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A APPENDIX

A.1 COMPLEXITY ANALYSIS AND PARAMETER COUNT

Table 1: Complexity Analysis [L-# of NN Layers; N-# of Nodes; |E|-# of Edges; F-# of Hidden

Neurons in a Single Layer; k-Look Back Length]
Model Time Complexity # of Model Parameters

Graph Nets OLNF® 1 LIE[F® + LIEF) 2875274
Autoregressive Graph Nets O(LNF*+ LIE[FT + L|E[F) 2895248
Gated Graph Convolutional Recurrent Nets | O(k(LNF? + LIE[F? + LIE[F)) 7107122
Lagrangian Graph Nets O(LNF? + LIE|F? + +L|E|F + LNF? + LIE|F? + LIE[F) | 2407824
Hamiltonian Graph Nets O(LNF? + LIE[F? + LIE[F + LNF? + LIE[F? + LIE[F) 2343057
Autoregressive Lagrangian Graph Nets O(LNF*+ LIE[F* + LIE[F + LNF* + LIE|F* + LIE|F) 3263754

O(

o

o(

Autoregressive Hamiltonian Graph Nets LNFY+ LIE[F*+ LIE]F + LNF* + LIE[F* + L|E[F) 3198613
LNFZ 1 LIE[FZ+ LIE[F) 37271634
R(INF? + LIE[F? + LIE|F)) 45401482

Graph Transformer Nets (Single Step)
Graph Transformer Nets (Multi Step)

The following calculations assume a sparse adjacency matrix. For a system with N nodes, a L layer
MLP node encoder with element-wise activation requires a computation time of O(LNF? + LN).
Similarly a L layer MLP edge encoder with element-wise activation requires a computation time of
O(LIE|F?+LN). L blocks of message passing without aggregate and update functions using MLPs
requires a computation time of O(L|E|F) and with L layer MLP aggregate and update functions
with element-wise activation require a computation time of O(L|E|F + LNF? + LIE|F? + LN).
Hence the total computation time of a Graph Net with an edge and node encoder before and during
message passing is then O(L|E|F+ LN F?+ L|E|F?+ LN). Dropping small terms, we can see that
the computation time becomes O(LN F2 + L|E|F? + L|E|F'). As for Autoregressive Graph Net, the
MLP edge and node encoder before message passing undergoes an additional matrix multiplication
with the masks in each layer, therefore bringing the total computation time to O(L|E|F + LN F* +
L|E|F* + LN) and likewise dropping small terms bring the total computation time to O(LN F* +
L|E|F*+ L|E|F). As for the Lagrangian and Hamiltonian Graph Nets, the computation of gradients
during each forward pass requires an additional computation time of O(L|E|F + LN F? + L|E|F?),
therefore bringing the total computation time to O(L|E|F + LNF? + L|E|F? + LN + L|E|F +
LNF? + L|E|F?). Likewise, dropping small terms reduces the big O to O(LNF? + L|E|F? +
L|IE|F + LNF? + L|E|F? + L|E|F). As for Autoregressive Lagrangian and Hamiltonian Nets, the
total computation time becomes O(LN F* + L|E|F*+ L|E|F + LN F*+ L|E|F*+ L|E|F). Finally,
an attention step requires the computation of a query, key and value matrix, along with computation
of attention weights and the final state update. Hence, the computation time of L message passing
steps with self attention becomes O(LN F?+ L|E|F'). Unlike the other baselines, we do not consider
an edge nor node MLP for the update and aggregation steps. Hence, the total computation time for a
single step Graph Transformer Net (GTN) with an edge and node encoder and dropping small terms
is O(LNF? + LIE|F? + L|E|F). As for multi-step Graph Transformer Net, the computation time
isis O(T(LNF? + LIE|F? + L|E|F)).

A.2 DATASETS:

The particle-based datasets (Cranmer et al.| (2020)) are representative of common Newtonian dy-
namics that describes the dynamics of particles in 2 and 3 dimensions according to Newton’s law
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of motion. These simulations were written using the JAX library. The variable parameters of these
analytic simulation models include the number of simulations, number of particles, particle specific
parameters, time-steps and step-size. Each simulation per analytic model is integrated over 1000
time-steps using an adaptive RK4 integrator. We further note that the particle systems under study
are time-invariant since the dynamics of the systems do not vary with time.

A.3 PROPOSED MODEL IMPLEMENTATION DETAILS:

We implemented all our models along with the baselines using the Pytorch library. All our models
were trained and tested on a NVIDIA DGX Station A100 workstation equiped with 4 Tesla V100s,
each with a 32 GB GPU capacity. The proposed approaches as well as the baselines were trained
with a batch size of 256.

Loss Function: Since we are interested in learning the forward problem, our optimization problem
can be stated as follows:

min (1) — fo (1), )| 1)

Optimization and Hyper-parameters: We note that while we did not perform a fine-grained hyper-
parameter optimization, we did a coarse optimization and report them in Table 2} We use Adam
optimizer with an exponential learning rate decay from 10~ to 10~% and weight decay (L2 Norm) as
e~8. We use Xavier initialization for all weight matrices. While our model can train in significantly
less time-steps per dataset, we find that higher learning rates tend to destabilize the training. For
the benchmark methods, we use the hyper-parameters reported in their papers but only change the
number of GNs (message passing steps) and hidden layer sizes to be consistent with our approach in
order to ensure an apples to apples comparison. We note that we set the number of hidden neurons
of the Autoregressive encoders as well as the baseline linear encoders to 512. The hidden neuron
size of 280 is only set for the MLP node and edge encoders. We note that the input state vectors
were not normalized and in fact found input normalization to lead to slightly poorer performance
than unnormalized input. Further, we note that we did not observe any significant improvement in
performance by increasing the # of message passing blocks beyond 3.

Table 2: Hyper-Parameters

Datasets # of GN Blocks | MLP Layers | Message Passing Hidden Neurons | Initial Learning Rate | Epochs
2D Spring 3 3 280 3e 7 250
2D Damped 3 3 280 3e 7 250
2D Gravity (1) |3 3 280 3e ! 250
2D Gravity (,,%) 3 3 280 3e~ 1 250
2D Charge 3 3 280 3e T 250
3D Spring 3 3 280 3e T 250
3D Damped 3 3 280 3e T 250
3D Gravity (}) 3 3 280 3e 1 250
3D Gravity (r%) 3 3 280 3e 1 250
3D Charge 3 3 280 31 250
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A.4 BASELINE MODEL IMPLEMENTATION DETAILS:

While we utilized similar hyper-parameters for the baselines, we present more details on how the
baselines were implemented in this section.

A.4.1 GRAPH NETS

Following Sanchez-Gonzalez et al.|(2020), we implement Graph Nets in Pytorch. Graph Nets com-
prise of an Edge MLP, Node MLP that take as input node and edge features and outputs thire cor-
responding embeddings. We impose translation invariance by providing the node encoder with the
current and previous (k — 1) velocities along with the mass of the particles. To the edge encoder, we
pass the relative position and velocity information along the edges as well as the norm of the relative
features. The MLP encoders comprise of hidden linear layers, each followed by a ReLU activation
except for the final layer, which is followed by a Layer Norm operation. During our experiments, we
found that using a Layer Norm for GNs led to their best performance. Following the encode step,
we perform message-passing using an interaction network and finally decode the acceleration targets
using an MLP decoder. We note that we used the same hyperparameters as provided by Table

A.4.2 LAGRANGIAN GRAPH NETWORKS

The Lagrangian formulation presents an elegant framework to predict the time evolution or dynam-
ics of the state (r(t),¥(¢)) of a physical system based on a single scalar function known as the
Lagrangian £. The Lagrangian can be expanded as £(r(t),¥(¢)) = T'(r,¥,t) — V (r,t), where T'(-)
represents the total kinetic energy of the system, while V (-) represents the total potential energy of
the system from which generalized forces can be derived. The standard form of Lagrange’s equation
for a system of particles subject to conservative forces is given by the Euler-Lagrange (EL) equation
from which the dynamics of the system can be derived.

d oL oL
By expanding the time derivative in the EL equation, we can express the acceleration of particles in
the following general form: ¥; = (Vi VI L) [V, L — (V. V] L)E]. The acceleration of the particles
in the datasets considered in this paper take on the following form: ¥; = — wii >~; Vi, Vij, where
-3 j V.. Vi; = Vi, L and m; denotes the mass of particle 7. Hence, given the initial position and
velocities of particles, we can train a Graph Network described in the earlier sub-section to first
compute the Lagrangian which is a scalar that can be obtained by summing the final output from
the L'" message passing iteration along the row and column axes. Then, we use auto-differentiation

to compute the partial derivatives of £ with respect to the current position of each of the particles.

Finally, we predict f'(t) by substituting the derivatives in the acceleration form of the EL equation
and minimize the target error as follows:

Ve Lo(x;(t 2

min |[¥;(t) — MH 3)
6 m; 2

In the case of Autoregressive Graph Lagrangian Nets, we simply replace the linear node and edge

encoders with autoregressive node and edge encoders while following the hyper-parameters listed

in Table[2

A.4.3 HAMILTONIAN GRAPH NETWORKS

The Hamiltonian formulation, like its Lagrangian counter-part presents an elegant framework to
predict the dynamics of the state given by position and momentum (r(¢), p(¢)) of a physical sys-
tem based on a single scalar function known as the Hamiltonian H. The Hamiltonian H (r(¢), p(t))
is the Legendre transform of L£(r(¢),f(t)) such that H(r(t),p(t)) = T(r,¥,t) + V(r,t). More-
over, the following partial derivative relations hold: 25 (rétg_’r(t)) = — 3H(rgr)_"p(t)) and 2% (r%z""(t)) =

_ OH(x(),p())
ot

Following (Cranmer et al.| (2020), we train a Flattened Hamiltonian Graph Network subject to the
encode-process-decode setup to approximate H = >, Hoer7 (i) +3_(; jyee Hpair (4, ), where Her s
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and H pqs, are computed following the L' message passing block’s UPDATE and AGGREGATE
steps. Like the original paper, we also regularize H,,q;,. From the earlier sub-section, we know that

=22 V&, Vij = Vi, L = =V, . Finally, we predict r(¢) by minimizing the target error as follows:

e VeHo(xi(t)) ‘ a2 2

min || (t) + — |+ Al Hoetr0() + Hpairo (i, )5 + M VeHo(xi())ll; @)
% 2

Similarly, like Autoregressive Graph Lagrangian Nets, we simply replace the linear node and edge

encoders of the Flattened Hamiltonian Graph Network with autoregressive node and edge encoders

while following the hyper-parameters listed in Table

A.4.4 GATED GRAPH RECURRENT NEURAL NETWORK

We implement the Gated Graph Recurrent Neural Network (GGRNN) model proposed by [Seo et al.
(2018)). In addition to using their base GGRNN cell, we implement a linear MLP encoder within the
time recursive call to the GGRNN cell that maps each state at time ¢ to a latent embedding of size
280, which is then passed as input to the GGRNN cell. Further, since we adopt the many-to-many
training setting, GGRNN predicts the acceleration target (X") corresponding to each state x*. The
final hidden layer output from each time recursive call to the GGRNN cell is passed to a decoder to
predict the acceleration target corresponding to that time step. Finally, we minimize the following
optimization function while training the network end to end. We used the same hyperparameters as
provided by Table

k
min (1) — o (xi(8), w) 3 ©)
t=1

A.4.5 GRAPH TRANSFORMER NETWORK

We implement two variants of the Graph Transformer Network (GTN), a single step GTN that
predict’s the acceleration target given the entire state vector and a multi-step GTN that predicts the
acceleration target (x") corresponding to each state x’. To that end, for the single step GTN, we
adapt the model proposed by [Shi et al.| (2020) and like the case of GGRNN, implement a linear
MLP encoder that maps the state vector across k time-steps to a latent embedding of size 280, which
is then passed as input to the GTN cell. In the case of multi-step GTN, we slightly modify GTN to be
similar to the base transformer used in|Han et al.|(2022). The modifications we made purely reflect
the use of previous state’s latent embeddings in computing the attention over latent embeddings seen
until time ¢. Unlike the work by Han et al.| (2022), we do not pre-compute the latent embeddings,
we do not regularize the learning of the latent embeddings for state reconstruction nor do we train
the model to minimize latent predictions output by GTN. Since we adopt the many-to-many training
setting for training the multi-step GTN, the final hidden layer output from each time recursive call
to the GTN is passed to a decoder to predict the acceleration target corresponding to that time step.
Finally, we minimize the optimization function present in Eqn.(5) while training the network end to
end.

A.5 ADDITIONAL ANALYSIS

A.5.1 FAILURE CASES:

While AGN and its other variants have superior prediction performance, it fails in the 3D Grav-
ity (r1) dataset when compared with GN across all k. Similarly, when comparing against GLN and
GHN, AGLN and AGHN fail in 3D Spring and Damped datasets across all k. While the differ-
ence in prediction error is not substantial due to the autoregressive regularization, we speculate that
the reason for such failure cases could be due to the equal temporal importance enforced upon the
conditioning states when different time-steps may actually be contributing differently to the current
state acceleration prediction.
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A.5.2 PARTIAL TIME TRANSLATION INVARIANCE

Typically, spatial translation invariance is enforced by construction (Sanchez-Gonzalez et al.|(2020);
Pfaff et al.[|(2020); Rubanova et al.[(2022)) by never providing the absolute position as inputs to the
network. Prior work have shown that such a form of spatial translation invariance leads to lower one-
step and multi-step prediction errors across multiple domains. We observe the same phenomenon
in our study when we compare the results obtained in Table [3| from the supplementary material
for k£ = 5, when we train GNs with/without absolute position. On the contrary, when AGN is trained
with/without position, we find that the one-step MSE as well as the multi-step MSE is significantly
worse when positional information is not provided to the network. This difference in results could
likely stem from the treatment of the data by the models since GNs encodes an undirected feature
graph of the data while an AGN encodes a directed temporal graph. In essence, AGN treats the data
sequentially while GN does not. Hence, instead of requiring spatial translation invariance, AGNs
need to posses time translation invariance (i.e., acceleration shifts when position and velocity are
shifted). Work by Van Den Oord et al. (Van Den Oord et al.| (2016)) shows that spatial translation
invariance in CNNs can be achieved using an autorergessive strategy with weight sharing and also
through data augmentation (Biscione & Bowers|(2020)). Hence, we hypothesize that AGNs possess
partial time-translation invariance as a result of causal convolution between a time shifted trajectory
and fixed AGN encoder weights that are shared across shifted trajectory samples. Further, prior work
in NLP have shown improvement in machine translation tasks when absolute and relative positional
features are encoded [Wang & Chen| (2020); Huang et al.| (2020). As a result, in addition to relative
edge information, we find that providing AGN with absolute positions generally leads to better roll-
out prediction performance. Figures 1 - 4 plot the mean MSE of a few example datasets for which
the GN and AGN models are provided with/without absolute position.

Table 3: Mean multi-Step Forward Simulation Prediction when k = 5 (GN)

Datasets GN w. position GN w/o. position AGN (vector) w. | AGN (vector) w/o. | AGN (scalar) w. | AGN (scalar) w/o.
position (Ours) position (Ours) position (Ours) position (Ours)

2D Spring 7.81 6.72 2.68 14.78 1.36 13.75

2D Damped 25.12 19.39 12.67 284.55 7.25 192.70

2D Gravity (%) 5.43 14.96 27.58 45.64 17.59 24.82

2D Gravity (Ti.) 801.37 299.76 3.58 97.09 3.24 1.59

2D Charge 318.36 38.06 8.08 580.14 1.77 2.83

3D Spring 23.04 18.09 10.75 31.75 16.17 5.86

3D Damped 43.49 202.71 15.73 5747 20.26 451.74

3D Gravity (1) 3.50 2.69 7.38 2.32 19.58 4.30

3D Gravity (%) 564.43 1.42 1.16 2.33 1.59 1.06

3D Charge 1.15 3.82 1.05 3.38 0.47 249

—— Mean MSE of AGN (scalar) w/o position (Ours)

—— Mean MSE of AGN (scalar) w. position (Ours)

—— Mean MSE of AGN (vector) w/o position (Ours)

12 — Mean MSE of AGN (vector) w. position (Ours)
Mean MSE of GN w/o position

—— Mean MSE of GN w. position

—— Mean MSE of AGN (scalar) w/o position (Ours)
—— Mean MSE of AGN (scalar) w. position (Ours)
—— Mean MSE of AGN (vector) w/o position (Ours)
20| — Mean MSE of AGN (vector) w. position (Ours)
Mean MSE of GN w/o position
—— Mean MSE of GN w. position
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Figure 1: Rollout MSE (2D Spring Dataset) Figure 2: Rollout MSE (3D Spring Dataset)
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A.5.3 LOOKBACK LENGTH (GN) - ANALYSIS

The process of choosing the maximum lag or lookback length k& in a AR/VAR model requires
special attention because inference is dependent on the selected k. We find that this process is
similarly important in the context of learning algorithms that are conditioned on the previous states
of the system. The choice of k is influenced by the dynamics of the system (i.e., how much temporal
information is present in the history of previous states) as well as the form a parametric model
assumes. Further, the choice of k£ may cause some models to become unstable when predicting
multi-time step ahead predictions. To that end, we perform an ablation study to understand the
prediction performance of all the models when k varies. We choose k to vary between 2-7 for
non-physics constrained models and 3-6 for physics constrained models. We observe that in
comparison to the baselines, the AGN performs better across almost all datasets when k varies
between 3-7 and tends to perform poorly when k£ = 2. This is likely due to insufficient temporal
information when conditioning on just the current and previous states. Unlike AGN and GN, we
notice AGHN and AGLN to have superior performance across 8 datasets regardless of choice of k.
Physics constrained GNs are sensitive to the choice of k£ and tend to perform reliable predictions
only when optimal % is known. However, physics constrained AGNs while sensitive to choice of
k, do not blow-up with error and tend to produce reliable state estimations. The autoregressive
constraint regularizes the physics constrained GNs to respect the conservation of energy over time
when conditioned on appropriate historical states. Below, we include additional look back length
comparison graphs for all datasets and for physics-induced and non-physics induced models.

Non-Physics Induced Models: Figures 5 and 6 plot the roll-out energy MSE and roll-out positional
MSE across different £ and baselines for 2D Spring dataset, while Figures 7 and 8 plot the roll-out
MSE and energy MSE for 3D Damped dataset.

Physics Induced Models: Figures 9 and 10 plot the roll-out energy MSE and roll-out positional
MSE across different &£ and baselines for 2D Gravity(R2) dataset, while Figures 11 and 12 plot the
roll-out MSE and energy MSE for 3D Charge dataset.
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Figure 5: Roll-out Energy MSE LookbackFigure 6: Roll-out MSE Lookback Length Com-
Length Comparison (2D Spring Dataset) parison (2D Spring Dataset)
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