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In the appendix, we first show the t-SNE visualization of feature

vectors in Appendix A. Then, we present additional experimental

results, including linear SVM classification results in Appendix B.1.1,

detailed part segmentation results in Appendix B.1.2, and further

ablation studies in Appendix B.2. We provide more implementation

details in Appendix C. Finally, we discuss the limitations of the

Mamba3D model and potential directions for future improvement

in Appendix D.

A VISUALIZATION

b. Mamba3D (PB_T50_RS)

Train from scratch

with Point-MAE pre-training

e. Mamba3D+P-M (PB_T50_RS)

c. Mamba3D (MN40)

f. Mamba3D+P-M (MN40)

a. Transformer (PB_T50_RS)

d. Point-MAE (PB_T50_RS)

Figure 1: Visualization of feature distributions. We show the

t-SNE visualization of feature vectors learned by Mamba3D

and Transformer. PB_T50_RS: ScanObjectNN (PB_T50_RS)

dataset.P-M: Point-MAE strategy.MN40:ModelNet40 dataset.

Wevisualize the feature distribution using the t-SNEmethod [13],

as depicted in Fig. 1. When trained from scratch, it’s evident that

Transformer [14] struggles to effectively learn a well-separated

feature distribution, as shown in Fig. 1.a. In contrast, the features

learned by our Mamba3D, as presented in Fig. 1.b and Fig. 1.c,

form clear and distinct clusters that correspond to different cat-

egories. This demonstrates the superior ability of Mamba3D to

effectively learn and capture discriminative feature distributions

from 3D point clouds, even when trained from scratch. When using

the Point-MAE [8] pre-training strategy, the features learned by

Transformer (Fig. 1.d) are less dispersed compared to Mamba3D

(Fig. 1.e and Fig. 1.f). Interestingly, the feature distribution of the

pre-trained Transformer still falls short of the distribution achieved

by Mamba3D trained from scratch, further showcasing the efficient

and powerful point cloud learning capability of Mamba3D. The

results indicate that Mamba3D effectively learns point cloud fea-

ture distribution even from scratch, highlighting the efficiency of

our LNP and bi-SSM modules. Furthermore, pre-training enhances

Mamba3D’s performance.

B ADDITIONAL EXPERIMENTS

B.1 Additional Evaluation

Table 1: Linear SVM Classification on ModelNet40 dataset.

We compare with methods using the •plain Transformer

architectures, ◦dedicated architectures for 3D understand-

ing, and ★Mamba-based architectures. ModelNet40: overall

accuracy (%) on ModelNet40 dataset. #P: model parameters

(M). #F: FLOPs (G).

Method ModelNet40 (%) ↑ #P ↓ #F ↓

◦ 3D-GAN [17] 83.3 - -

◦ SO-Net [7] 87.3 - -

◦ FoldingNet [19] 88.4 - -

◦ 3D-PointCapsNet [22] 88.9 - -

◦VIP-GAN [6] 90.2 - -

★Mamba3D 91.4 16.9 3.9

◦ PointNet+OcCo [15] 88.7 3.5 0.5

◦ PointNet+CrossPoint [1] 89.1 3.5 0.5

◦DGCNN+Jigsaw [11] 90.6 1.8 2.4

◦DGCNN+OcCo [15] 90.7 1.8 2.4

◦DGCNN+CrossPoint [1] 91.2 1.8 2.4

• Point-BERT [21] 87.4 22.1 4.8

•Transformer+OcCo [15] 89.2 22.1 4.8

• Point-MAE [8] 91.0 22.1 4.8

★Mamba3D +P-M [8] 91.5 +0.5 16.9 3.9

B.1.1 Linear SVM Classification. We conduct linear SVM classifica-

tion [2] experiments on theModelNet40 dataset [18], and the results

are shown in Table 1. Linear SVM classification is used to evaluate

the discriminative quality of pre-trained features. We utilize the

pre-trained features to fit a linear SVM classifier on the training set,

with point cloud input size 𝑁=1024. The results show that when

trained from scratch, Mamba3D achieves 91.4% overall accuracy

(OA), surpassing dedicated architectures like FoldingNet [19] and

VIP-GAN [6]. When using the Point-MAE [8] pre-training strat-

egy, Mamba3D achieves 91.5%, surpassing Point-BERT [21] and

Point-MAE by 4.1% and 0.5%, respectively, and also outperforming

DGCNN+OcCo’s 91.2% [15]. The linear SVM experiments demon-

strate that Mamba3D can effectively learn point cloud features,

leading to excellent discriminative ability.
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Table 2: Detailed part segmentation results on the ShapeNetPart dataset. We report the mean IoU across all part categories

mIoU𝐶 (%) and the mean IoU across all instances mIoU𝐼 (%), as well as the IoU (%) for each category.

Methods mIoU𝐶 mIoU𝐼 aero bag cap car chair e-phone guitar knife lamp laptop motor mug pistol rocket s-board table

Supervised Learning Only

◦ PointNet[9] 80.39 83.7 83.4 78.7 82.5 74.9 89.6 73.0 91.5 85.9 80.8 95.3 65.2 93.0 81.2 57.9 72.8 80.6

◦ PointNet++[10] 81.85 85.1 82.4 79.0 87.7 77.3 90.8 71.8 91.0 85.9 83.7 95.3 71.6 94.1 81.3 58.7 76.4 82.6

◦DGCNN[16] 82.33 85.2 84.0 83.4 86.7 77.8 90.6 74.7 91.2 87.5 82.8 95.7 66.3 94.9 81.1 63.5 74.5 82.6

•Transformer [14] 83.42 85.1 82.9 85.4 87.7 78.8 90.5 80.8 91.1 87.7 85.3 95.6 73.9 94.9 83.5 61.2 74.9 80.6

★Mamba3D 83.74 85.7 84.8 83.7 86.7 80.0 91.2 79.2 91.4 87.2 84.8 95.2 76.6 95.0 84.7 63.3 74.9 80.9

With Self-supervised Pre-training

•OcCo [15] 83.42 85.1 83.3 85.2 88.3 79.9 90.7 74.1 91.9 87.6 84.7 95.4 75.5 94.4 84.1 63.1 75.7 80.8

• Point-BERT [21] 84.11 85.6 84.3 84.8 88.0 79.8 91.0 81.7 91.6 87.9 85.2 95.6 75.6 94.7 84.3 63.4 76.3 81.5

• Point-MAE [8] - 86.1 84.3 85.0 88.3 80.5 91.3 78.5 92.1 87.4 86.1 96.1 75.2 94.6 84.7 63.5 77.1 82.4

★Mamba3D+P-B 84.13 85.7 84.3 84.0 87.9 79.8 90.9 80.6 91.3 87.2 86.1 95.4 76.1 94.7 84.8 64.3 77.6 81.2

Table 3: Ablation on feature dimension. Overall accuracy (%)

on ScanObjectNN (OBJ_ONLY) dataset without voting, model

parameters (M), and FLOPs (G) are reported.

Dimension OBJ_ONLY (%) ↑ Params (M) ↓ FLOPs (G) ↓
192 90.5 4.9 2.1

256 91.4 8.1 2.6

384 92.1 16.9 3.9

512 84.2 29.1 5.6

768 88.5 63.6 10.2

B.1.2 Detailed Part Segmentation. Detailed part segmentation re-

sults on the ShapeNetPart dataset are presented in Table 2. When

trained from scratch, Mamba3D achieves higher mIoU𝐶 and mIoU𝐼

than Transformer [14], by +0.3% and +0.6%, respectively. It outper-

forms Transformer in 9 out of 16 categories. When using the Point-

BERT [21] pre-training strategy, Mamba3D surpasses Point-BERT

in both mIoU𝐶 and mIoU𝐼 , showing higher results in 6 categories

compared to Point-MAE [8]. Particularly in the challenging motor
category, Mamba3D outperforms Point-BERT and Point-MAE by

+0.9% and +0.8%, respectively. Mamba3D demonstrates greater effi-

ciency, with parameters and FLOPs reduced by -17.8% and -31.4%

compared to Transformer (23.0M/11.8G vs. 27.1M/15.5G). Further-

more, we observe that existing masked point modeling pre-training

strategies are less suitable for sequential models like Mamba3D,

yielding higher gains for Transformer compared to Mamba3D.

B.2 Additional Ablation Study

B.2.1 Ablation on feature dimension. We conduct ablation experi-

ments on the intermediate feature dimension of the model on the

ScanObjectNN (OBJ_ONLY) dataset, and the results are shown in

Table 3. The results indicate that as the feature dimension increases,

both the model’s parameters and FLOPs increase, while the overall

accuracy reaches its maximum of 92.1% at a dimension of 384.

B.2.2 Ablation on encoder depth. We explore the impact of en-

coder layers on the model, and the results on the ScanObjectNN

(OBJ_ONLY) dataset are shown in Table 4. As the number of lay-

ers increases, both the model’s parameters and FLOPs gradually

Table 4: Ablation on encoder depth. Overall accuracy (%) on

ScanObjectNN (OBJ_ONLY) dataset without voting, model

parameters (M), and FLOPs (G) are reported.

Depth OBJ_ONLY (%) ↑ Params (M) ↓ FLOPs (G) ↓

2 90.7 3.5 2.3

4 91.9 6.2 2.6

6 91.6 8.9 2.9

8 90.9 11.6 3.3

10 91.7 14.2 3.6

12 92.1 16.9 3.9

increase, with the overall accuracy (OA) reaching a maximum of

92.1% at 12 layers. It is worth noting that even with 4 layers, the

model’s OA still reaches 91.9%. However, the parameters and FLOPs

decrease by 172.6% and 50%, respectively, further demonstrating

that Mamba3D can accurately and efficiently learn point features.

C IMPLEMENTATION DETAILS

We present more implementation details in Table 5. During pre-

training, we follow the training settings of Point-MAE
1
[8] or Point-

BERT
2
[21], and pre-train on the ShapeNetCore training data, which

is a subset of ShapeNet [3]. Pre-training takes approximately 24

hours on a single NVIDIA RTX 3090 GPU. For fine-tuning and train-

ing from scratch on downstream tasks, we adhere to the parameter

settings of Point-MAE, as specified in Table 5. Specifically, we use

rotation as data augmentation [4] in multiple tasks, and a higher

dropout rate of 0.2/0.3 to better train Mamba3D.

In Algorithm 1, we present the Pytorch-style pseudo-code for the

Local Norm Pooling (LNP) block. The learnable parameters in LNP

block include scale vectors 𝛾 and shift vectors 𝛽 in linear transfor-

mation, and a shared MLP layer, utilizing only 0.3M parameters in

total. For the bi-SSM block implementation, we’ve taken reference

from the Mamba
3
[5] and Vision Mamba

4
[23].

1
https://github.com/Pang-Yatian/Point-MAE

2
https://github.com/lulutang0608/Point-BERT

3
https://github.com/state-spaces/mamba

4
https://github.com/hustvl/Vim
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Table 5: Training recipes for pre-training and downstream fine-tuning/training from scratch. Note that P-M and P-B represent

Point-MAE and Point-BERT strategy, respectively.

Pretraining (P-M/P-B) Object Classification Part Segmentation Few-shot Learning

Config ShapeNet [3] ScanObjectNN [12] ModelNet [18] ShapeNetPart [20] ModelNet [18]

optimizer AdamW AdamW AdamW AdamW AdamW

learning rate 1e-3 / 5e-4 5e-4 5e-4 2e-4 5e-4

weight decay 5e-2 5e-2 5e-2 5e-2 5e-2

learning rate scheduler cosine cosine cosine cosine cosine

training epochs 300 300 300 300 300

warmup epochs 10 / 3 10 10 10 10

batch size 128 32 32 16 32

drop path rate 0.1 0.1 0.2 0.1 0.3

number of points 1024 2048 1024 2048 1024

number of point patches 64 128 128 128 128

point patch size 32 32 32 32 32

augmentation Rotation Rotation Scale&Trans Scale&Center Rotation

GPU device RTX 3090 RTX 3090 RTX 3090 RTX 3090 RTX 3090

Algorithm 1: Pytorch-Style Pseudocode of the Local

Norm Pooling (LNP) Block

1 # B: batch size
2 # L: number of tokens
3 # C: channel dimension
4 # k: number of local neighborhood in LNP
5 # input: central point feature F_C [B,L,C]
6 # output: updated token embeddings [B,L,C]
7

8 F_C = F_C.unsqueeze(2).repeat(1, 1, k, 1) # [B,L,k,C]
9 # local patch graph construction
10 F_K = kNN(F_C, k=4) - F_C # [B,L,k,C]
11 # K-norm
12 F_K_tilde = F_K / (std(F_K) + 1e-5) # [B,L,k,C]
13 F_K_widehat = concat([F_K_tilde, F_C], dim=-1) # [B,L,k,2C]
14 gamma = parameter(ones([1, 1, 1, 2C])) # [B,L,k,2C]
15 beta = parameter(zeros([1, 1, 1, 2C])) # [B,L,k,2C]
16 F_K_widehat = F_K_widehat * broadcast(gamma)
17 + broadcast(beta) # [B,L,k,2C]
18 # K-pooling
19 e_x = exp(F_K_widehat) # [B,L,k,2C]
20 F_C_widehat = (F_K_widehat * e_x).mean(-2)
21 / e_x.mean(-2) # [B,L,2C]
22 # share_mlp for dimension alignment
23 out = shared_mlp(F_C_widehat) # [B,L,C]
24 return out

D LIMITATIONS

While Mamba3D demonstrates efficient learning of point cloud fea-

tures, it exhibits certain limitations. Our observations indicate that

pre-training strategies such as Point-BERT and Point-MAE, which

rely onmasked pointmodeling (MPM), provide limited performance

gain for Mamba3D or even lead to performance degradation. This

arises from the fact that, despite point cloud sequences lacking in-

herent order, sequential models like Mamba still require some level

of sequential information. However, random masking strategies

like MPM struggle to adequately provide this sequential context,

thereby hindering the effectiveness of pre-training in enhancing

Mamba’s learning capacity. Another limitation pertains to Mamba’s

segmentation performance, which requires further enhancement.

While it surpasses Transformer, it falls short of achieving state-of-

the-art (SOTA) results. Exploring pyramid-like architectures holds

promise for addressing this issue. Finally, while we’ve primarily

employed single-modal pre-training strategies, most large-scale

point cloud models are multimodal. We believe that integrating

multimodal strategies could further enhance Mamba3D.
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