mean.

Claim 1. For any δ > 0 and α ∈ [0, µ], the following inequality holds:

P(µ ≥ µ̆n(δ) + α) ≤ exp(−nd(µ− α, µ)) +
1

2
δ (26)

Claim 2. Furthermore for δ ≥ 0, we define

Un(δ) ≜ max

{
q ∈ [0, 1] : d (µ̆n (δ) , q) ≤

log
(
1
δ

)
n

}
(27)

Then,

P(µ ≥ Un(δ)) ≤
3

2
δ (28)
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Proof. Here, we prove Claim 1 followed by Claim 2.

Claim 1. Since µ̆n(δ) = min
{
max

{
0, µ̂n + Lap

(
1
nϵ

)
+

log( 1
δ )

nϵ

}
, 1
}

, we have that

µ− α ≥ µ̆n(δ) ⇒ µ− α ≥ 1 or µ− α ≥ max

{
0,

(
µ̂n + Lap

(
1

nϵ

)
+

log( 1δ )

nϵ

)}
⇒ µ− α ≥ µ̂n + Lap

(
1

nϵ

)
+

log( 1δ )

nϵ
(since µ ≤ 1)

⇒ µ− α ≥ µ̂n or Lap

(
1

nϵ

)
+

log( 1δ )

nϵ
≤ 0.

It implies that

P(µ ≥ µ̆n(δ) + α) ≤ P
(
µ ≥ µ̂n + α

)
+P
(
Lap

(
1

nϵ

)
+

log( 1δ )

nϵ
≤ 0

)
≤ exp(−nd(µ− α, µ)) +

1

2
δ.

The last inequality is due to Equation 39 of Lemma 13 and Lemma 10.

Claim 2.

We have that the sets

{µ ≥ Un(δ)} =
(a)

{µ ≥ Un(δ) ≥ µ̆n(δ)}

=
(b)

{d(µ̆n(δ), µ) ≥ d(µ̆n(δ), Un(δ)), µ ≥ µ̆n(δ)}

=
(c)

{d(µ̆n(δ), µ) ≥
log( 1δ )

n
, µ ≥ µ̆n(δ)}

=
(d)

{µ̆n(δ) ≤ µ− α}

Here, we chose an α > 0 such that d(µ− α, µ) =
log( 1

δ )

n .

Step (a) holds because Un(δ) ≥ µ̆n(δ) by the definition of Un(δ). Step (b) also holds true since
d(µ̆n(δ), ·) is increasing on [µ̆n(δ), 1]. Since d(µ̆n(δ), Un(δ)) =

log( 1
δ )

n by the definition of Un(δ),
we obtain the equality in Step (c). Finally, Step (d) is obtained by inverting the relative entropy.

We conclude the proof by

P{µ ≥ Un(δ)} = P {µ̆n(δ) ≤ µ− α}

≤ exp(−nd(µ− α, µ)) +
1

2
δ (by Claim 1)

= δ +
δ

2
=

3

2
δ (by substituting α)

E.2 Generic Regret Analysis for Algorithm 1

Algorithm 1 is a generic framework to construct an extension of any optimistic index-based bandit
algorithm, which would satisfy ϵ-global DP. The algorithm is based on the index Iϵa of each arm.
Iϵa is computed using the private empirical mean of the last active episode of arm a and is a high
probability upper bound of the real mean µa.

To explicate the two conditions on arm indexes, we introduce the notation Iϵa(t− 1, α, s), which is
the index of arm a, at time-step t and computed using s reward samples from arm a.

Thus, we can express the index computed using just the last active episode as

Iϵa(t− 1, α) = Iϵa(t− 1, α,
1

2
Na(t− 1)). (29)
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Because Iϵa(t−1, α) only uses samples collected from the last active episode, and due to the doubling,
the last active episode’s size is exactly half the number of times arm a was pulled since the beginning.

The optimism of the index is ensured by the fact that

P (Iϵa(t− 1, α, s) ≤ µa) ≤
3

2

1

tα
(30)

for every arm a, every sample size s and every time-step t, where α is the confidence level.
Theorem 11. Let a be a suboptimal arm and ℓ ∈ N such that 2ℓ < T . Then, Algorithm 1 using an
index Iϵa satisfying Equations 29 and 30, also satisfies that for any α > 3,

E[Na(T )] ≤ 2ℓ+1 + P
(
Gca,ℓ,T

)
T +

α

α− 3
,

where Ga,ℓ,T = {Iϵa(T − 1, α, 2ℓ) < µ∗} and Gca,ℓ,T is the complement of Ga,ℓ,T

Proof. Without loss of generality, we assume the first arm is the optimal one (µ∗ = µ1) and denote a
suboptimal arm by a (1 < a ≤ K).

We leverage the standard idea of UCB-type proofs: if arm a is chosen at the beginning of an episode
ℓ, then either its index at tℓ is larger than the true mean of the first arm, or the true mean of the first
arm is larger than the first arm’s index at tℓ.

Since decisions, i.e. playing the arm with the highest index, are only taken at the beginning of an
episode, we introduce ϕwhich takes as input a time step and outputs the time step corresponding to the
beginning of an episode. Formally, for each t ∈ [K+1, T ], let ϕ(t) = tℓ such that tℓ ≤ t ≤ tℓ+1− 1.
In Example 2, ϕ(5) = 4 and ϕ(9) = 7.

Formally, ϕ(t) is a random variable such that

∀t : ϕ(t) ≤ t ≤ 2ϕ(t) (31)

Step 1: Decomposition of Na(T ). We observe that

Na(T ) = 1 +

T∑
t=K+1

I{At = a}

= 1 +

T∑
t=K+1

I{At = a and Iϵ1(ϕ(t)− 1, α) > µ1}+ I{At = a and Iϵ1(ϕ(t)− 1, α) ≤ µ1}

≤ 1 +N ′
a(T )︸ ︷︷ ︸

Term1

+

T∑
t=K+1

I{Iϵ1(ϕ(t)− 1, α) ≤ µ1}︸ ︷︷ ︸
Term2

We define N ′
a(T ) ≜

∑T
t=K+1 I{At = a and Iϵ1(tℓ′ − 1, α) > µ1}

Step 2: Decomposition of Term 1: N ′
a(T ). Let Ga,ℓ,T be the ‘good’ event defined by

Ga,ℓ,T = {Iϵa(T − 1, α, 2ℓ) < µ1}.

The main part of the proof is decomposing N ′
a(T ) among the ‘good’ and the ‘bad’ events, i.e.

E[N ′
a(T )] = E[I{Ga,ℓ,T }N ′

a(T )] + E[I{Gca,ℓ,T }N ′
a(T )] ≤ 2ℓ+1 + P(Gca,ℓ,T )T.

Gca,ℓ,T denotes the complement of Ga,ℓ,T .

To prove the last inequality, we only need to prove that when Ga,ℓ,T happens, N ′
a(T ) ≤ 2ℓ+1. We

prove it by contradiction.

Hence, let us assume that Ga,ℓ,T holds but N ′
a(T ) > 2ℓ+1.

This assumption implies that the arm a is played more than 2ℓ+1 times. Thus, there must exist a round
tℓ′ , where Na(tℓ′ − 1) = 2ℓ+1, Atℓ′ = i and Iϵ1(tℓ′ − 1, α) ≥ µ1. Since indices are computed only
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using the samples from the last active episode, Iϵa(tℓ′ − 1, α) is computed using exactly 2ℓ reward
samples from arm a.

Thus, we obtain

Iϵa(tℓ′ − 1, α) = Iϵa(tℓ′ − 1, α, 2ℓ)

≤ Iϵa(T − 1, α, 2ℓ) (because tℓ′ ≤ T and Iϵa(·, α, 2ℓ) is increasing)
< µ1 (definition of Ga,ℓ,T )
≤ Iϵ1(tℓ′ − 1, α)

The last inequality contradicts the fact thatAtℓ′ = i and thus, establishes the claim thatN ′
a(T ) ≤ 2ℓ+1

under the ‘good’ event.

Step 3: Upper-bounding Term 2. To conclude,

E

[
T∑

t=K+1

I{Iϵ1(ϕ(t)− 1, α) ≤ µ1}

]
=

T∑
t=K+1

P{Iϵ1(ϕ(t)− 1, α) ≤ µ1}

≤
T∑

t=K+1

t∑
ϕ=t/2

P{Iϵ1(ϕ− 1, α) ≤ µ1}

≤
T∑

t=K+1

t∑
ϕ=t/2

ϕ∑
s=1

P{Iϵ1(ϕ− 1, α, s) ≤ µ1}

≤
T∑

t=K+1

t∑
ϕ=t/2

ϕ∑
s=1

3

2

1

ϕα
(Equation 30)

=
3

2

T∑
t=K+1

t∑
ϕ=t/2

1

ϕα−1

≤ 3

2

T∑
t=K+1

2α−2

tα−2
(because ϕ ≥ t

2
)

≤ 3

2
2α−2

∫ T

K

1

xα−2
dx (sum-integral inequality)

≤ 3

2
2α−2 1

α− 3

1

Kα−3
=

3

2

2

α− 3

(
2

K

)α−3

≤ 3

α− 3

for α > 3 and K ≥ 2.

Here, the first inequality is due to an union bound on ϕ(t) ∈ [t/2, t] (Equation 31), and the second
inequality is due to a union bound on N1(ϕ− 1).

Step 4: Combining the Bounds on Terms 1 and 2.

E[Na(T )] ≤ 1 + 2ℓ+1 + P
(
Gca,ℓ,T

)
T +

3

α− 3

= 2ℓ+1 + P
(
Gca,ℓ,T

)
T +

α

α− 3

Now we design indexes that satisfy the conditions of Theorem 11, namely AdaP-UCB and
AdaP-KLUCB.

To obtain the final regret bounds, we only have to choose ℓ big enough such that P
(
Ia(T, 2

ℓ) ≥ µ1

)
T

is negligible. This corresponds to the leading term in the regret upper-bounds, and this is where the
regrets of AdaP-UCB and AdaP-KLUCB differ.
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We explicate the issues of designing the indexes and choosing corresponding ℓ in the following
section, which leads to the regret upper bounds of AdaP-UCB and AdaP-KLUCB.

E.3 Regret Analysis for AdaP-UCB and AdaP-KLUCB

Theorem 7. For rewards in [0, 1], AdaP-UCB satisfies ϵ-global DP, and for α > 3, it yields a regret

RegT (AdaP-UCB, ν) ≤
∑

a:∆a>0

(
16α

min{∆a, ϵ}
log(T ) +

3α

α− 3

)
.

Proof. The proof is constituted of three steps.

Step 1: Designing an Index satisfying Equation (29), Equation (30), and ϵ-global DP. For
AdaP-UCB, the index is defined as

Iϵa(tℓ − 1, α) = µ̃ℓa,ϵ +

√
α log(tℓ)

2× 1
2Na(tℓ − 1)

+
α log(tℓ)

ϵ× 1
2Na(tℓ − 1)

,

where

µ̃ℓa,ϵ = µ̂a, 12Na(tℓ−1) + Lap

(
1

ϵ× 1
2Na(tℓ − 1)

)
(32)

is the private empirical mean of arm a computed using only samples from the last active episode, and
µ̂a,s is the empirical mean of arm a calculated using s samples of reward from arm a.

This index verifies the first condition (Equation 29) of Theorem 11.

The second condition (Equation 30) of Theorem 11 follows directly from Equation 24 of Lemma 3

By Theorem 6,AdaP-UCB is ϵ-global DP.

By Theorem 11, for every suboptimal arm a, we have that

E[Na(T )] ≤ 2ℓ+1 + P
(
Gca,ℓ,T

)
T +

α

α− 3
,

where

Ga,ℓ,T =

{
µ̂a,2ℓ + Lap

(
1

2ℓϵ

)
+

√
α log(T )

2× 2ℓ
+
α log(T )

ϵ2ℓ
< µ1

}
.

Step 2: Choosing an ℓ. Now, we observe that

P(Gca,ℓ,T ) = P

(
µ̂a,2ℓ + Lap

(
1

2ℓϵ

)
+

√
α log(T )

2× 2ℓ
+
α log(T )

ϵ2ℓ
≥ µ1

)

= P

(
µ̂a,2ℓ + Lap

(
1

2ℓϵ

)
−
√
α log(T )

2× 2ℓ
− α log(T )

ϵ2ℓ
≥ µa + γ

)

for γ =

(
∆a − 2

√
α log(T )
2×2ℓ

− 2α log(T )
ϵ2ℓ

)
.

The idea is to choose ℓ big enough so that γ ≥ 0.

Let us consider the contrary, i.e.

γ < 0 ⇒
√
2ℓ <

√
α log(T )

2∆2
a

(
1 +

√
1 +

4∆a

ϵ

)

⇒ 2ℓ <
α log(T )

2∆2
a

(
4 +

8∆a

ϵ

)
⇒ 2ℓ <

4α log(T )

∆amin{ϵ, 2∆a}
. (33)
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Thus, by choosing

ℓ =

⌈
1

log(2)
log

(
4α log(T )

∆amin{ϵ, 2∆a}

)⌉
we ensure γ > 0. This also implies that

P(Gca,ℓ,T ) ≤ P

(
µ̂a,2ℓ + Lap

(
1

2ℓϵ

)
−
√
α log(T )

2× 2ℓ
− α log(T )

ϵ2ℓ
≥ µa

)
≤ 3

2Tα

The last inequality is due to Equation 23 of Lemma 3.

Step 3: The Regret Bound. Combining Steps 1 and 2, we get that

E[Na(T )] ≤
α

α− 3
+ 2ℓ+1 + T × 3

2Tα

≤ 16α log(T )

∆amin{ϵ, 2∆a}
+

3α

α− 3
. (34)

Plugging this upper bound back in the definition of problem-dependent regret concludes the proof.

Remark 3. The leading term of the regret is 16α log(T )
∆a min{ϵ,2∆a} , which is 4 times more than what we

got from Equation 33. A multiplicative factor of 2 is introduced due to the doubling and another
multiplicative factor of 2 is due to the forgetting. Thus, the combined price of doubling and forgetting
is a multiplicative constant 4 in the leading term of regret.

Theorem 8. When the rewards are sampled from Bernoulli distributions, AdaP-KLUCB satisfies
ϵ-global DP, and for α > 3 and constants C1(α), C2 > 0, it yields a regret

RegT (AdaP-KLUCB, ν) ≤
∑

a:∆a>0

(
C1(α)∆a

min{d(µa, µ∗), C2ϵ∆a}
log(T ) +

α

α− 3

)
.

Proof. The proof is constituted of three steps.

Step 1: Designing an Index satisfying Equation (29), Equation (30), and ϵ-global DP. For
AdaP-KLUCB, the index is defined as

Iϵa(tℓ − 1, α) = max

{
q ∈ [0, 1] : d

(
µ̆ℓ,αa,ϵ , q

)
≤ α log(tℓ)

1
2Na(tℓ − 1)

}
≜ Ua, 12Na(tℓ−1)

(
1

tαℓ

)
,

where µ̆ℓ,αa,ϵ = Clip0,1

(
µ̃ℓa,ϵ +

α log(tℓ)

ϵ 1
2Na(tℓ−1)

)
= µ̆a, 12Na(tℓ−1)

(
1
tαℓ

)
as defined in Equation 25,

µ̃ℓa,ϵ is the private empirical computed only using the samples from the last active episode (as

defined for AdaP-UCB, and Ua,s(δ) = max

{
q ∈ [0, 1] : d (µ̆a,s (δ) , q) ≤

log( 1
δ )

s

}
as defined in

Equation 27

This index verifies the first condition (Equation 29) of Theorem 11.

The second condition (Equation 30) of Theorem 11 follows directly from Equation 24 of Lemma 3

By Theorem 6, AdaP-KLUCB also satisfies ϵ-global DP.

By Theorem 11, for every suboptimal arm a, we have that

E[Na(T )] ≤ 2ℓ+1 + P
(
Gca,ℓ,T

)
T +

α

α− 3
,

where

Ga,ℓ,T =

{
Ua,2ℓ

(
1

Tα

)
< µ1

}
.
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Step 2: Choosing an ℓ. We observe that

P(Gca,ℓ,T ) = P
(
Ua,2ℓ

(
1

Tα

)
≥ µ1

)
≤ P

(
d+
(
µ̆a,2ℓ

(
1

Tα

)
, µ1

)
≤ α log(T )

2ℓ

)
(by definition of Ua,2ℓ )

where d+(p, q) ≜ d(p, q)Ip<qand d(p, q) is the relative entropy between Bernoulli distributions as
stated in Definition 5.

Let β > 0, and c(β) ∈ [0, 1] such that: d(µa + c(β)∆a, µ1) =
d(µa,µ1)

1+β .

Since d(·, µ1) is a bijective function from [µa, µ1] to [0, d(µa, µ1)], we get that c(β) always exists
and is unique.

In addition, c(β) verifies: limβ→0 c(β) = 0, limβ→+∞ c(β) = 1 and c(β) is an increasing function
of β.

First, we choose ℓ such that

2ℓ ≥ (1 + β)α log(T )

d(µa, µ1)
. (35)

This leads to

P(Gca,ℓ,T ) ≤ P
(
d+
(
µ̆a,2ℓ

(
1

Tα

)
, µ1

)
≤ d(µa, µ1)

1 + β

)
= P

(
d+
(
µ̆a,2ℓ

(
1

Tα

)
, µ1

)
≤ d(µa + c(β)∆a, µ1)

)
(definition of c(β))

≤ P
(
µ̆a,2ℓ

(
1

Tα

)
≥ µa + c(β)∆a

)
(d(·, µ1) is decreasing on [0, µ1])

≤ P
(
µ̂a,2ℓ + Lap

(
1

2ℓϵ

)
+
α log(T )

ϵ2ℓ
≥ µa + c(β)∆a

)
(definition of µ̆)

Let us consider γℓ,T such that d(µa+γℓ,T∆a, µa) =
log(T )

2ℓ
. We prove its existence and upper bound

it later in Fact 3. Thus, we obtain

P(Gca,ℓ,T ) ≤ P
(
µ̂a,2ℓ − γℓ,T∆a + Lap

(
1

2ℓϵ

)
− log(T )

ϵ2ℓ
≥ µa + (c(β)− γℓ,T )∆a −

(1 + α) log(T )

ϵ2ℓ

)
= P

(
µ̂a,2ℓ − γℓ,T∆a + Lap

(
1

2ℓϵ

)
− log(T )

ϵ2ℓ
≥ µa + θ

)
Here, θ ≜ (c(β)− γℓ,T )∆a − (1+α) log(T )

ϵ2ℓ
.

By choosing

2ℓ ≥ (1 + α) log(T )

(c(β)− γℓ,T )ϵ∆a
, (36)

we ensure that θ ≥ 0. Thus, we get

P(Gca,ℓ,T ) ≤ P
(
µ̂a,2ℓ − γℓ,T∆a + Lap

(
1

2ℓϵ

)
− log(T )

ϵ2ℓ
≥ µa

)
≤ P

(
µ̂a,2ℓ − γℓ,T∆a ≥ µa

)
+ P

(
Lap

(
1

2ℓϵ

)
− log(T )

ϵ2ℓ
≥ 0

)
≤ exp

(
−2ℓd(µa + γℓ,T∆a, µa)

)
+

1

2T

=
3

2T
.

The last inequality is due to Equation 38 of Lemma 13 and Lemma 10.

Fact 3. B ≜ {β > 0 : c(β) > γℓ,T } ≠ ∅.
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Combining both conditions 35 and 35, we choose ℓ to be the smallest integer such that

2ℓ ≥ inf
β∈B

max

{
(1 + β)α

d(µa, µ1)
,

(1 + α)

(c(β)− γℓ,T )ϵ∆a

}
log(T ) ≜

1
4C1(α)

min{d(µa, µ1), C2ϵ∆a}
log(T )

Step 3: The Regret Bound. Combining Steps 1 and 2, we get that

E[Na(T )] ≤ 2ℓ+1 + T × 3

2T
+

α

α− 3

≤ C1(α)

min{d(µa, µ1), C2ϵ∆a}
log(T ) +

3α

α− 3

Plugging this upper bound back in the definition of problem-dependent regret concludes the proof.

To conclude, we prove Fact 3.
Fact 3. B ≜ {β > 0 : c(β) > γℓ,T } ≠ ∅.

Proof. Step 1: Going from d(·, µa) to d(·, µ1). The difficulty of the proof lies in the fact that γℓ,T
is defined by inverting d(·, µa) while c(β) is defined by inverting d(·, µ1).

To handle that, we investigate the function g(x) ≜ d(x, µa)− d(x, µ1).

g satisfies the following properties:

• g is continuous and increasing in the interval [µa, µ1],

• g(µa) = −d(µa, µ1) < 0, and

• g(µ1) = d(µ1, µa) > 0.

This implies that there exists a unique root of g(x), where it changes sign. Specifically, there exists a
unique z ∈ [µa, µ1] such that:

• g(z) = 0

• ∀x ∈ [µa, z[: g(x) < 0

• ∀x ∈]z, µ1] : g(x) > 0

and consequently z verifies d(z, µa) = d(z, µ1)

Step 2: Choosing β. We choose β such that d(µa,µ1)
1+β = d(z, µa) = d(z, µ1).

Step 3: Consequence of the choice of β on c(β). Thus,

d(µa + c(β)∆a, µ1) = d(z, µ1),

which yields

z = µa + c(β)∆a

by uniqueness of z.

Step 4: Consequence of the choice of β on γℓ,T . On the other hand,

d(µa + γℓ,T∆a, µa) =
log(T )

2ℓ
(by definition of γℓ,T )

≤ d(µa, µ1)

α(β + 1)
(by Equation 35)

< d(z, µa) (since α > 3)

= d(µa + c(β)∆a, µa) (37)

As a consequence, we conclude that γℓ,T exists and γℓ,T < c(β) as d(·, µa) is an increasing function
in the interval [µa, 1]
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E.4 Problem-independent Regret Bounds

In this section, we provide problem-independent (or minimax) regret upper bounds for AdaP-UCB.
Theorem 12. For rewards in [0, 1], AdaP-UCB yields a regret

RegT (AdaP-UCB, ν) ≤ 3α

α− 3

∑
a

∆a + 8
√
αKT log(T ) +

16αK log(T )

ϵ

which achieves the minimax lower bound of Thm 2 up to log(T ) factors.

Proof. Let ∆ be a value to be tuned later.
We have that

RegT (AdaP-UCB, ν) =
∑
a

∆aE[Na(T )] =
∑

a:∆a≤∆

∆aE[Na(T ) +
∑

a:∆a>∆

∆aE[Na(T )]

≤ T∆+
∑

a:∆a>∆

∆a

(
16α log(T )

∆amin{ϵ,∆a}
+

3α

α− 3

)
(eq. 34)

≤ T∆+
16αK log(T )

∆
+

16αK log(T )

ϵ
+

3α

α− 3

∑
a

∆a

≤ 8
√
αKT log(T ) +

16αK log(T )

ϵ
+

3α

α− 3

∑
a

∆a

where the last step is by taking ∆ = 4
√

αK log(T )
T .

Remark 4. The same bound is achieved by AdaP-KLUCB (up to multiplicative constants) by using
that d(µa, µ∗) ≥ 2∆2

a and using the same steps in Thm 12.
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F Existing Technical Results and Definitions

In this section, we summarise the existing technical results and definitions required to establish our
proofs.
Lemma 5 (Post-processing Lemma (Proposition 2.1, (Dwork and Roth, 2014))). If a randomised
algorithm A satisfies (ϵ, δ)-Differential Privacy and f is an arbitrary randomised mapping defined
on A’s output, then f ◦ A satisfies (ϵ, δ)-DP.
Lemma 6 (Markov’s Inequality). For any random variable X and ε > 0,

P(|X| ≥ ε) ≤ E[|X|]
ε

.

Definition 4 (Consistent Policies). A policy π is called consistent over a class of bandits E if for all
ν ∈ E and p > 0, it holds that

lim
T→∞

RegT (π, ν)

T p
= 0.

The class of consistent policies over E is denoted by Πcons (E).
Lemma 7 (Divergence decomposition). Let ν = (P1, . . . , PK) and ν′ = (P ′

1, . . . , P
′
K) be two bandit

instances. Fix some policy π and let Pνπ and Pν′π be the probability measures on the canonical
bandit model. Then,

DKL (Pνπ ∥ Pν′π) =

K∑
a=1

Eν [Na(T )] D (Pa, P
′
a) .

Lemma 8 (Bretagnolle-Huber inequality). Let P and Q be probability measures on the same
measurable space (Ω,F), and let A ∈ F be an arbitrary event. Then,

P(A) +Q (Ac) ≥ 1

2
exp(−D(P,Q)),

where Ac = Ω\A is the complement of A.
Lemma 9 (Pinsker’s Inequality). For two probability measures P and Q on the same probability
space (Ω,F), we have

DKL (P ∥ Q) ≥ 2(TV (P ∥ Q))2.

Lemma 10 (Tail Bounds for Laplacian Random Variables). For any a, b > 0, we have

P(Lap(b) > a) =
1

2
exp

(
−a
b

)
and P(Lap(b) < −a) = 1

2
exp

(
−a
b

)
.

Lemma 11 (Hoeffding’s Bound). Assume that (Xi)1≤i≤n are iid random variables in [0, 1], with
E(Xi) = µ. For any δ, β ≥ 0 and, we have:

P (µ̂n ≥ µ+ β) ≤ exp
(
−2nβ2

)
and P (µ̂n ≤ µ− β) ≤ exp

(
−2nβ2

)
,

where µ̂n = 1
n

∑n
t=1Xt.

Definition 5 (Relative entropy between Bernoulli distributions). The relative entropy between
Bernoulli distributions with parameters p, q ∈ [0, 1] is

d(p, q) = p log(p/q) + (1− p) log((1− p)/(1− q)),

where singularities are defined by taking limits: d(0, q) = log(1/(1 − q)) and d(1, q) = log(1/q)
for q ∈ [0, 1] and d(p, 0) = 0 if p = 0 and ∞ otherwise and d(p, 1) = 0 if p = 1 and ∞ otherwise.
Lemma 12 (Properties of the relative entropy between Bernoulli distributions (Lemma 10.2, (Latti-
more and Szepesvári, 2018))). Let p, q, ε ∈ [0, 1].

1. The functions d(·, q) and d(p, ·) are convex and have unique minimisers at q and p, respec-
tively.

2. d(p, ·) and d(·, p) are increasing in the interval [p, 1] and decreasing in the interval [0, p].
Lemma 13 (Chernoff’s Bound). LetX1, X2, . . . , Xn be a sequence of independent random variables
that are Bernoulli distributed with mean µ, and let µ̂n = 1

n

∑n
t=1Xt be the sample mean. Then, for

β ∈ [0, 1− µ], it holds that:
P(µ̂n ≥ µ+ β) ≤ exp(−nd(µ+ β, µ)), (38)

and for β ∈ [0, µ],
P(µ̂n ≤ µ− β) ≤ exp(−nd(µ− β, µ)). (39)
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Figure 4: Evolution of regret over time for DP-UCB, DP-SE, AdaP-UCB, and AdaP-KLUCB under
C1 for different values of the privacy budget ϵ. AdaP-KLUCB achieves the lowest regret.
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Figure 5: Evolution of regret over time for DP-UCB, DP-SE, AdaP-UCB, and AdaP-KLUCB under
C2 for different values of the privacy budget ϵ. AdaP-KLUCB achieves the lowest regret.
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Figure 6: Evolution of regret over time for DP-UCB, DP-SE, AdaP-UCB, and AdaP-KLUCB under
C3 for different values of the privacy budget ϵ. AdaP-KLUCB achieves the lowest regret.
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Figure 7: Evolution of regret over time for DP-UCB, DP-SE, AdaP-UCB, and AdaP-KLUCB under
C4 for different values of the privacy budget ϵ. AdaP-KLUCB achieves the lowest regret.
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G Extended Experimental Analysis

G.1 Experimental Setup

In this section, we perform additional experiments to compare AdaP-UCB and AdaP-KLUCB with
respect to the existing bandit algorithms satisfying global DP, i.e. DP-SE (Sajed and Sheffet,
2019) and DP-UCB (Mishra and Thakurta, 2015). We test the four algorithms in the four bandit
environments with Bernoulli distributions, as defined by Sajed and Sheffet (2019), namely

C1 = {0.75, 0.70, 0.70, 0.70, 0.70}, C2 = {0.75, 0.625, 0.5, 0.375, 0.25},
C3 = {0.75, 0.53125, 0.375, 0.28125, 0.25}, C4 = {0.75, 0.71875, 0.625, 0.46875, 0.25}.

For each bandit environment, we implement the algorithms with ϵ ∈ {0.1, 0.25, 0.5, 1}. We set
α = 3.1 to comply with the regret upper bounds of AdaP-UCB and AdaP-KLUCB. We set γ = 0.1
for DP-UCB and β = 1/T . All the algorithms are implemented in Python (version 3.8) and are
tested with an 8 core 64-bits Intel i5@1.6 GHz CPU. We run each algorithm 20 times, and plot their
average regrets over the runs in Figures 4, 5, 6, and 7.In Section 5, we include Figure 2 to illustrate
the evolution of the regret for the four algorithms with environment C2 and ϵ = 1.

G.2 Experimental Results

Here, we summarise the observations obtained from the experimental results.

Comparative Performance. All the experiments validate that AdaP-KLUCB is the most optimal
algorithm satisfying ϵ-global DP for stochastic bandits. Both AdaP-UCB and AdaP-KLUCB achieve
similar regret, but AdaP-KLUCB is slightly better in all the cases studied. This observation matches
the proven upper bounds, and also reflects similar improvement that KL-UCB brings over UCB in
non-private bandits.

Dependence of Regret on ϵ. As predicted by the theoretical analysis, AdaP-UCB and AdaP-KLUCB
have different regret depending on ϵ: the regret is smaller for low-privacy regimes. This is also the
case for DP-UCB. However, DP-SE have the same performance for different choices of ϵ and echoes
the experimental results presented in the original paper (Sajed and Sheffet, 2019).
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Figure 8: Evolution of regret over time
for AdaP-UCB and AdaP-KLUCB for
different values of α with C1 and ϵ = 1.
α = 1 performs better.

The Shapes of the Regrets. DP-UCB has a regret shaped
like the regret of the classic UCB algorithm. The algorithm
chooses a different action at each time-step allowing it to
still choose exploratory actions. On the other hand, due to
the successive elimination, DP-SE "commits" at a certain
step to one action (the optimal action with high probabil-
ity). Thus, the shape of regret for DP-SE is piece-wise
linear. On the other hand, AdaP-UCB and AdaP-KLUCB
are a trade-off of both strategies: due to the doubling, both
algorithms "commit" for long episodes to near-optimal ac-
tions, while still explore the sub-optimal actions for short
episodes.

G.3 Choice of α

α controls the width of the optimistic confidence bound.
Specifically, it dictates that the real mean is smaller than
the optimistic index with high probability, i.e. with prob-
ability 1− 1

tα at step t. The requirement that α > 3 is due to our analysis of the algorithm. To be
specific, the requirement that α > 3 is needed to use a sum-integral inequality to bound Term 2 of
Step 3 in the proof of Theorem 11. We leave it for future work to relax this requirement.

The experiments are done with α = 3.1 to comply with the theoretical analysis. As shown in Figure 8,
choosing α = 1 works better experimentally. This observation complies with the theoretical results,
since the dominant terms in the regret upper bounds of both AdaP-UCB and AdaP-KLUCB are
multiplicative in α. A tighter analysis might give us a bound for α = 1 and close the multiplicative
gap between the regret’s lower and upper bound. Reflecting this phenomenon in the analysis will be
an interesting future work to pursue.
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