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Abstract:1

In this paper, we present a data-driven strategy to simplify the deployment of2

model-based controllers in legged robotic hardware platforms. Our approach3

leverages a model-free safe learning algorithm to automate the tuning of control4

gains, addressing the mismatch between the simplified model used in the control5

formulation and the real system. This method substantially mitigates the risk of6

hazardous interactions with the robot by sample-efficiently optimizing parameters7

within a probably safe region. Additionally, we extend the applicability of our8

approach to incorporate the different gait parameters as contexts, leading to a safe,9

sample-efficient exploration algorithm capable of tuning a motion controller for10

diverse gait patterns. We validate our method through simulation and hardware11

experiments, where we demonstrate that the algorithm obtains superior performance12

on tuning a model-based motion controller for multiple gaits safely.13

1 Introduction14
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Figure 1: Snapshots of the Unitree Go1 robot per-
forming Trot (left) and crawl gaits (right).

A model-based control approach can produce15

highly dynamic and diverse motions for legged16

robots. This strategy enables rapid adjustment17

to different robots and bypasses the need for18

offline training, consequently accelerating19

the design and testing stages. Nonetheless, it20

requires an accurate dynamics model of the21

system, which is often unavailable due to our22

limited understanding of real-world physics23

and inevitable simplifications to reduce the24

computational burden. Consequently, these controllers typically underperform when applied directly25

to hardware, requiring significant parameter fine-tuning. This tuning process is time-consuming26

and can also harm the hardware platform. Furthermore, it often needs repetition for different27

environments or motion patterns to ensure consistent performance across a variety of settings.28

This work explores the challenge of identifying optimal control gain parameters for a model-based29

controller that improves the robustness and tracking performance by bridging the gap between30

simplified models and real-world dynamics. For this purpose, we utilize GOSAFEOPT [1] to automate31

the parameter tuning process, enabling the online identification of optimal control gain parameters32

within a safe region, efficiently utilizing samples and thus safeguarding the hardware platforms during33

optimization. Furthermore, we extend GOSAFEOPT to incorporate the different gait parameters34

as contexts. This enables sample-efficient learning of control gains across different gaits. For the35

resulting contextual GOSAFEOPT algorithm, we give theoretical safety and optimality guarantees.36

We demonstrate our method on the quadruped robot Unitree Go1 [2] in both simulation and hardware37

experiments. This corresponds to a six dimensional tuning task with a five dimensional context. In38

the simulation, we show that contextual GOSAFEOPT outperforms other model-free safe exploration39
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baselines while making no unsafe interactions. Moreover, when trained for different gait patterns,40

our results clearly indicate that including the gaits as contexts, results in a considerable performance41

boost. In our hardware experiments, we show that contextual GOSAFEOPT finds optimal feedback42

controller gains for both the trot and crawl gaits in only 50 learning steps, each while having no43

unsafe interaction with the real robot.44

In summary, the main contributions of this work are as follows; (i) we formulate the controller param-45

eter tuning problem as a constrained optimization and integrate the different gait patterns as context46

variables [3], (ii) we extend GOSAFEOPT [1] to the contextual case for which we give safety and opti-47

mality guarantees. Furthermore, (iii) we demonstrate the superiority of contextual GOSAFEOPT over48

other state-of-the-art safe exploration algorithms in simulation, and (iv) we show that GOSAFEOPT49

successfully and safely tunes feedback control policies over two different gaits directly on the hard-50

ware. To the best of our knowledge, we are the first to extend GOSAFEOPT to the contextual case51

and to apply it to a highly dynamic and complex real-world system like the Unitree Go1.52

2 Related Work53

Bridging the reality gap in quadrupedal locomotion tasks Several previous studies have54

emphasized the importance of considering an actuator behavior and identifying the system latency55

to successfully bridge the reality gap in legged robot systems [4, 5, 6]. These studies develop a56

simulation model of a legged robot system, incorporate either modeled or learned actuator dynamics57

and train a control policy that can be effectively deployed to the robot hardware.58

Incorporating this strategy into a model-based control framework is an area of active investigation.59

In a model-based control regime, it’s typically more straightforward to introduce adjustable control60

gain parameters and fine-tune them to align with the real-world behaviors of the robot. For instance,61

Kim et al. [7], Kang et al. [8] use joint position- and velocity-level feedback to joint torque command62

in order to address any discrepancy between the actual torque output and the intended torque63

command for robots with proprioceptive actuators [9]. However, the fine-tuning of these parameters64

continues to present a significant challenge. Schperberg et al. [10] utilize the unscented Kalman65

filter algorithm to recursively tune control parameters of a model-based motion controller online,66

and they successfully demonstrate it on the simulated quadrupedal robot in the presence of sensor67

noise and joint-level friction. However, their proposed tuning method is inherently unsafe and can68

therefore lead to arbitrary harmful interactions with the system. In contrast, our method is evaluated69

on hardware and generalizes to multiple gaits while avoiding any unsafe interactions with the robot.70

Safe exploration for controller parameter tuning Training a controller directly on hardware71

is a challenging task, as it requires sample efficient and safe exploration to avoid possible damage to72

the robot. In such a context, Bayesian optimization (BO [11]) emerges as a suitable framework due73

to its sample efficiency. A notable example in the field of legged robotics comes from Calandra et al.74

[12], who successfully employed BO to learn optimal gait parameters for a bipedal robot platform75

using data obtained from hardware experiments.76

BO methods can be easily adapted to constrained settings for safe learning. Gelbart et al. [13],77

Hernández-Lobato et al. [14], Marco et al. [15] utilize constrained BO for finding safe optimal con-78

troller parameters. However, these works do not provide safety assurance during exploration. In con-79

trast, methods such as SAFEOPT [16, 17] and its extensions [18, 19, 20, 1] guarantee safety throughout80

the entire learning and exploration phases. Starting from an initial safe controller, SAFEOPT lever-81

ages regularity properties of the underlying optimization to expand the set of safe controllers. This82

expansion is inherently local, and accordingly SAFEOPT can miss the global optimum. For dynamical83

systems, Baumann et al. [20] propose GOSAFE, a global safe exploration algorithm. GOSAFE alter-84

nates between local safe exploration, where it also learns safe backup policies, and global exploration,85

where it uses the learned backup policies to guarantee safety. Therefore, whereas SAFEOPT might be86

restricted to a local optimum, GOSAFE can find the global one. However, the BO routine proposed87

in GOSAFE is expensive and sample inefficient for all but low dimensional systems [1]. To this88

end, Sukhija et al. [1] introduce GOSAFEOPT. GOSAFEOPT leverages the underlying Markovian89

2



structure of the dynamical system to overcome GOSAFE’s restrictions. As a result, GOSAFEOPT90

can perform global safe exploration for realistic and high-dimensional dynamical systems.91

We extend GOSAFEOPT by incorporating a contextual setting and apply it to a quadruped robot.92

In this application, we optimize the controller parameters for various gait patterns. It’s important93

to highlight that this domain is considerably high-dimensional, involving a twenty-four-dimensional94

state space, six-dimensional parameter space, and five-dimensional context space.95

3 Problem Setting96

Safe learning formulation The dynamics of robotic systems can generally be described as an97

ordinary differential equation (ODE) of the form ẋ = f(x,u) where u ∈ U ⊂ Rdu is the control98

signal and x ∈ X ⊂ Rdx is the generalized robot state. Due to the reality gap, disparities can arise99

between the real-world dynamics and the dynamics model f . This often results in a significant100

divergence between the behaviors of models and actual real-world systems, thereby making the101

control of intricate and highly dynamic entities like quadrupeds particularly challenging.102

A common solution to this problem is using a feedback policy to rectify the model inaccuracies. Given103

a desired input signal u∗, desired state x∗, and true system state x, we formulate a parameterized104

feedback controller in the form u = πθ(u
∗,x∗,x) that steers x to closely align with x∗. The105

parameters θ are picked to minimize the tracking error. A common example of such a feedback106

policy is PD control, where u = u∗ + θ[(x∗ −x)⊤, (ẋ∗ − ẋ)⊤]⊤, where θ ∈ Rdu×2dx corresponds107

to the controller gains. Typically, choosing the parameters θ involves a heuristic process, requiring108

experimental iterations with the physical hardware. However, such interactions can be unpredictably109

risky and could possibly cause damage to the hardware.110

In this work, we formalize the tuning process as a constrained optimization problem:111

max
θ∈Θ

g(θ) such that qi(θ) ≥ 0,∀i ∈ Iq, (1)

where g is an objective function, qi are the constraints with Iq = {1, . . . , c}, and Θ is a compact112

set of parameters over which we optimize. Since the true dynamics are unknown, we cannot solve113

Equation (1) directly. Instead, we interact with the robot to learn g(θ) and qi(θ), and solve the114

optimization problem in a black-box fashion. As we interact directly with the robot hardware, it is115

important that the learning process is sample-efficient and safe, i.e., constraints qi are not violated116

during learning. To this end, we use the model-free safe learning algorithm GOSAFEOPT.117

Extension to multiple gait patterns We expand the applicability of our method to support a range118

of quadrupedal gait patterns and enable smooth online transitions among them. Each specific gait119

pattern demonstrates unique dynamic properties, therefore, the optimal feedback parameters θ vary120

depending on the gait pattern in question. We consider gaits as contexts z from a (not necessarily121

finite) set of contexts Z [3]. Contexts are essentially external variables specified by the user and122

remain untouched by the optimization process. We broaden our initial problem formulation from123

Equation (1) to include these contexts;124

max
θ∈Θ

g(θ, z) such that qi(θ, z) ≥ 0,∀i ∈ Iq, (2)

where z ∈ Z is the context, which in our scenario, is the gait pattern of interest.125

It is noteworthy that the prior work by Sukhija et al. [1] only introduces GOSAFEOPT for the126

non-contextual setting. In this work, we extend it to the contextual case and give safety as well as127

optimality guarantees.128

3.1 Assumptions129

In this section, we reiterate the assumptions from Sukhija et al. [1] for GOSAFEOPT.130

Assumption 1 (Initial safe seed). For any episode n ≥ 1 with (user-specified) context zn ∈ Z , a131

non-empty initial safe set of parameters Sn−1(zn) ⊂ Θ is known. That is, for all θ ∈ Sn−1(zn) and132

all i ∈ Iq , qi(θ, zn) ≥ 0.133
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Here, Sn(z) ⊇ S0(z) denotes the safe set after episode n for the given context z as defined in134

Equation (14) in Appendix A. Given the prior knowledge of the dynamics, a conservative safe set135

of parameters represents some initial stable feedback controller. Accordingly, this assumption is136

typically satisfied in practice. The assumption is necessary as, in principle, during each iteration, an137

adversarial context could be chosen for which the initial safe set does not include any safe parameters.138

Assumption 2 (Continuity of objective and constraints). Let h be defined as139

h(θ, z, i) =

{
g(θ, z) if i = 0,

qi(θ, z) if i ∈ Iq.
(3)

We assume that h lies in a reproducing kernel Hilbert space (RKHS) associated with a kernel k140

and has a bounded norm in that RKHS, that is, ∥h∥k ≤ B. Furthermore, we assume that g and141

qi (∀i ∈ Iq) are Lipschitz-continuous with known Lipschitz constants.142

This is a common assumption in the model-free safe exploration literature [17, 20, 1]. Sukhija et al.143

[1] discuss the practical implications of this assumption in more detail.144

Assumption 3. We obtain noisy measurements of h with measurement noise i.i.d. σ-sub-Gaussian.145

Specifically, for a measurement yi of h(θ, z, i), we have yi = h(θ, z, i) + ϵi with ϵi σ-sub-Gaussian146

for all i ∈ I where we write I = {0, . . . , c}.147

Assumption 4. We observe the state x(t) every ∆t seconds. Furthermore, for any x(t) and148

ρ ∈ [0, 1], the distance to x(t+ ρ∆t) induced by any action is bounded by a known constant Ξ, that149

is, ∥x(t+ ρ∆t)− x(t)∥ ≤ Ξ.150

Assumption 4 is crucial to guarantee safety in continuous time even though the state is measured at151

discrete time instances. For highly dynamic systems, such as quadrupeds, the observation frequency152

is typically very high, e.g., 500Hz - 1 kHz, and accordingly Ξ is small.153

Assumption 5. We assume that, for all i ∈ {1, . . . , c}, qi is defined as the minimum of a state-154

dependent function q̄i along the trajectory starting in x0 with controller πθ. Formally,155

qi(θ, z) = min
x′∈ξ(x0,θ,z)

q̄i(x
′, z), (4)

with ξ(x0,θ,z) = {x0 +
∫ t

0
f(x(τ),πθ(x(τ), z)) dτ | t ≥ 0} representing the trajectory of x(t)156

under policy parameter θ and context z starting from x0 at time 0.157

Assumption 5 is an assumption on our choice of the constraint. Many common constraints, such as158

the minimum distance to an obstacle along a trajectory, satisfy this assumption.159

4 GOSAFEOPT for Controller Optimization for Quadrupedal Locomotion160

In this section, we first provide a brief overview of our model-based locomotion controller and the161

gait parameterization. Following this, we discuss GOSAFEOPT and its contextual extension, for162

which we provide safety and optimality guarantees.163

4.1 Control Pipeline164

Model-based locomotion controller Our locomotion controller utilizes a combination of the model165

predictive control (MPC) and the whole-body control (WBC) method following the previous work by166

Kim et al. [7], Kang et al. [8]. The MPC generates dynamically consistent base and foot trajectories167

by finding an optimal solution of a finite-horizon optimal control problem, using a simplified model.168

To convert these trajectories into joint-level control signals, we implement a WBC method that169

incorporates a more sophisticated dynamics model and takes into account the physical constraints of170

the robot. More specifically, we use a WBC formulation similar to the one presented by Kim et al. [7].171

This method calculates the desired generalized coordinates xcmd, speed ẋcmd, and acceleration ẍcmd172

on a kinematic level while respecting task priority via the null-space projection [21]. Subsequently, it173

finds joint torque commands by solving a quadratic program that aligns with the desired generalized174

acceleration, adhering to the motion equations of the floating base and other physical constraints.175

For a more detailed explanation of the WBC formulation, the reader is referred to Appendix C.176
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We emphasize that the feed-forward torque commands by themselves fail to produce desired motion177

on the robot hardware due to model discrepancies. Particularly, we observed the actuator dynamics178

and joint friction, which are impractical to include in the system model, contribute significantly179

to this model mismatch. As a practical solution, we compute the final joint torque commands180

τ cmd = τ + kp(x
∗ − x) + kd(ẋ

∗ − ẋ) and send them to the robot with the feedback gains181

kp ∈ Rdu×dx and kd ∈ Rdu×dx .182

Gait parameterizations We parameterize a quadrupedal gait pattern with zg = [dg, tgs , o
g
1, o

g
2, o

g
3],183

where dg is the duty cycle for gate g, tgs is the stride duration and ogi are the offsets of legs two to four184

respectively. The duty cycle is defined as the contact duration divided by the stride duration. In general,185

the optimal feedback parameters (k∗
p,k

∗
d) change with the gait. We show this empirically in Section 5.186

4.2 Contextual GOSAFEOPT187

We model the unknown objective and constraint functions through Gaussian Process regression [22].188

To this end, given a dataset {vj ,yj}j≤n, with vj = (θj , zj) and the kernel k, we calculate a mean189

and uncertainty estimate of our function:190

µn(v, i) = k⊤
n (v)(Kn + σ2I)−1yn,i,

σ2
n(v, i) = k(v,v)− k⊤

n (v)(Kn + σ2I)−1kn(v),
(5)

where yn,i = [yj,i]
⊤
j≤n are the observations of h(·, i), kn(v) = [k(v,vj)]

⊤
j≤n, and Kn =191

[k(vj ,vl)]j,l≤n is the kernel matrix. We leverage these estimates to provide high-probability frequen-192

tist confidence intervals.193

Lemma 1 (Confidence intervals, Theorem 2 of [23] and Lemma 4.1 of [17]). For any δ ∈ (0, 1) and194

under Assumptions 2 and 3, with probability at least 1− δ it holds jointly for all n, i,z,θ that195

|h(θ, z, i)− µn(θ, z, i)| ≤ βn(δ) · σn(θ, z, i) (6)

with βn(δ) ≤ O(B + 4σ
√
2(γn|I| + 1 + log(1/δ))) where196

γn = max
A⊂Θ×Z×I

|A|≤n

I(yA;hA). (7)

Here, I(yA;hA) denotes the mutual information between hA = [h(v)]v∈A, if modeled with a GP,197

and the noisy observations yA at hA, and it quantifies the reduction in uncertainty about h upon198

observing yA at points A. The quantity γn is a Bayesian construct, however, in the frequentist setting199

it quantifies the complexity of learning the function h. It is instance dependent and can be bounded200

depending on the domain Θ×Z × I and kernel function k (see Appendix A).201

Given the confidence interval from Equation (6), we define a confidence set for each context z,202

parameter θ and index 0 ≤ i ≤ c, as203

C0(θ, z, i) =

{
[0,∞] if θ ∈ S0(z) and i ≥ 1,

[−∞,∞] otherwise,
(8)

Cn(θ, z, i) = Cn−1(θ, z, i) ∩ [µn(θ, z, i)± βn(δ) · σn(θ, z, i)] , (9)

We refer to ln(θ, z, i) = minCn(θ, z, i) as the lower bound, un(θ, z, i) = maxCn(θ, z, i) the204

upper bound, and wn(θ, z, i) = un(θ, z, i)− ln(θ, z, i) the width of our confidence set.205

4.2.1 Algorithm206

An episode n of contextual GOSAFEOPT with the given (user-specified) context zn ∈ Z is performed207

in one of two alternating stages: local safe exploration (LSE) and global exploration (GE).208

Local safe exploration During the LSE stage, we explore the subset of the parameter space209

Θ which is known to be safe, and learn backup policies for each visited state. In this stage, the210

parameters are selected according to the acquisition function211

θn = argmax
θ∈Gn−1(zn)∪Mn−1(zn)

max
i∈I

wn−1(θ, zn, i) (10)
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where h, Gn(zn) ⊆ Sn(zn) is a set of “expanders” (c.f., Equation (15) in Appendix A) and212

Mn(zn) ⊆ Sn(zn) is a set of “maximizers” (c.f., Equation (17) in Appendix A). Intuitively,213

Gn(zn) ∪Mn(zn) represents those parameters that can potentially lead to an expansion of the safe214

set Sn(zn) or potentially be a solution to the optimization problem of Equation (2) with context zn.215

Global exploration If LSE converged (see Equation (20) in Appendix A), we run the GE stage216

where we evaluate possibly unsafe policies and trigger a backup policy whenever necessary. If no217

backup policy is triggered, we conclude that the evaluated policy is safe and add it to our safe set.218

After a new parameter is added to the safe set during GE, we continue with LSE.219

The parameters are selected according to the acquisition function220

θn = argmax
θ∈Θ\(Sn−1(zn)∪E(zn))

max
i∈I

wn−1(θ, zn, i) (11)

where E denotes all parameters which have been shown to be unsafe (see line 7 of Algorithm 4 in221

Appendix A). If all parameters have been determined as either safe or unsafe, i.e., Θ \ (Sn(zn) ∪222

E(zn)) = ∅, then GE has converged.223

Summary A detailed description of the contextual GOSAFEOPT algorithm is provided in Ap-224

pendix A.2. GOSAFEOPT alternates between local safe exploration and global exploration. Therefore,225

it can seek for the optimum globally. We provide an example in Figure 4 in Appendix B.226

The only difference between the contextual and non-contextual variants is that contextual227

GOSAFEOPT maintains separate sets Sn, Cn,Bn,Dn, E , and XFail for each context z ∈ Z . For228

any given context z ∈ Z , the running best guess of contextual GOSAFEOPT for the optimum is229

θ̂n(z) = argmaxθ∈Sn(z) ln(θ, z, 0).230

4.2.2 Theoretical Results231

In the following, we state our main theorem, which extends the safety and optimality guarantees from232

Sukhija et al. [1] to the contextual case.233

We say that the solution to Equation (2), θ∗(z), is discoverable if there exists a finite ñ such that234

θ∗(z) ∈ R̄z
ϵ (Sñ(z)). Here, R̄z

ϵ (S) ⊆ Θ represents the largest safe set which can be reached safely235

from S ⊆ Θ up to ϵ-precision (c.f., Equation (19) in Appendix A).236

Theorem 1. Consider any ϵ > 0 and δ ∈ (0, 1). Further, let Assumptions 1 to 5 hold and βn(δ) be237

defined as in Lemma 1. For any context z ∈ Z , let ñ(z) be the smallest integer such that238

n(z)

βñ(z)(δ) · γn(z)|I|(z)
≥ C|Θ|2

ϵ2
where n(z) =

ñ(z)∑
n=1

1{z = zn} (12)

and C = 32/ log(1 + σ−2). Here, γn(z) = maxA⊂Θ×I,|A|≤n I(yA,z;hA,z) ≤ γn denotes the239

mutual information between hA,z = [h(θ, z, i)](θ,i)∈A and corresponding observations.240

Then, when running contextual GOSAFEOPT and if θ∗(z) is discoverable, the following inequalities241

jointly hold with probability at least 1− 2δ:242

1. ∀t ≥ 0, i ∈ Iq : q̄i(x(t), z) ≥ 0, (safety)243

2. ∀z ∈ Z, n ≥ ñ(z) : g(θ̂n(z), z) ≥ g(θ∗(z), z)− ϵ. (optimality)244

It is natural to start for each i ∈ I with kernels kZi and kΘi on the space of contexts and the space of245

parameters, respectively, and to construct composite kernels ki = kZi ⊗ kΘi or ki = kZi ⊕ kΘi as the246

product or sum of the pairs of kernels (see section 5.1 of [3]). In this case, the information gain γn is247

sublinear in n for common choices of kernels kZi and kΘi implying that n∗(z) is finite.248

The theorem is proven in Appendix A.3. Comparing to contextual SAFEOPT [17] which is only249

guaranteed to converge to safe optima in R̄z
ϵ (S0(z)), the global exploration steps of contextual250

GOSAFEOPT can also “discover” a safe optimum which was not reachable from the initial safe seed.251
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Figure 2: Simulation experiments. Left: Single context reward. GOSAFEOPT outperforms SAFEOPT
on this task. On the right, we compare the learning curves of the contextual variants of GOSAFEOPT
and SAFEOPT to the non-contextual ones for the crawl gait.
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Figure 3: Hardware experiments. On the left, we present the learning curve of Contextual
GOSAFEOPT. It shows that the algorithm successfully tunes the controller gains for trot, and then
subsequently for crawl. In the middle, the performance of the optimized control gains of trot on
crawl to the optimized gains for crawl is compared. On the right, we present the tracking error of the
hip joint for the front-left leg with trot and crawl gait at initialization (trot: yellow, crawl: violet) and
after optimization (trot: green, crawl: blue). We see that the optimized gaits give a drastic reduction
in tracking error.

We remark that Theorem 1 is a worst-case result and, in particular, disregards a possible statistical252

dependence between different contexts. In practice, if a kernel is chosen which does not treat all253

contexts as independent, then the convergence can be much faster as knowledge about a particular254

context can be transferred to other contexts.255

5 Experimental results256

We evaluate contextual GOSAFEOPT on the Unitree Go1 robot in both simulation and hardware. We257

provide a implementation, as well as a video of the simulation and hardware demonstrations in the258

supplementary. For both simulation and hardware, we use the following reward and constraints259

g(θ, z) = −
∑
t≥0

∥x∗(t)− x(t, z,θ)∥2Qg
, q0(θ, z) = min

t≥0
v0 − ∥x∗(t)− x(t, z,θ)∥2Qq

, (13)

where Qg, and Qq are positive semi-definite matrices. More details on the reward are presented in260

Appendix D. As a feedback policy, we use the PD controller introduced in Section 4.1.261

Simulation experiments In simulation, we compare contextual GOSAFEOPT to SAFEOPT, and262

GOSAFEOPT without contexts. Furthermore, we also evaluate GP-UCB [24], an unconstrained BO263

algorithm. To induce the ‘sim-to-real-gap’, we modify the simulation dynamics by adding additional264

disturbances to the system in the form of joint impedances at each joint (see Appendix D). The265

disturbances we induce can destabilize the system and thus cause constraint violation. Accordingly,266

we start all our experiments with a safe initial yet suboptimal feedback controller.267

We optimize the controller for two different gaits; trot, and crawl sequentially. The parameters for the268

feedback controller and the parameterization of the gaits result in an overall model dimensionality269

of thirteen. We run all simulation experiments for ten different seeds and report the mean with one270

standard error. During all our experiments, we observe that all of the safe algorithms do not violate271

any safety constraint, while the standard GP-UCB method results in average constraint violation272
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for 4.7% and 8% of all evaluations for trot and crawl gait, respectively. In Figure 2, we compare273

the normalized performance of GOSAFEOPT and SAFEOPT w.r.t. our objective for trot gait. It274

is visible from the figure that GOSAFEOPT’s global exploration helps in finding better controller275

parameters faster. Moreover, the GOSAFEOPT performs nearly as well as GP-UCB, while violating276

no constraints. We also compare the contextual variants of GOSAFEOPT and SAFEOPT to the277

non-contextual ones. From the figure, we conclude that contextual variants find better optima, with278

contextual GOSAFEOPT finding the best one. We believe this is because the contextual variants279

leverage the information collected while optimizing for trot gait, to find better optima for the crawl280

gait, and also avoid unsafe/unstable evaluations unlike GP-UCB.281

Hardware Experiments We also evaluate contextual GOSAFEOPT on the Unitree Go1 robot. The282

robot has twelve motors in total. Even though we have a good model of the robot dynamics, the283

motors are typically difficult to model sufficiently accurately. Accordingly, we compensate for model284

imprecisions using controller gains. To this end, for motors in the same positions of each leg (e.g.,285

motors on the hip joint) we use the same gains. In total, we have a six-dimensional parameter space.286

Similar to the simulation experiments, we first tune the controller for trot gait and then for the crawl287

gait. We run the experiment over three different seeds and report the mean performance with one288

standard error. In all our experiments, GOSAFEOPT results in zero constraint violations. Figure289

3 show that GOSAFEOPT is able to safely fine-tune the feedback control parameters of both contexts.290

Since each gait has different dynamic properties, the best solution for one gait may not generalize well291

to other gaits. In Figure 3, in the middle, we depict how the best-performing parameters of trot gait do292

not generalize to the crawl gait, and learning the crawl context increases the reward by a considerable293

amount. From this, we conclude, that different gait patterns necessitate different controller gains.294

Finally, in Figure 3, we also report the tracking performance of the tuned controller on the right.295

Moreover, we compare for both trot and crawl gaits the tracking performance of the initial and296

the tuned controller for the hip joint. We clearly see in the figure that the tuned controller makes297

considerably less tracking error. We provide the error plots for the remaining joints in Appendix D.298

6 Conclusion299

We have extended GOSAFEOPT to incorporate the contextual setting and analyzed its convergence300

and safety properties theoretically. We showcased the efficacy of our algorithm through its application301

in adjusting the control parameters of a quadrupedal locomotion controller, in both simulation and302

hardware experiments. The use of contextual information enhances the convergence for new gait303

patterns by leveraging data from previously learned gaits. Furthermore, simulation results verify that304

GOSAFEOPT can globally discover new safe regions without violating safety constraints. Across all305

of our experiments, GOSAFEOPT outperforms prior approaches by a large margin and successfully306

finds optimal control parameters for different quadrupedal gait patterns. We highlight that the307

applicability of our proposed algorithm extends beyond our current scenario. It can be utilized to308

fine-tune any feedback controllers on actual hardware systems, making it an effective strategy to309

bridge the reality gap across various settings. For instance, we are interested in applying this method310

to a more diverse set of quadrupedal gait patterns and extend its scope to encompass non-periodic311

and unstructured gait patterns.312

Limitations Even though the algorithm has theoretical safety guarantees, it is not always clear in313

practice if all theoretical assumptions are met. For instance, even though the surrogate model might be314

Lipschitz-continuous, the Lipschitz constant is generally not known a priori, i.e., Assumption 2 may315

not be satisfied. This often results in a too conservative choice of parameters, e.g., small lengthscale316

of the GP. Furthermore, a wrong parameter choice for the backup prior can result in unsafe global317

exploration or no global exploration at all. In general, safe exploration methods such as SAFEOPT318

and GOSAFEOPT have been successfully applied on several practical domains [1, 18, 19, 25, 26, 27],319

however closing the gap between theory and practice is still actively being researched [28, 29, 30].320
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A Proofs419

A.1 Definitions420

We begin by re-stating definitions of sets used by GOSAFEOPT from Sukhija et al. [1] with an421

additional context variable.422

Fix an arbitrary context z ∈ Z . The safe set is defined recursively as423

Sn(z) =
⋂
i∈Iq

⋃
θ′∈Sn−1(z)

{θ ∈ Θ | ln(θ′, z, i)− LΘ(z) ∥θ − θ′∥ ≥ 0} (14)

where LΘ(z) is the joint Lipschitz constant of g and the constraints qi under context z. The expanders424

are defined as425

Gn(z) = {θ ∈ Sn(z) | en(θ, z) > 0} with (15)
en(θ, z) = |{θ′ ∈ Θ \ Sn(z) | ∃i ∈ Iq : un(θ, z, i)− LΘ(z) ∥θ − θ′∥ ≥ 0}| (16)

and the maximizers are defined as426

Mn(z) = {θ ∈ Sn(z) | un(θ, 0) ≥ max
θ′∈Sn(z)

ln(θ
′, 0)}. (17)

The analysis requires the ϵ-slacked safe region R̄z
ϵ (S) given an initial safe seed S ⊆ Θ, which is427

defined recursively as428

Rz
ϵ (S) = S ∪ {θ ∈ Θ | ∃θ′ ∈ S such that ∀i ∈ Iq : qi(θ′, z)− ϵ− LΘ(z) ∥θ − θ′∥ ≥ 0}, (18)

R̄z
ϵ (S) = lim

n→∞
(Rz

ϵ )
n(S) (19)

where (Rz
ϵ )

n denotes the nth composition of Rz
ϵ with itself.429

A.2 Algorithm430

A.2.1 Local Safe Exploration431

During LSE, we keep track for each context z ∈ Z of a set of backup policies B(z) ⊆ Θ×X and432

observations of h, which we denote by D(z) ⊆ Θ × R|I|. An LSE step is described formally in433

Algorithm 1.434

Algorithm 1 Local Safe Exploration (LSE)
Input: Current context zn, safe sets S, sets of backups B, datasets D, Lipschitz constants LΘ

1: Recommend parameter θn with Equation (10)
2: Collect R =

⋃
k∈N

{(θn,x(k))} and h(θn, zn, i) + εn

3: B(zn) = B(zn) ∪R, D(zn) = D(zn) ∪ {(θn, h(θn, zn, i) + εn)}
4: Update sets S(z), G(z), and M(z) for all z ∈ Z ▷ Equations (14), (15) and (17)

Return: S, B, D

The LSE stage terminates for some given context z ∈ Z when the connected safe set is fully explored435

and the optimum within the safe set is discovered. This happens when the uncertainty among the436

expanders and maximizers is less than ϵ and the safe set is not expanding437

max
θ∈Gn−1(z)∪Mn−1(z)

max
i∈I

wn−1(θ, z, i) < ϵ and Sn−1(z) = Sn(z). (20)

A.2.2 Global Exploration438

A GE step conducts an experiment about a candidate parameter θn ∈ Θ which may not be safe. If the439

safety boundary is approached, GE conservatively triggers a safe backup policy. If, on the other hand,440

the experiment is successful, a new (potentially disconnected) safe region was discovered which can441

then be explored by LSE in the following steps. A GE step is described formally in Algorithm 2.442

12



Algorithm 2 Global Exploration (GE)
Input: zn, safe sets S, confidence intervals C, sets of backups B, datasets D, fail sets E and XFail

1: Recommend global parameter θn with Equation (11)
2: θ = θn, xFail = ∅, Boundary = False
3: while Experiment not finished do ▷ Rollout policy
4: if Not Boundary then
5: Boundary, θ∗

s = BOUNDARYCONDITION(zn,x(k),B)
6: if Boundary then ▷ Trigger backup policy
7: θ = θ∗

s , xFail = x(k)
8: E = E ∪ {θn}, XFail = XFail ∪ {xFail} ▷ Update fail sets
9: Execute until x(k)

10: Collect R =
⋃
k∈N

{(θn,x(k))}, and h(θn, zn, i) + εn

11: if Not Boundary then ▷ Successful global search
12: B(zn) = B(zn) ∪R and D(zn) = D(zn) ∪ {(θn, h(θn, zn, i) + εn)}
13: S(zn) = S(zn) ∪ {θn}
14: C(θn, zn, i) = C(θn, zn, i) ∩ [0,∞] for all i ∈ Iq
Return: S, C, B, D, E , XFail

A.2.3 Boundary Condition443

The boundary condition checks when the system is in the state x whether there is a backup (θs,xs) ∈444

B(z) such that xs is sufficiently close to x to guarantee that θs can steer the system back to safety445

for any state which may be reached in the next time step. If no such backups exist for the next states,446

a backup is triggered at the current state. In this case, the backup parameter θ∗
s with the largest safety447

margin is triggered:448

θ∗
s = max

(θs,xs)∈Bn(zn)
min
i∈Iq

ln(θs, zn, i)− Lx ∥x− xs∥ . (21)

Algorithm 3 BOUNDARYCONDITION

Input: context zn, state x, backups B
1: if ∀(θs,xs) ∈ B(zn),∃i ∈ Iq : ln(θs, zn, i)− Lx ∥x− xs∥+ Ξ < 0 then
2: Boundary = True, Calculate θ∗

s (Equation (21))
3: else
4: Boundary = False, θ∗

s = Null

return: Boundary, θ∗
s

A.2.4 Contextual GOSAFEOPT449

The algorithm stops for a particular context z ∈ Z when450

Equation (20) is satisfied︸ ︷︷ ︸
LSE converged

and Θ \ (Sn(zn) ∪ E(zn)) = ∅︸ ︷︷ ︸
GE converged

. (22)

The full algorithm is described in Algorithm 4.451

A.3 Proof of Theorem 1452

Proof. We first derive the sample complexity bound of non-contextual GOSAFEOPT. Then, we453

extend this sample complexity bound to contextual GOSAFEOPT. We assume without loss of454

generality that βn is monotonically increasing with n.455

Sample complexity Assume first that the context is fixed, that is, ∀n ≥ 1 : zn = z. In this case,456

the safety guarantee (with probability at least 1− δ) follows directly from Theorem 4.1 of Sukhija457
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Algorithm 4 Contextual GOSAFEOPT

Input: Domain Θ, Contexts Z , Sequence of contexts {zn ∈ Z}n≥1, k(·, ·), S0, C0, D0, ϵ
1: Initialize GP h(θ, z, i), E(z) = ∅, XFail(z) = ∅, B0(z) = {(θ, x0) | θ ∈ S0}
2: while ∃z ∈ Z such that GOSAFEOPT has not terminated for z (Equation (22)) do
3: if GOSAFEOPT has terminated for zn (Equation (22)) then ▷ Skip finished contexts
4: continue
5: for x ∈ XFail(zn) do ▷ Update fail sets
6: if Not BOUNDARYCONDITION(zn,x,Bn) then
7: E(zn) = E(zn) \ {θ}, XFail(zn) = XFail(zn) \ {x}
8: Update Cn(θ, z, i) ∀θ ∈ Θ, z ∈ Z , i ∈ I ▷ Update confidence intervals, Equation (9)
9: if LSE not converged for context zn (Equation (20)) then

10: Sn+1,Bn+1,Dn+1 = LSE(zn,Sn,Bn,Dn)
11: else
12: Sn+1, Cn+1,Bn+1,Dn+1, E ,XFail = GE(zn,Sn, Cn,Bn,Dn, E ,XFail)

return: {θ̂n(z) | z ∈ Z}

et al. [1]. Thus, it remains to show that the optimality guarantee with the given sample complexity458

holds also with probability at least 1− δ, as then their union holds jointly with probability at least459

1− 2δ using a union bound.460

It is straightforward to see (by employing Theorem 4.1 of Berkenkamp et al. [17]) that Theorem 4.2461

of Sukhija et al. [1] holds for n∗ being the smallest integer such that462

n∗ ≥
C|Θ|βn∗(δ)γn∗|I|

2ϵ2
(23)

where we use that |R̄z
0 (S)| ≤ |Θ| for any S ⊆ Θ and |Θ| + 1 ≤ 2|Θ|. Thus, whenever a new463

disconnected safe region is discovered by GE, LSE is run for at most n∗ steps.464

It follows from the stopping criterion of GE, Θ \ (Sn ∪ E) = ∅, that GE is run for at most |Θ|465

consecutive steps (i.e., without an LSE-step in between). Clearly, a new disconnected safe region466

can be discovered by GE at most |Θ| times, and hence, GOSAFEOPT terminates after at most |Θ|467

iterations of at most n∗ LSE steps and at most |Θ| GE steps. Altogether, we have that the optimality468

guarantee holds with probability at least 1− δ for ñ being the smallest integer such that469

ñ =

⌈
C|Θ|2βñ(δ)γñ|I|

ϵ2

⌉
≥ |Θ| (n∗ + |Θ|) , (24)

completing the proof of Theorem 1 for non-contextual GOSAFEOPT.470

Multiple contexts Visiting other contexts Z \ {z} in between results in additional measurements471

and increases the constant β, ensuring that the confidence intervals are well-calibrated. The only472

difference in the proofs is the appearance of βn∗(z) rather than βn(z) in Equation (23). In the473

contextual setting, n∗(z) is the smallest integer such that474

n(z) ≥
C|Θ|βn∗(z)(δ)γn(z)|I|(z)

2ϵ2
(25)

where475

n(z) =

n∗(z)∑
n=1

1{z = zn}

counts the number of episodes with context z until episode n∗(z). The bound on ñ(z) then follows476

analogously to Equation (24).477
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Table 1: Here we summarize different magnitudes of γn for composite kernels from Theorems 2
and 3 of Krause and Ong [3] and for individual kernels from Theorem 5 of Srinivas et al. [24] and
Remark 2 of Vakili et al. [31]. The magnitudes hold under the assumption that the domain of the
kernel is compact. γΘ and γZ denote the information gain for the kernels kΘ and kZ , respectively.
Bν is the modified Bessel function.

Kernel k(v,v′) γn

Product kΘ(v,v′) · kZ(v,v′) if kZ has rank at most d dγΘ
n + d log(n)

Sum kΘ(v,v′) + kZ(v,v′) γΘ
n + γZ

n + 2 log(n)

Linear v⊤v′ O (d log(n))

RBF e−
∥v−v′∥2

2l2 O
(
logd+1(n)

)
Matérn 1

Γ(ν)2ν−1

(√
2ν∥v−v′∥

l

)ν

Bν

(√
2ν∥v−v′∥

l

)
O
(
n

d
2ν+d log

2ν
2ν+d (n)

)

B Comparison of SAFEOPT and GOSAFEOPT478

To visually analyze the different exploration properties of SAFEOPT and GOSAFEOPT we use479

the Pendulum Environment from OpenAI [32] as an example. The ideal trajectory is given by480

some undisturbed controller. In our toy problem, we use a simple PD control which is sufficient481

for the pendulum swing-up problem and various oscillating trajectories. To simulate the sim to482

hardware gap, we artificially add a disturbance to the applied torque in the form of joint impedances483

τ = τ ∗ − θd
p(x

∗ − x) + θd
dẋ where θd

p and θd
d are unknown disturbance parameters and x∗,x are484

the desired and observed motor angles. We use GOSAFEOPT to tune an additional PD controller485

which should follow the ideal trajectory and compensate for the artificial disturbance. Figure 4 shows486

an example run of SAFEOPT and GOSAFEOPT. Whereas SAFEOPT is restricted to expanding the487

initial safe region, GOSAFEOPT can discover new safe regions, and thus find a better optimum.488

C Control Formulation489

Our model-based motion controller integrates the MPC and WBC methods to enhance both robustness490

and maneuverability. The MPC is responsible for generating base and foot trajectories, while the491

WBC converts these trajectories into joint-level commands. For the MPC component, we employ the492

model predictive control formulation proposed by Kang et al. [33, 8]. This formulation represents a493

finite-horizon optimal control problem as a nonlinear program utilizing the variable-height inverted494

pendulum model. The optimal solution of the nonlinear program is determined by using a second-495

order gradient-based method. For a more in-depth understanding of the MPC formulation, we direct496

readers to the prior work by Kang et al. [33, 8].497

We employ a slight modification of the WBC formulation introduced by Kim et al. [7], adapting it498

to align with the MPC. Following the method proposed by Kim et al. [7], we compute the desired499

generalized coordinates xcmd, speed ẋcmd, and acceleration ẍcmd for a quadruped system at the500

kinematic level. This process involves translating desired task space (Cartesian space) positions,501

velocities, and accelerations into configuration space counterparts. Throughout this process, we502

enforce task priority through iterative null-space projection [21]. The top priority is assigned to the503

contact foot constraint task, followed by the base orientation tracking task. The base position tracking504

task is given the third priority, and the swing foot tracking task is assigned the final priority.505
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Figure 4: Example run of SAFEOPT and GOSAFEOPT. The red circle denotes the initial safe point.
The black dots denote observed points. The green circle denotes the true safe optimum and the blue
circle denotes the optimal point determined by SAFEOPT and GOSAFEOPT, respectively, after 150
iterations. The discovered safe sets are shown in black. GOSAFEOPT gets closer to the true optimum
by discovering new safe regions which are not connected to the initial safe region.

Subsequently, we solve the following quadratic program:506

min
δẍ,fc

∥δẍ∥2Q (26a)

s.t. Sf (Mẍ+ b+ g) = SfJ
⊤
c fc (26b)

ẍ = ẍcmd +
[
δẍ,0nj

]⊤
(26c)

Wfc ≥ 0, (26d)

where δẍ denotes a relaxation variables for the floating base acceleration and fc denotes contact507

forces with the contact Jacobian Jc. Equation (26a) is the objective function that penalizes the508

weighted norm of δẍ with the weight matrix Q. Equation (26b) corresponds to the equation of motion509

of the floating base, representing the first six rows of the whole-body equation of motion, with Sf510

being the corresponding selection matrix. Lastly, Equation (26d) sets forth the Coulomb friction511

constraints. This procedure refines the desired generalized acceleration ẍcmd, which is calculated at512

the kinematic level, by incorporating the dynamic impacts of the robot’s movements.513

Upon determining ẍ is determined, we compute the joint torque commands as follows:514

τ = Mẍ+ b+ g − J⊤
c fc. (27)

The final torque commands are calculated using τ cmd = τ+kp(x
∗−x)+kd(ẋ

∗−ẋ) and dispatched515

to the robot with the feedback gains kp ∈ Rdu×dx and kd ∈ Rdu×dx . As previously noted, this516

step is crucial in dealing with model mismatches, specifically, the differences in joint-level behavior517

stemming from actuator dynamics and joint friction.518
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D Experimental Details519

D.1 Bayesian optimization520

For all our experiments, we use a Matérn kernel with ν = 1.5 for the underlying Gaussian Process.521

The lenghtscales are fixed during the whole optimization process and set to522

Table 2: Kernel lenghtscales
lenghtscales

Simulation [0.1, 0.05, 0.1, 0.05, 0.1, 0.05, 0.1, 0.05, 0.1, 0.1, 0.1, 0.1, 0.1]
Hardware [0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.5, 0.5, 0.5, 0.5, 0.5]

where the first n parameters correspond to the (kp,kd) pairs and the last parameters to the context.523

For all experiments, we use β = 16 for the LCB on the constraints.524

D.2 Simulation525

Disturbance model The full body controller of the quadruped is artificially disturbed by changing526

the desired torque of each motor. More specifically, an artificial disturbance αl is applied to each motor527

of the four legs l, resulting in an applied motor torque τ i,l
applied = αlτ

i,l
desired + θl[q

∗
l,i − ql,i,−q̇l,i]

⊤528

for motors i of leg l.529

Reward function The state x ∈ R24 of all 12 motors is described by each motor angle and angular530

velocity. We set the matrices from Equation (13) to Qg = I24×24 and Qi,j
q = 1{i = j ∧ i <= 12}.531

D.3 Hardware532

We slightly modify the reward function for the hardware experiment and include a penalty term on533

the joint velocities.534

ĝ(θ, z) = g(θ, z)− ∥x(t)∥2Qp

where the velocity state errors in Qg and Qq in Equation 13 are set to zero, since the observed535

joint velocities are noisy finite difference approximations of the joint angles. Furthermore, we536

define Qp to only include the noisy joint velocity observations. More specifically, we define537

Qi,j
q = Qi,j

q = 1{i = j ∧ i <= 12} and Qi,j
p = 1

21{i = j ∧ i > 12} and Qq,Qq,Qp ∈ R24×24.538

Experimental results have shown, that adding a penalty term on the joint velocities acts as a regulator539

to prefer solutions where motor vibrations are low. This has shown to improve overall convergence540

and to visibly avoid solutions where motor vibrations are high.541

The tracking performance is evaluated for the crawl gait before and after learning the optimal542

parameters for the motors 1-3 as shown in Figure 1. Figure 5 shows that the optimal feedback control543

parameters drastically reduce motor vibrations and increase the tracking performance.544

E Practical modifications545

E.1 Boundary conditions546

We use the idea from Sukhija et al. [1] to reduce computational complexity by defining an interior and547

marginal set. Intuitively, the interior set contains all observed states for which the safety margin is548

high and the marginal set includes all states where the safety margin is greater than a certain threshold.549

More formally, Sukhija et al. [1] defines the interior and marginal set as :550

ΩI,n = {xs ∈ X | (θ,xs) ∈ Bn : ∀i ∈ Iq, ln(θ, i) ≥ ηu} (28)
ΩM,n = {xs ∈ X | (θ,xs) ∈ Bn : ∀i ∈ Iq, ηl ≤ ln(θ, i) < ηu} (29)
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Figure 5: Joint angle tracking error in degrees (left) and joint angle measurement in degrees (right)
for initialized controller gains for trot (yellow region) and crawl (violet region), and learned gains for
trot (green) and crawl (blue). We clearly see that that the tracking error is considerably less for the
tuned gaits and the motor commands also have less jitter.

The boundary condition is defined separately for the interior and marginal set. Firstly, the Euclidean551

distance di between the observed state and all the backup states is calculated. If dmin = mini di = 0,552

a backup policy for the observed state is known to be safe. Intuitively, the uncertainty if a backup553

policy can safely recover from the observed state increases as dmin grows. If the observed state moves554

too far away from the set of backup states, the closest backup policy is triggered. More formally,555

a backup policy is triggered, if the ∄di s.t p(|x| ≥ di) > τ . The distribution over x is defined as556

x ∼ N (0, σ2) and τm ≥ τi for the interior and marginal set, respectively. With σ2 and τi there are557

two adjustable parameters to influence how conservative the backup policy acts.558

Table 3: Boundary condition parameters

Parameter Value Description
Simulation
σ 2 Standard deviation of backup distribution
τi 0.2 Interior lower bound probability
τm 0.6 Marginal lower bound probability
Hardware
σ 2 Standard deviation of backup distribution
τi 0.05 Interior lower bound probability
τm 0.1 Marginal lower bound probability

E.2 Optimization559

The solution of the acquisition optimization problem formulated in 11 is approximated with the560

standard particle swarm [34] algorithm, similar to [35].561

At the beginning of each acquisition optimization, np particle positions are initialized. Rather than562

initializing the positions over the whole domain, the positions are sampled from a list of known safe563

positions in the current safe set.564

For all experiments, the parameters in Table 4 are used.565
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Table 4: Swarmopt parameters
Parameter Value Description
Θg 1 Social coefficient
Θp 1 Cognitive coefficient
w 0.9 Inertial weight
n 100 Number of iterations
nr 100 Number of restarts if no safe set is found

E.3 Fix iterations and discard unpromising new detected safe regions566

In practice, it is not practical to fully explore a safe set before the global exploration phase. For our567

experiments, the number of iterations for the local and global exploration phase are fixed to nl = 10568

and ng = 5, respectively. To avoid exploring for all nl steps in unpromising regions, we define569

nd = 5 < nl and switch to local exploration of the best set if the best reward estimation of the current570

set is much less than the best global reward estimate. That is, we switch to the best set if r̂∗i < cr̂∗571

and nd = nl.572

E.4 Posterior estimation573

Each BO step requires the optimization of the GOSAFEOPT acquisition function to predict the next574

parameters to evaluate. This paper uses the standard particle swarm [34] algorithm, which requires the575

computation of the posterior distribution at each optimization step for all particles. To speed up the576

computation of the posterior distribution, the paper uses Lanczos Variance Estimates Pleiss et al. [36].577
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