
A Supplementary Material

We provide additional information on our RobOT layer and the two derived methods:

• S-RobOT: feature matching with RobOT, followed by a smoothing that is implemented in
closed form or relies on an optimization loop – as detailed in Sec. 3.1.

• D-RobOT: S-RobOT as a pre- and post-processing tool for a deep deformation estimator –
as detailed in Sec. 3.2.

More specifically:

1. Sec. A.1 provides details on PVT1010, our dataset of pulmonary vascular trees.
2. Sec. A.2 describes our synthetic deformations for augmenting PVT1010.
3. Sec. A.3 contains more information on global feature matching with S-RobOT.
4. Sec. A.4 provides details on our deep deformation prediction approach D-RobOT, with

additional results on the PVT1010 and Kitti datasets.
5. Sec. A.5 discusses the differences between RobOT and nearest neighbor projection.
6. Sec. A.6 details our computational resources.
7. Finally, Sec. A.7 discusses the societal impact of our work.

A.1 Pulmonary vascular tree dataset

Introducing the PVT1010 dataset. We introduce a new pulmonary vascular tree dataset for point
cloud registration. The PVT1010 dataset includes 1,010 pairs of inhale/exhale lung vascular trees
extracted from 3D computed tomography (CT) images; 10 of these correspond to the 10 cases of the
public DirLab-COPDGene [19] dataset which includes, for each pair, 300 expert annotated landmarks
that are in correspondence with each other and that we use to validate our results. We extracted
the lung vascular geometry in both inspiratory and expiratory CT scans using a scale-space particle
system [62, 34] that is implemented in the Teem library [61]. We used the pipeline that is defined in
the chest imaging platform [83, 102].

Legal and regulatory information. The vascular tree reconstructions that are used in this study were
part of the COPDGene study (NCT00608764). This study has been IRB approved and participants
have provided their consent. The investigators from the Brigham and Women’s Hospital (Harvard
Medical School) only had access to de-identified CT images to perform vascular reconstructions.
Since we are performing secondary analysis using de-identified data, the work under consideration is
not considered human subjects research and did not imply additional risks to the participants. Risks
related to ionizing radiation exposure were described in the primary IRB-approved study. Study
identifiers were re-coded for our release of PVT1010 to preserve anonymity. PVT1010 is released
under the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 License.

Point cloud representation. We now detail how we extracted the lung vascular trees as high-
resolution 3D point clouds from the raw CT images. To perform this geometric segmentation task, we
rely on a system of 4D particles that are defined by three spatial coordinates plus one scale parameter
that corresponds to the local radius of the lung vessel – these radii are used by RobOT as point
weights αi and βj in Eq. (2). Our segmentation method starts from a point cloud that is initialized
using the Frangi filter [42]. Then, we fit this point cloud representation to our 3D CT volumes by
minimizing iteratively a system energy that is expressed as the sum of:

• An inter-particle regularization energy that ensures convenient sampling properties. We
rely on a sum of quartic polynomials of the pairwise point distances, with a tunable potential
well that is chosen to induce regular sampling at a fixed distance between the points.

• A particle-image data fidelity term, which is computed using the image Hessian at the
current particles’ locations.

As a final result, we obtain points that are approximately equally distributed along the vessel
centerlines. The vessel radii are first approximated as the image scales at which the middle eigenvalues
of the Hessian are locally minimized, and then refined using the generative approach of [83].

The resulting dataset has the following properties, which result in a challenging registration task:

18



1. The vascular trees have a complex structure and exhibit complex, large motions between
inhalation and exhalation.

2. To capture the complex anatomical structure of the lungs at millimeter scale, registration
methods need to focus on branching points or rely on high-resolution point clouds.

3. Due to the fixed image resolution of the raw CT volume and to acquisition differences
between the inhale and exhale scans, the extracted inhale and exhale vascular trees are
not fully consistent with each other. This is especially true for tiny structures at the lung
boundary, that may not be visible on the smaller lung images at exhalation time.

Sampling density, resolution. The original CT images from which we extract our point clouds are
acquired with a uniform resolution on the x, y and z axes: depending on the patients, the side length
of our voxels varies between 0.60 mm and 0.65 mm. Using the processing above, we turn these
volumetric images into 3D point clouds with 60k samples per lung vascular tree: depending on the
subject, the average sampling distance (from each point to its nearest neighbor in the 3D point cloud)
ranges between 0.6 mm and 1.0 mm.

We note that for our 10 test cases, the Dirlab annotations were performed on a down-sampled volume
with a resolution of 2.5 mm on the z axis. To guarantee a fair comparison between image-based and
point-based methods, we follow standard practice for this dataset (https://www.dir-lab.com/
Results.html) and report our results in Tab. 1 with a “snap-to-voxel” post-processing: we quantize
our 3D lung registrations on the original grids (with spacing ∼ 0.625 mm× 0.625 mm× 2.5 mm)
before computing the average errors and percentiles. In practice, we note that this quantization
slightly lowers the 25% percentile of the registration errors (as we “snap” many displacements to the
correct voxel or slice) but increases the 50% and 75% percentiles (some landmarks get “snapped” to
the wrong slice). Please note that in the Supplementary Material, we do not include this quantization
step for e.g. ablation studies: this allows us to study more precisely the impact of each layer in our
architecture.

Volume vs point cloud representation. We stress that our point clouds contain much less informa-
tion than the original 3D volumes from which they have been sampled. We discard all the intensity
(grayscale) values and only retain the sparse geometric support of the lung vascular tree – 60k points
out of 100M+ voxels. As a consequence, our registration task on 3D point clouds is significantly harder
than the original DirLab benchmark (https://www.dir-lab.com/Results.html). Whereas
optimization-based methods on the full CT volumes reach a nearly perfect accuracy of 0.60 mm to
1.00 mm with run times on the order of the minute [19, 98, 90, 18, 56, 55, 89, 119, 99, 120], our
point neural networks reach an average accuracy of 2 mm to 4 mm in one or two seconds.

The main purpose of our work on the PVT1010 dataset is to show that fast and accurate registration
is now at hand, even on very degraded anatomical data. This is of significant interest for clinical
practice: our method is suitable for real-time processing and has built-in robustness to changes
of the CT acquisition parameters that may affect the intensities of the raw image volumes. Going
forward, as detailed in the conclusion of our manuscript, we intend to work on improving the accuracy
of our method with a better sampling strategy and image-based features. Packaging our method as an
accessible Python toolbox will also open the door to a genuine multi-center evaluation of our trained
models.

A.2 Augmentation of the training dataset for vascular tree registration

We now describe how to augment the PVT1010 dataset with synthetic deformations in order to
create a large training set with dense ground truth annotations for lung registration. We proceed
in four steps: voxel-grid sampling; local deformation; global deformation; local property distortion
and degradation using an inconsistent sub-sampling. Our efficient implementation lets us generate
synthetic training pairs online – just like a standard data augmentation layer. We showcase our local
and global deformations in Fig. 6.

1. Voxel-grid sampling. To start, we use a voxel-grid strategy to re-sample the raw point clouds
with a standard sampling density. First, we subdivide the volume space into coarse 3D blocks with
spacing svoxelgrid = 0.03 mm. Second, we sort all points into these cubic bins according to their
(x, y, z) coordinates. Third, we compute one barycenter per cubic cell to down-sample the original
point cloud. Since we work with weighted point clouds, these local centroids are associated to the
sums of the weights of all points in the corresponding cells.

19

https://www.dir-lab.com/Results.html
https://www.dir-lab.com/Results.html
https://www.dir-lab.com/Results.html


2. Local deformation. We then sample control points from the vessel trees and generate random
displacements that we smooth using an anisotropic spline model:

1. We first sample C = 1, 000 spline control points xc uniformly at random from the point
cloud (x1, . . . , xN).

2. Second, we compute local covariance matrices for the distribution of points xi in a neigh-
borhood of each control point xc, using an isotropic Gaussian kernel window.

3. We compute the three eigenvalues (e1
c , e

2
c , e

3
c) and unit eigenvectors (v1

c , v
2
c , v

3
c ) of each

local covariance matrix to determine the main direction of the lung vessel. To avoid
rank deficiency, we use a lower threshold of 0.2 on the eigenvalues ekc . For each
control point xc, we then normalize the vector of three eigenvalues (e1

c , e
2
c , e

3
c) as

(e1
c , e

2
c , e

3
c)/
√

(e1
c)

2 + (e2
c)

2 + (e3
c)

2.
4. For each control point xc, we create a numerically stable anisotropic covariance matrix

Σc =
∑3
k=1(slocale

k
c )2 vkc v

k
c
>, where slocal = 4 mm is a positive scaling factor.

5. To obtain a robust estimation of the local covariance structure of our point cloud, we re-run
steps 2-4 with neighborhoods that are defined using an anisotropic Gaussian kernel window
of covariance Σc.

6. For every control point xc, we generate a random displacement vector ∆xc ∈ R3 such that
‖∆xc‖ 6 dlocal, drawn uniformly in the ball of center 0 and radius dlocal = 3 mm.

7. We smooth and interpolate the displacement vector field ∆xc from the control points xc to
the full point cloud {xi} using an anisotropic Nadaraya–Watson kernel interpolator:

xi ← xi +

∑C
c=1 kΣc

(xc, xi)∆xc∑C
c=1 kΣc

(xc, xi)
, (9)

where kΣc(xc, ·) is a Gaussian kernel with local covariance Σc. This anisotropic formula
ensures that the local connectivity structure of the lung vessel tree is preserved: the
displacement of points that belong to the same vessel are strongly correlated with each other.

3. Global deformation. The step above simulates local relative displacements between lung vessels.
To take large-scale breathing movements into account, we apply a second spline deformation which
is smoother but has a larger magnitude. In practice, we use a voxel-grid sampling with spacing
resolution sglobal = 90 mm to obtain control points. We then generate random displacements of
magnitude at most dglobal for every control point, and interpolate them to the full point cloud using a
Nadaraya–Watson estimator, parameterized by an isotropic Gaussian kernel with standard deviation
σglobal.

4.a. Radius distortion. Having altered the 3D coordinates of our points using the deformations above,
we add random noise to the local estimates αi of the vessel radii – which are encoded as additional
point features as detailed in Sec. A.1 and used in our RobOT layer as point weights. This additive
noise is scaled by a positive parameter sradius = 0.1 and drawn at random in [−sradiusαi, sradiusαi].

4.b. Inconsistent sampling. By construction, the steps above let us create an arbitrary number of
pairs of (real, simulated) lungs with known pairwise correspondence between all points. In order to
simulate acquisition artifacts and introduce challenging inconsistencies, we sample N = M = 60k
points at random from the source and the synthetic (target) point clouds as a last generation step. We
note that for training, the ground-truth flow is computed based on the source sampling and is not
affected by this last degradation: it may or may not point to a sample in the synthetic target.

Augmentation of the the target and source point clouds. In our experiments, we generate our
target point clouds using dglobal = 25 mm, σglobal = 25 mm. Additionally, we also perform data
augmentation for the source point cloud itself using the smaller values of dglobal = 8 mm and
σglobal = 15 mm.

20



(a) Real source. (b) Local kernels. (c) Coarse control points.

(d) Synthetic target. (e) Local perturbation, source. (f) Global deformation, source.

Figure 6: Local and global deformations that we use to generate our synthetic training dataset.
(a) Original (real) vascular tree. (b) Ellipsoids that represent anisotropic kernels of size 2 mm that we
use to generate vessel-preserving local deformations. Note that in our experiments, we use larger
kernels of size 4 mm that induce a stronger regularization but are harder to display cleanly. (c) Spline
control points that we sample using a voxel-grid scheme with 90 mm spacing and use to generate a
global deformation. (d) Synthetic vascular tree, the output of the process that we use as a target for
training. (e) Source point cloud after local deformation. (f) After global deformation.

(a) Source. (b) Target. (c) FilterReg, 
target.

(d) S-RobOT, 
target.

(e) S-RobOT 
weights.

Figure 7: Partial rigid registration of the Stanford scans based on the matching of FPFH features –
as discussed in Sec. 3.1 and Suppl. A.3.1. The feature-based CPD model FilterReg falls in a local
minimum while the rigid S-RobOT of Eq. (5) results in a successful registration. In the last column,
we display the attention weights wi that are derived from unbalanced OT.

21



(a) Source. (b) Spline. (c) LDDMM. (d) RobOT. (e) Target.

Figure 8: Smooth RobOT (S-RobOT) on a toy registration problem, the deformation of a sphere
(left) onto a cube (right). From left to right, we display: (a) the source shape A = (x1, . . . , xN);
(b) the output of Spline RobOT from Eq. (7); (c) the output of LDDMM RobOT, solution of the
optimization problems of Eq. (8,10); (d) the output of the “raw” RobOT matching xi 7→ xi + vi from
Eq. (4); (e) the target shape B = (y1, . . . , yM).

Rotation Translation
MSE RMSE MAE MSE RMSE MAE

Method degrees2 ↓ degrees ↓ degrees ↓ 3D units2 ↓ 3D units ↓ 3D units ↓

M
at

ch
in

g ICP 1134.552 33.683 25.045 0.0856 0.293 0.250
FGR [134] 126.288 11.238 2.832 0.0009 0.030 0.008
Go-ICP [130] 195.985 13.999 3.165 0.0011 0.033 0.012
S-RobOT (rigid) 8.939 2.989 1.313 0.0002 0.014 0.009

E
nd

-t
o-

en
d PointNetLK [2] 280.044 16.735 7.550 0.0020 0.045 0.025

DCP(v2) [121] 45.005 6.709 4.448 0.0007 0.027 0.020
PRNet [122] 10.235 3.199 1.454 0.0003 0.016 0.010
Partial-OT [28] 0.107 0.328 0.052 3.384e-06 0.00183 0.0003

Table 2: Partial-to-Partial registration with unseen objects on ModelNet40.

Rotation Translation
MSE RMSE MAE MSE RMSE MAE

Method degrees2 ↓ degrees ↓ degrees ↓ 3D units2 ↓ 3D units ↓ 3D units ↓

M
at

ch
in

g ICP 1217.618 34.894 25.455 0.086 0.293 0.251
FGR [134] 98.635 9.932 1.952 0.0014 0.038 0.007
Go-ICP [130] 157.072 12.533 2.940 0.0009 0.031 0.010
S-RobOT(rigid) 50.997 7.142 4.012 0.0005 0.022 0.013

E
nd

-t
o-

en
d PointNetLK [2] 526.401 22.943 9.655 0.0037 0.061 0.033

DCP(v2) [121] 95.431 9.769 6.954 0.0010 0.034 0.025
PRNet [122] 24.857 4.986 2.329 0.0004 0.021 0.015
Partial-OT [28] 0.127 0.357 0.069 3.953e-06 0.002 0.0004

Table 3: Partial-to-Partial registration with unseen categories on ModelNet40.

22



A.3 Additional material on S-RobOT and global feature matching

A.3.1 Partial registration

Experiment 1: Stanford scans. We now discuss a toy example, illustrated in Fig. 7, that showcases
the benefits of unbalanced optimal transport theory for partial rigid registration. We normalize and
resample the partial Stanford scans using a voxel-grid sampling with 0.005 spacing. We then rotate
every source shape by (120°,10°,10°) degrees to create a target shape. We illustrate two methods:

• As a baseline competitor, we use the FilterReg [44] implementation of https://github.
com/neka-nat/probreg (a feature-based CPD method [81]) with noise ratio set to 0.7 and
an automatic annealing strategy based on the Expectation-Maximization (EM) algorithm.

• For our rigid S-RobOT registration, we first compute a 33-dimensional FPFH feature vector
[100] for each point using a radius of 0.02 for the normal search and a radius of 0.05 for the
feature search. We then rely on Eqs. (4-5) to compute the weighted RobOT matching and
project it onto the space of rigid transformations. For our robust OT problem, we set the
blur parameter to 0.1 and the reach parameter to 2 units in R33.

Results. Given standard FPFH features [100], our RobOT approach successfully registers the low-
overlap pair while FilterReg [44] fails. The RobOT confidence weights wi of Eq. (4) naturally act as
an attention mechanism.

Experiment 2: ModelNet40. Going further, we evaluate our partial registration strategy S-RobOT
on the standard dataset ModelNet-40 [127] with comparisons to state-of-the-art methods. Instead
of relying on FPFH features, we use a self-supervised deep feature learning strategy to increase
the robustness and accuracy of the registration. The ModelNet40 dataset contains 12,311 CAD
(Computer-Aided Design) models, from 40 object categories. We follow the same experimental setup
as in [122, 28]:

1. We normalize the point clouds to fit in the cube [−1, 1]3.

2. To generate a registration pair, we first sample a random source shape using 1,024 points.
We then apply a random rigid transformation along each axis, with rotation angle in [0◦, 45◦]
and translation in [−0.5,+0.5].

3. To simulate a partial acquisition, we sample one point at random in both of the source and
target shapes. In each shape, we then keep the 768 nearest neighbors of these points to
define the observed regions.

Evaluation metrics. To assess the quality of our rigid registrations, we evaluate the rotation and
translation errors separately. On each component, we compute the mean squared error (MSE), the
root mean squared error (RMSE) and the mean absolute error (MAE).

S-RobOT setup. For feature learning, we proceed in two steps:

1. Given a source point cloud, we synthesize a target point cloud by applying a random rigid
transform. For convenience, we re-use the augmentation strategy detailed above: along each
axis, we sample a rotation in [0◦, 45◦] and a translation in [−0.5,+0.5].

2. We train a self-supervised deep feature extractor using the loss function of Sec. A.3.3.
We use a PointNet++ [93] with 10,654 parameters that learns a 30-dimensional feature
vector for each point.

For the S-RobOT matching, we rely on the rigid projection formula of Eq. (5); we set the blur
parameter to σ = 0.01 and the reach parameter to τ = 10 units in R30.

Partial-to-Partial registration with unseen objects. We follow [122, 28] and split the dataset of
12,311 point clouds into a training set with 9,843 shapes and a testing set with 2,468 shapes. We first
train on all 9,843 shapes from all 40 categories in the training set and test on all 2,468 unseen shapes
in the test set. In Table 2, we compare S-RoboT with feature matching methods (ICP, FGR [134],
Go-ICP [130]) and end-to-end deep learning models (PointNetLK [2], DCP(v2) [121], PRNet [122]
and Partial-OT [28]).

23

https://github.com/neka-nat/probreg
https://github.com/neka-nat/probreg


Partial-to-Partial registration with unseen categories. We then follow [122] and test the gen-
eralization ability of our model between object categories: we train on the first 20 categories of
ModelNet40 and test on the remaining 20 categories. We report these results in Tab. 3.

Results. Overall, we observe that the unsupervised Rigid S-RobOT method performs much better
than traditional approaches and is close to end-to-end methods. Since our main focus is on free-
form registration, we do not push these experiments further: we use Affine and Rigid S-RobOT as
pre-alignment steps and are satisfied with this level of performance.

We note that the best-performing method Partial-OT also relies on an optimal transport layer: as
discussed in [105], partial OT is a very close cousin of the theory of unbalanced OT that we leverage
in our RobOT layer. We understand the Partial-OT method as a supervised and end-to-end version of
our S-RobOT baseline. Both [28] and this manuscript thus show that optimal transport theory is
ready to be part of the standard toolbox in our field, with state-of-the-art performance in varied
and complementary application settings.

A.3.2 Diffeomorphic registration

Background on LDDMM. Going beyond rigid and affine transformation models, the Large Defor-
mation Diffeomorphic Metric Mapping (LDDMM) framework captures large, smooth and invertible
deformations in a principled way [5]. This fluid-based model is standard in computational anatomy,
especially for applications to neuroimaging where the preservation of shape topology is a key
registration prior [35].

In the LDDMM model, deformations are encoded via the integration of a time-varying velocity field
vt = d

dtx
t over the unit time interval t ∈ [0, 1]. Given any two shapes A and B to register with each

other, we seek a geodesic path (vt)t∈[0,1] for a chosen Riemannian metric ‖v‖2K that is induced by a
convolution kernel Kx over the space of vector fields v : R3 → R3.

Following standard derivations from optimal control theory [5, 54, 35], we know that plausible
deformations are fully parameterized by the momentum m0 : R3 → R3 at time t = 0, a vector field
that acts as the parameter “θ” of the LDDMM deformation model. In the LDDMM framework, the
optimization problem of Eq. (8) reads:

θ∗ = m0∗ = arg min
m0:R3→R3

λreg 〈m0,Kx ∗m0〉L2(R3,R3)︸ ︷︷ ︸
Regularization.

+

N∑
i=1

wi‖xi + vi −Morph(m0, xi)‖2R3︸ ︷︷ ︸
Fidelity to the data.

,

(10)
where the deformation model Morph : (m0, x0

i ) 7→ x1
i is computed through the integration of the

geodesic shooting equation:
d
dtx

t = +∂H
∂m

(
xt,mt

)
, d
dtm

t = −∂H∂x
(
xt,mt

)
(11)

from time t = 0 to time t = 1 for the Hamiltonian H(x,m) = 1
2 〈m,Kx ∗m〉L2(R3,R3). We refer to

Chapter 5 of [35] for a presentation and implementation of these equations on point clouds with the
PyTorch and KeOps libraries.

Black-box deformation models. Different transformation models may result in different projection
results. In Fig. 8, we show several smooth RobOT (S-RobOT) results for spline and LDDMM models
on a toy registration task.

Experiment. The source sphere (left) and the target cube (right) are sampled with N = 1, 922 and
M = 1, 538 points respectively. We normalize their coordinates to be contained in [−1, 1]3 and
normalize the point cloud weights to sum up to one (αi = 1/1, 922 and βj = 1/1, 538 so that∑1,922
i=1 αi =

∑1,538
j=1 βj = 1). For the initial RobOT matching, we set the blur parameter to 0.005

units in R3 and the reach parameter to +∞ (balanced OT). For the following spline and LDDMM
regularizations, we use a multi-Gaussian-kernel with standard deviations {0.05, 0.2, 0.3} and weights
{0.2, 0.3, 0.5}, i.e. a kernel function:

k(x, y) = 0.2 · exp
[
− ‖x− y‖2R3/(2 · 0.052)

]
+ 0.3 · exp

[
− ‖x− y‖2R3/(2 · 0.22)

]
(12)

+ 0.5 · exp
[
− ‖x− y‖2R3/(2 · 0.32)

]
.

24



Results. We make two important observations:

• As evidenced by the disappearance of the polar sampling pattern in the fourth column,
the raw RobOT matching xi 7→ xi + vi provides a “perfect fit” to the target but does not
preserve the topology of the source point cloud. The spline and the LDDMM approximations
alleviate this problem: they smooth the weighted RobOT matching to combine accuracy with
topology preservation and, in the case of the LDDMM model, guarantees of invertibility.

• The spline and the LDDMM model both result in smooth deformations. But crucially,
the LDDMM model is more suited to large deformations and provides a better fit to the
corners of the target cube. We note that workarounds exist for the over-smoothing of the
second (spline) column: at the cost of an increased sensitivity to noise, singular kernels
[109] or ridge regression methods [10] allow spline models to get a closer fit to the target.
For medical applications, the key benefit of LDDMM is that it provides strong guarantees on
the invertibility of the deformation: we refer to Chapter 5 of [35] for a detailed discussion.
In the remainder of this work, we benchmark both spline and LDDMM deformation models
whenever relevant. We observe that diffeomorphic LDDMM registrations perform better on
e.g. lung data, but stress that such comparisons are task-dependent.

A.3.3 Deep feature learning

Feature learning on 3D point clouds. As discussed above, (x, y, z) coordinates or standard FPFH
features can be good enough to handle simple shapes and deformations. On challenging settings
however, learning task-specific features is often key to high performance.

In Sec. 3.2 and Suppl. A.4, we present our best-performing solution to this problem: the D-RobOT
architecture. In this section, we discuss an alternative approach that decouples feature learning
and matching. In practice, we did not obtain competitive results with this method. Nevertheless,
using a separate feature extractor may increase interpretability and ease deployment issues in medical
scenarios: we believe that this line of work is worth pursuing and provide full details on our
experiments.

Let us process a synthetic pair of point clouds with N points in correspondence with each other –
N = 60, 000 in our experiments for lung registration. Instead of sampling positive and negative
samples, which is common for contrastive loss functions, we choose to rely on N×N correspondence
matrices that take all possible point pairs into account. We use the KeOps library [37] to manipulate
these objects efficiently, with extremely fast run times and without memory overflows.

Specifically, we train our feature extraction network as follows:

1. Input data. We assume that we are given two point clouds (x1, . . . , xN) and (y1, . . . , yN)
that are in pairwise correspondence with each other. In our experiments, these are typically
the output of a synthetic “data augmentation” procedure: the Flying3D objects for the Kitti
benchmark and our synthetic lung pairs for the Dirlab benchmark.

2. Feature extraction. We apply the feature extractor (a trainable point neural network) on
both point clouds, independently from each other. We retrieve point features pi and qi in RD

that are respectively associated to the points xi and yi.
3. Feature normalization. As discussed in Sec. 2.1, we normalize the feature vectors so that
‖pi‖RD = ‖qi‖RD = 1. This prevents the feature extractor from converging to degenerate
solutions and ensures that our hyper-parameters for the RobOT problem of Eq. (2) can be
interpreted as sensible scales in RD.

4. Source self-similarities. We compute the N × N correspondence matrix for the point
positions in the source point cloud:

c(xi,xj) = softmaxN
j=1(−‖xi − xj‖2R3/2κ2) =

exp(−‖xi − xj‖2R3/2κ2)∑N
j=1 exp(−‖xi − xj‖2R3/2κ2)

, (13)

where the Softmax denotes a mirrored exponential followed by a normalization over the
rows of the correspondence matrix while κ > 0 is a scaling factor. Each row of the matrix
c(xi,xj) then refers to a probability distribution, a position heatmap with a peak at point xi
whose radius is proportional to κ.

25



1 32 32 32

64 64 128

128 128 256

256 256 512

512 256

256 64 256

256 64 128

128 32 64

64 15
Linear (1x1 conv), LeakyReLU

PointConv

Up-sample

Concatenate
Input

features

Level 0
N = 60k

Level 1
N = 4,096

Level 2
N = 1,024

Level 3
N = 512

Level 4
N = 128

Output
features

Figure 9: Deep feature extractor for our S-RobOT experiments. We adapt this feature pyra-
mid network from PointPWC-Net [126]. We implement a four-scale U-net [95] architecture using:
point-wise multi-layer perceptrons on the feature embeddings (with LeakyReLU non-linearities);
PointConv [125] for downsampling and gathering information from the neighbors; K-Nearest Neigh-
bor interpolation for upsampling.
Please note that this architecture relies on the point coordinates (x, y, z) to define the PointConv
convolution and the upsampling layer. In our experiments for lung registration, we use the local vessel
radius as our only input feature: this corresponds to using a single input channel on the left-most
layer of the figure above.

5. Feature correspondences. Similarly, we compute a correspondence matrix for the source
and target features:

c(pi,qj) = softmaxN
j=1(−‖pi − qj‖2RD) . (14)

Each row of c(pi,qj) is a feature heatmap that indicates how well pi corresponds to qj .
6. Training loss. Our total loss is the sum over the cross entropies for each row:

CE(c(xi,xj), c(pi,qj)) = −
N∑
i=1

N∑
j=1

c(xi,xj) log c(pi,qj) . (15)

We optimize it by stochastic gradient descent over the parameters of the feature extraction
network (step 2).

Hyper-parameters. For feature learning, we use a U-net structured PointConv [125] architecture
with 7M parameters that is illustrated in Fig. 9. At the feature learning stage, we set κ (described
above) to

√
2 mm. For each point we learn a 15 dimensional feature vector of unit length. For the

RobOT feature matching, we set the blur parameter to σ = 0.01 units in R15 and the reach parameter
to ρ = +∞ (balanced OT). As discussed in Suppl. A.4.2, we benchmark two types of S-RobOT
regularization:

1. The spline smoothing of Eq. (7), using a Gaussian (RBF) kernel with a standard deviation
of 5 mm.

2. An LDDMM deformation model that we optimize as in Eq. (8) using an SGD solver. We use
a multi-Gaussian-kernel with standard deviations {5, 8, 10} mm and weights {0.2, 0.3, 0.5}.

A.4 Additional material on deep deformation prediction

We now provide full details on our D-RobOT architecture and additional experiments on scene flow
estimation and lung registration.

A.4.1 Deep registration module

Architecture of the prediction network. In Sec. 3.2, we rely on a modified PointPWC-Net to
act as a predictor Pred : (xi, yj) 7→ θ. This multiscale point neural network takes as input the
source and target point clouds. It returns a high-dimensional parameter θ for the deformation model
Morph : (θ, xi) 7→ ŷi. In this work, the predicted θ is always a 3D vector field that is supported by

26



the points xi (for the raw displacements model) or by a collection of control points ci that have been
generated by farthest point sampling (for the spline and LDDMM models).

We describe our modifications to the original PointPWC-Net architecture in Fig. 10. In order to
define a network that can predict spline and LDDMM parameters:

1. We replace the flow prediction layer of PointPWC-Net by a suitable prediction layer for
registration parameters.

2. We use an asymmetric hierarchical architecture that outputs registration parameters for
the control points ci. Since the number of control points is often much smaller than the
number of points in the input point cloud, this reduces the memory footprint of our network
architecture.

Losses. We use synthetic data pairs for training: for scene flow estimation on Kitti, we rely on the
synthetic Flying3D dataset; for lung registration, we rely on the two-scales simulator of Suppl. A.2.
In both cases, we thus have access to ground truth deformations and can rely on a supervised learning
strategy. Let us consider a PointPWC-Net with L scales, and denote by (xl1, . . . , x

l
Nl

) the subsampled
input for the l-th scale. For training, we compute a multi-scale similarity loss as:

Loss(ŷi) =
∑L−1
l=0 W

l
∑
i wi · ‖ ŷli − yli ‖22 , (16)

where l ∈ {0, . . . ,L} is a scale (l = 0 corresponds to the raw point clouds), W l is a scalar hyper-
parameter that we use as a total weight for the l-th scale, ŷli is the output of the network that
corresponds to the flowed xli at the l-th scale and yli denotes the ground truth target that corresponds
to the same point xli with weight wi. Note that at the finest scale, we compute ŷ0 using a task-specific
deformation model, Morph : (θ, xi)→ ŷi.

A.4.2 Experiments on lung vascular trees

We now provide more details on our experiments for lung registration, which are illustrated in
Fig. 11 with a visualization of landmark errors in Fig. 13. Notably, we discuss both supervised and
unsupervised training strategies as well as the influence of the deformation model Morph : (θ, xi) 7→
ŷi on the D-robot architecture.

Synthetic data vs unsupervised learning. To overcome the lack of dense 3D annotations on real
shape data, we advocate the use of simulated deformations and synthetic training datasets. As
detailed in Sec. 3.2, we observe that D-RobOT networks are easy to train to a high level of accuracy:
RobOT-based post-processing and fine-tuning help our models to bridge the domain gap between the
synthetic and real distributions of shapes.

We would like to stress that our focus on synthetic training datasets to the detriment of e.g. unsuper-
vised approaches results from careful and extensive experiments. In the lead-up to the publication
of this work, we tried several competing approaches to train our registration networks: supervised
learning with dense correspondences on synthetic data; “unsupervised” learning on unannotated point
clouds using geometric loss functions between point sets; a mix of both approaches. In practice,
supervised learning on synthetic data clearly emerged as the most practical option for challenging
registration tasks. Let us briefly explain why.

Unsupervised loss functions. When dense pointwise correspondences are not available, a popular
strategy to train registration methods is to rely on permutation-invariant loss functions between point
clouds. We refer to Chapters 3 and 4 of [35] for an introduction to the topic.

Since our PVT1010 dataset contains 1,000 pairs of lung vessel trees that are in correspondence
with each other (inspiration/expiration) but for which no expert-annotated landmarks are available,
we are in a perfect situation to try out these tools. We thus attempted to train our networks using
local Laplacian matching [126], Maximum Mean Discrepancies, Gaussian Mixture Models (GMM)
as well as Wasserstein distances [35] on (x, y, z) coordinates. Unfortunately, we never succeeded
in converging to a competitive level of accuracy. We believe that this is due to the complex
geometric structure of the lung vascular trees, which are significantly more intricate than the
clean point clouds and surface meshes on which these methods are usually tested [36, 40].

Combining synthetic (supervised) and real (unsupervised) data. Going further, we also tried to
use a mixed strategy: in our training dataset, we combined synthetic deformations of real source
shapes (that can be handled using a mean square error) with genuine target point clouds (that can be

27



N points, 3 or 4 channels

 N points, 64 channels

C points, 64 channels

C/4 points, 
128 channels

C/8 points, 
256 channels

C/32 points, 
256 channels

Target

L0

L1

L2

L3

L4

N points, 3 or 4 channels

 N points, 64 channels

C points, 64 channels

C/4 points, 
128 channels

C/8 points, 
256 channels

C/32 points, 
256 channels

Source

L0

L1

L2

L3

L4

PointPWC Block

PointPWC Block

PointPWC Block

Parameter θ

PointPWC Block

L(i+1)L(i+1)Flow Parameter θ

LiLi

Upsample

Warp layer Cost volume

PointConv

MLP MLP

Flow Parameter θ

(a) Multiscale prediction architecture. (b) Architecture of a PointPWC block.

Figure 10: Architecture of our deep prediction network Pred : (xi, yj) 7→ θ, which is adapted
from PointPWC-Net [126]. The original PointPWC-Net architecture is a multi-scale network that
predicts 3D scene flow (a raw displacement field) in a coarse-to-fine fashion. We modify this state-
of-the-art architecture to make it suitable for registration with a task-specific deformation model
Morph : (θ, xi) 7→ ŷi.
a) First of all, we compute feature pyramids at scales L0 to L4 using farthest point sampling and
PointConv layers [125] on the source and target shapes (left and right columns) – see Fig. 5 in [126].
In our experiments, we always use C = 4, 096 or C = 8, 192 control points. The key design decision
behind the PointPWC-Net architecture is to run through this pyramid from the coarsest scale (L4) to
the finest one (L0, the original point clouds) in order to predict the final 3D scene flow: we represent
this coarse-to-fine prediction as a stack of PointPWC blocks (central column).
b) Those blocks share the same architecture (but not the same neural weights): an upsampling layer
that interpolates our 3D vector fields from the coarser to the finer scale using an inverse distance
spline kernel; another upsampling layer that interpolates the pyramid features at the coarsest scale; a
warp layer that deforms the source shape according to the up-sampled 3D flow, allowing the network
to focus on residual deformations at each scale; a cost “volume” layer, detailed in Fig. 2 of [126],
which relies on K-NN neighborhoods and PointConv layers to merge the source and target features
into a vector of “patchwise” discrepancies for every point in the (subsampled and warped) source
shape; a prediction PointConv and Multi-Layer Perceptrons (MLP), detailed in Fig. 6 of [126], that
turns this vector of discrepancies into a predicted correction for the up-sampled 3D flow.
Please note that this architecture relies on the point coordinates (x, y, z) in the PointConv and
upsampling layers. For our scene flow experiments, we use the (x, y, z) coordinates as input to the
network: this corresponds to “Source” and “Target” arrays that have 3 input channels. For our lung
registration experiments, we also add the local vessel radius as a fourth feature and thus use 4 input
channels. We stress that in our RobOT-based pre-alignment and post-processing (steps 1 and 3 of
the D-RobOT architecture), we rely on the (x, y, z) coordinates as point features pi and qj in Eq. (2).
When available, the vessel radii are only used as point weights αi and βj in the RobOT problem.
In all our experiments, the parameter θ is a 3D vector field that has the same memory footprint as a
“raw” 3D scene flow supported by our control points: this corresponds to using 3 output channels on
the C control points. Our main modification to the original PointPWC-Net architecture is to handle
this registration parameter (purple) in parallel with the usual scene flow (sky blue): the final
prediction module of every PointPWC block runs two estimations in parallel, which share the same
PointConv layer and are equivalent to Fig. 6 in [126].

28



handled using e.g. the Wasserstein distance). We expected that this combination would narrow the
domain gap between our synthetic deformations and the real breathing movement. In practice, this
strategy produced indecisive results:

• On the one hand, assuming that we only have access to a simple deformation model (e.g.
a single-scale random field), this mixed training strategy improves the accuracy of our
registrations. This is especially true when the synthetic deformations are not diverse enough.

• On the other hand, assuming that we have access to the more realistic and expressive
deformation model of Suppl. A.2, the introduction of real but not annotated pairs in the
training loop proves slightly detrimental to performance. We observe a small increase of
about 0.2mm in landmark Root Mean Squared Error (RMSE).

For the sake of simplicity, we thus trained our final D-RobOT network entirely on synthetic defor-
mations. We found that using RobOT as a final post-processing layer in the D-RobOT pipeline is
enough to address prediction errors effectively and compensate for a small domain gap between
synthetic and real deformations.

Raw displacements vs spline and LDDMM regularizations. In Fig. 12, we further compare the
D-RobOT results for three different deformation models. Our main observations are that:

• A deep prediction module that returns raw displacements ∆xi with a naive deformation
model Morph : (θ = ∆xi, xi) 7→ ŷi = xi + ∆xi may produce non-smooth registration
results. This holds even when the network is trained entirely on smooth, synthetic defor-
mations. On the other hand, the regularizing spline and LDDMM models always result in
smooth deformations. This vindicates the use of explicit regularizing models in safety-
critical applications: we cannot trust our networks to “learn smoothness properties” from
the data.

• According to Fig. 12 and Tab. 4, the LDDMM model captures large deformations better
than the spline model. However, we obtain similar performance with both spline and
LDDMM models after the (affordable) RobOT post-processing step: fine-tuning with
RobOT alleviates the need for complex and expensive deformation models.

Experiments. We now provide detailed hyperparameters for the D-RobOT architecture in our lung
registration experiments. As detailed in Sec. 3.2, the full model applies successively: an affine
S-RobOT pre-alignment; a deep non-parametric registration; and a spline S-RobOT post-processing.

1. Affine registration. For affine pre-alignment, we use the S-RobOT model of Eq. (6) with raw
(x, y, z) coordinates as input features in R3. The vessel radii are taken into account as point weights
αi and βj . In the RobOT problem of Eq. (2), we set the blur parameter to σ = 1 mm and the reach
parameter to τ = +∞ (balanced OT with strong constraints on the marginals).

2. Deep non-parametric registration. We evaluate three deformation models Morph : (θ, xi) 7→ ŷi:

1. Raw displacements correspond to the case where the parameter θ = ∆xi is a 3D vector
field that is supported by the point xi and the deformation model is the addition:

Morph : (∆xi, xi) ∈ RN×3 × RN×3 7→ xi + ∆xi ∈ RN×3 . (17)
As a regularization penalty, we use the squared Euclidean norm:

Reg(∆xi) = 1
N

∑N
i=1 ‖∆xi‖2R3 . (18)

2. The spline model corresponds to the case where the parameter θ = ∆cl is a 3D vector field
that is supported by a set of control points (c1, . . . , cC) in R3. As a deformation model, we
use a simple kernel smoothing:

Morph : (∆cl, xi) ∈ RC×3 × RN×3 7→ xi +
∑C
l=1 k(xi, cl)∆cl ∈ RN×3 . (19)

As a regularization penalty, we use the squared Euclidean norm:

Reg(∆cl) = 1
C

∑C
l=1 ‖∆cl‖2R3 . (20)

For our lung experiments, we always use a multi-Gaussian kernel with standard devia-
tions {3, 6, 9} mm and weights {0.2, 0.3, 0.5}. With the coordinates of points x and y in
millimeters, this corresponds to the positive definite kernel function:
k(x, y) = 0.2 · exp

[
− ‖x− y‖2R3/(2 · 32)

]
+ 0.3 · exp

[
− ‖x− y‖2R3/(2 · 62)

]
(21)

+ 0.5 · exp
[
− ‖x− y‖2R3/(2 · 92)

]
.

29



3. The diffeomorphic LDDMM model is equivalent to a spline deformation with continuous
time. Notably, we use the same kernel k(x, y) as in the spline model above. As detailed
in Suppl. A.3.2 and Chapter 5 of [35], the parameter θ = m0

l is a 3D vector field that
is supported by a set of control points (c1, . . . , cC) in R3. As a deformation model, we
use an iterative kernel smoothing and deformation layer that corresponds to a numerical
integration scheme for the Ordinary Differential Equation (11). More specifically, we use
the differentiable Dopri-5 layer that is provided by the TorchDiffEq library [23, 22], which
implements the Dormand-Prince or Runge-Kutta 4(5) integrator [32] with 20 time steps from
time t = 0 to time t = 1. For a simpler implementation, we refer to the Euler integration
scheme that is detailed in [35], Algorithm 5.6. As a regularization term, we use the squared
kernel norm:

Reg(∆cl) = 1
C

∑C
l=1

∑C
s=1 k(cl, cs)〈m0

l ,m
0
s〉R3 . (22)

For the deep prediction network Pred : (xi, yj) 7→ θ, we use the 4-scale hierarchical architecture
that is described in Suppl. A.4.1 and set the scale weights W l to {1.0, 0.8, 0.4, 0.2}. We compute
the 4-scale decompositions of the point clouds using Farthest Point Sampling. For all models, we
promote a close fit to the target shape and weight the regularization term Reg(θ) by 1/100 in the
training loss:

Loss(xi, yi, θ) = 1
100 Reg(θ) +

∑L−1
l=0 W

l
∑
i wi · ‖ ŷli(θ, xi) − yli ‖2R3︸ ︷︷ ︸

Multiscale loss of Eq. (16)

. (23)

We recall that in the expression above:

1. The weights wi are attached to the points xi and are proportional to the vessel radius.
2. The weights W 0, W 1, W 2 and W 3 put a strong emphasis on the finest scales.
3. Each point yli corresponds to the ground truth target for xi at scale l.
4. Each point ŷli(θ, xi) corresponds to the output of our prediction and deformation networks

at scale l for xi. As detailed in Fig. 10, the finest-scale output ŷ0
i (θ, xi) = Morph(θ, xi)

corresponds to our model-based deformation; the larger-scale predictions ŷ1
i (θ, xi), ŷ2

i (θ, xi)
and ŷ3

i (θ, xi) correspond to raw displacements and are only used in Eq. (23) to make the
training easier [126].

3. Postprocessing. To fine-tune our registration, we use the spline S-RobOT deformation of Eq. (7)
with (x, y, z) coordinates as input features in R3. We set the blur parameter to σ = 0.1 mm and
the reach parameter to τ = 10 mm. For smoothing, we use the vessel-preserving anisotropic kernel
k(x, y) of Sec. A.2 with a kernel scale slocal = 8 mm. In order to get a closer fit to the target, we
apply this post-processing step twice for all lung registration results.

30



D-RobOT (raw) D-RobOT (spline) D-RobOT (LDDMM)
Post-processing mm ↓ mm ↓ mm ↓
Without post-processing 3.46 (3.13) 4.45 (4.10) 3.33 (3.09)
NN projection 3.33 (2.96) 3.32 (3.05) 3.31 (2.96)
RobOT 3.35 (3.04) 3.18 (3.01) 3.19 (3.01)
NN projection + Smoothing 3.32 (2.95) 3.08 (2.82) 2.95 (2.64)
RobOT + Smoothing 3.33 (2.99) 2.94 (2.71) 2.83 (2.40)

Table 4: Ablation study on the post-processing module. We assess the influence of the fine-tuning
step in the D-RobOT model. As an addendum to Tab. 1, we display the Root Mean Squared Error
in millimeters (median of the 10 subjects in parentheses) for expert-annotated landmarks on the 10
Dirlab lung pairs, that we use as a test set for PVT1010. The first row corresponds to the output of the
deep registration module, without any fine-tuning. The second row corresponds to a nearest neighbor
projection on the target point cloud. The third row corresponds to the “raw” RobOT matching of
Eq. 4, extrapolated to the landmarks using a Nadaraya-Watson spline with an isotropic Gaussian
kernel of deviation σ = 0.5 mm. In the fourth and fifth rows, we use a vessel-preserving anisotropic
kernel to smooth a nearest neighbor projection (fourth row) and our RobOT matching (fifth row).

Pre- Deep Post- Number of Number of RMSE
Method alignment prediction processing points control points mm ↓
Input data None 60k —- 23.32
Affine 3 None 60k —- 10.31

FlowNet3D
FLOW 30k 4,096 8.20

3 FLOW 30k 4,096 7.08
3 FLOW 3 30k 4,096 6.51

D-RobOT

3 PWC∗ 30k 4,096 4.10
PWC∗ 60k 4,096 4.64

3 PWC∗ 60k 4,096 3.82
3 PWC∗ 60k 8,192 3.33
3 PWC∗ 3 60k 8,192 2.83

Table 5: Ablation study for the D-RobOT model (with LDDMM deformations) on the lung
registration task. We benchmark the Root Mean Squared Error on the 10 × 300 pairs of DirLab
landmarks for a wide range of configurations. We investigate the influence of affine S-RobOT pre-
alignment (column 2); spline S-RobOT fine-tuning (column 4); the sampling rate for the input data
(column 5); and the number of control points for the LDDMM deformation model (column 6). As
a backbone architecture for the deep prediction network, we use a FlowNet3D (rows 3-5) and the
modified PointPWC-Net of Fig. 10 (rows 6-10).

Method Prealign Post EPE3D Acc3DS Acc3DR Outliers3D EPE2D Acc2D
cm ↓ % ↑ % ↑ % ↓ px ↓ % ↑

81
92

po
in

ts PWC [126] 6.78 78.58 90.30 23.61 2.6484 82.36
PWC 3 4.62 83.24 94.91 19.61 2.1411 86.82
PWC 3 3 4.76 82.16 94.53 20.10 2.0716 87.59
D-RobOT 3 4.63 79.13 95.30 21.43 2.3930 82.93
D-RobOT 3 3 4.55 80.27 94.85 20.65 2.1404 85.24

30
k

po
in

ts PWC [126] 7.90 61.33 89.75 29.36 4.0558 65.35
PWC 3 5.94 72.62 92.26 25.79 3.1817 72.82
PWC 3 3 3.99 86.44 95.02 18.59 1.9592 86.09
D-RobOT 3 2.94 92.86 98.59 16.05 1.5733 91.86
D-RobOT 3 3 2.15 95.74 98.96 12.93 1.1118 95.66

Table 6: Ablation study on the modules of D-RobOT (with spline deformations) and the influence
of the point sampling rate, performed on the 57 largest scenes from the Kitti dataset. As detailed
in Suppl. A.4.3, these results correspond to average values on the 57 (out of 142) pairs of 3D scenes
that are sampled with more than 30k points per frame in the original Kitti dataset. This allows us to
focus our evaluation on the most challenging 3D scenes, with under-sampling artifacts: as expected,
performance is lower than in the “full” Kitti benchmark of Fig. 4.

31



(a) Source. (b) D-RobOT. (c) Target. (d) D-RobOT, target.

C
O

P
D

 5
.

C
O

P
D

 6
.

C
O

P
D

 7
.

C
O

P
D

 8
.

Figure 11: Additional results for lung vascular trees. Columns refer to: (a) the source shape
(expiration); (b) the registration result from D-RobOT using the LDDMM deformation model; (c)
the target shape (inspiration); (d) an overlap between the D-RobOT registration and the target. Each
row corresponds to a patient, with names that refer to case IDs in the original DirLab dataset.

32



(a) Output of the deep 
registration (step 2).

(b) Output of step 2,
target.

(c) Output of step 3, 
target.

D
-R

ob
O

T
(L

D
D

M
M

)
D

-R
ob

O
T

(s
pl

in
e)

D
-R

ob
O

T
(r

aw
)

Figure 12: D-RobOT results for different deformation models Morph : (θ, xi) 7→ ŷi. (a) The
first two columns correspond to the output of our deep registration module (without post-processing);
(b) the third column also includes the target shape, displayed as a blue point cloud; (c) the fourth
column showcases our final result, with RobOT-based post-processing. As detailed in Suppl. A.4.2,
we observe that: (i) the spline and LDDMM models produce smooth registration results; (ii) before
the RobOT post-processing step, LDDMM provides a better fit than the spline model; (iii) after
post-processing, all three deformation models produce “sharp” results, with smoothness guarantees
for the spline and LDDMM models.

0mm

100mm

200mm

0mm

10mm

17mm

5mm

(a) COPD 1. (b) COPD 2. (c) COPD 3. (d) COPD 4. (e) COPD 5.

(f) COPD 6. (g) COPD 7. (h) COPD 8. (i) COPD 9. (j) COPD 10.

Figure 13: Distributions of the DirLab-COPDGene errors for the 300 expert-annotated cor-
responding landmarks. Each image refers to a patient, with a title that refers to the case ID
in the original DirLab dataset. We use color to display the registration error with our best per-
forming model (D-RobOT with LDDMM deformations) on the source landmarks. The COPD 2
patient is a clear outlier in our experiment as in all previous studies on the original volumetric data
(https://www.dir-lab.com/Results.html) – this may be due to annotation errors. On the
other patients, most of the large errors occur in boundary regions where acquisition artifacts induce
inconsistencies between the source and target point clouds: small vessels are harder to catch in the
original 3D volume.

33

https://www.dir-lab.com/Results.html


A.4.3 Experiments on Kitti

We now provide details for our experiments on scene flow estimation, which are illustrated in Fig. 14.
Notably, we discuss the influence of the sampling rate for the source and target point clouds and
provide an extensive ablation study for the modules of the D-RobOT model.

Influence of the sampling rate. We follow the pre-processing strategy of PointPWC-Net [126]:

1. We train on points whose depth with respect to the acquisition device is smaller than 35 m.
2. We sample points from both of the source and target frames at random, in a non-

corresponding manner.

In the main manuscript, we report results when the source and target point clouds are sampled with
either 8,192 or 30k points at a time. We note that in a similar situation, when sampling 32,768 points
from each frame, HPLFlowNet [49] reported an average EPE3D value of 10.87 cm over all 142 pairs
of the Kitti dataset. In comparison, our D-RobOT model reaches a much higher accuracy (EPE3D =
2.23 cm) with only 30,000 points per frame.

Working with the 57 largest scenes from Kitti. We note that the number of points per 3D frame
varies widely in the Kitti dataset. To investigate the potential negative effects from under-sampling,
we evaluate our models separately on pairs where both frames contain more than 30k points: 57 out
of the 142 Kitti scene pairs meet this requirement. When dealing with those 57 “most populated”
frames, sub-sampling the scene to 30k points induces a net loss of geometric information.

We display our results for this subset of Kitti in Tab. 6: unsurprisingly, performance is lower than in
Fig. 4, which reports results on the full Kitti dataset and thus includes the 85 pairs of frames for which
30k points are enough to work at full resolution. Nevertheless, our conclusions remain consistent:
the D-RobOT method outperforms PointPWC-Net [126] for both sampling rates.

Ablation study. Going further, we analyze the contributions of the pre-alignment and post-processing
modules in the D-RobOT model. Our results are summarized in Tab. 6 and can be described as
follows:

• The pre-alignment module improves results for both sampling rates. Since rigid trans-
formations have few degrees of freedom, the estimation of Eq. (5) does not rely on fine
details.

• In sharp contrast, the post-processing module only improves results for high-resolution
points. In practice, our RobOT-based post-processing behaves as a fast local fitting to the
target point cloud. In the upper half of the table, the target point cloud and the set of “ground
truth” final positions for the source points have small overlap due to the small number of
sampling points for these complex scenes: a local “pixel-perfect” fine-tuning is detrimental
to performance. In the lower half of the table, we increase the sampling rate to 30k points
per frame: the target point cloud and the set of ground-truth final positions for the source
points have a much higher overlap. This allows the RobOT post-processing to increase the
accuracy of the full model.

Experiments. We now provide detailed hyperparameters for the D-RobOT architecture in our
Kitti experiments. As detailed in Sec. 3.2, the full model applies successively: a rigid S-RobOT
pre-alignment; a deep non-parametric registration; and a spline S-RobOT post-processing.

1. Rigid registration. For rigid pre-alignment, we use the S-RobOT model of Eq. (5) with raw
(x, y, z) coordinates as input features in R3. The vessel radii are taken into account as point weights
αi and βj . In the RobOT problem of Eq. (2), we set the blur parameter to σ = 1 m and the reach
parameter to τ = +∞ (balanced OT with strong constraints on the marginals).

2. Deep non-parametric registration. We use the prediction architecture and deformation models
of Suppl. A.4.2. Our spline deformation model is based on a multi-Gaussian-kernel with standard
deviations {20, 40, 60} cm as and weights {0.2, 0.3, 0.5}. With the coordinates of points the x and y
in centimeters, this corresponds to the positive definite kernel function:

k(x, y) = 0.2 · exp
[
− ‖x− y‖2R3/(2 · 202)

]
+ 0.3 · exp

[
− ‖x− y‖2R3/(2 · 402)

]
(24)

+ 0.5 · exp
[
− ‖x− y‖2R3/(2 · 602)

]
.

34



Figure 14: Additional results for scene flow estimation on Kitti. From left to right, the columns
refer to: the source shape; the registration result for D-RobOT with a spline deformation model (the
source point cloud is displayed in gray in the background, flows are displayed as brown arrows); the
target shape (the source point cloud is displayed in gray in the background); and the D-RobOT result
overlapped with the target. Each row corresponds to a single pair of 3D frames.

Figure 15: RobOT matching vs Nearest Neighbor projection on a synthetic local vessel tree.
From left to right, the columns refer to: the source shape; the registration result for NN projection and
RobOT followed by a local smoother (the source point cloud is displayed in gray in the background,
flows are displayed as gray arrows); the target shape (the source point cloud is displayed in gray in
the background); and the D-RobOT result overlapped with the target.

35



3. Postprocessing. To fine-tune our registration, we use the spline S-RobOT deformation of Eq. (7)
with (x, y, z) coordinates as input features in R3. We set the blur parameter to σ = 5 cm and the
reach parameter to τ = 80 cm. For smoothing, we use the vessel-preserving anisotropic kernel
k(x, y) of Sec. A.2 with a kernel scale slocal = 80 cm.

A.5 RobOT matching vs nearest neighbor projection.

As detailed in Sec. 2.2, we use the RobOT matching of Eq. (4) as a plug-in replacement for nearest
neighbor (NN) projection. At an affordable computational cost, our RobOT layer enforces a local
conservation of the point density: this geometric prior is relevant for many registration tasks and
mitigates accumulation artifacts that are commonly found in nearest neighbor projections [40, 35].
In accordance with the theory, we thus observe that RobOT matching outperforms nearest neighbor
projection in a wide range of settings.

Local translations. When the point features pi and qj correspond to the (x, y, z) coordinates in
R3, a key property of the Monge-Brenier map that is defined by Eq. (4) is that it perfectly retrieves
translations and dilations [15, 87, 35]. Scene flow estimation is often close to this best case scenario
for RobOT theory: after we remove points that correspond to the ground (a common pre-processing
for this task), most of the displacements can be explained as local translations and small rotations of
solid objects (e.g. cars or trees) in the frame of reference of the acquisition device.

On the Kitti benchmark of Fig. 4, we observe that a simple RobOT matching already performs
very well for 3D scene flow estimation. Remarkably, and without any training, vanilla RobOT
matching on high-resolution point clouds (30k points per frame) outperforms most pre-existing
deep learning methods on medium-resolution point clouds (8,192 points per frame) in terms of
speed, memory usage and accuracy. This is strong evidence that geometric methods deserve more
attention from the computer vision community.

Complex structures. Going further, the mass distribution constraint of Eq. (2) is useful to register
complex shapes with appendices and branches. This property has been discussed in depth in
previous works: we refer to e.g. [36] for the matching of five-fingered hand surfaces. The (soft)
constraints on the marginals of the transport plan promote a bijective matching of the fingers,
preventing the thumb and the index of the source shape from being both projected on the thumb of
the target.

In Fig. 15, we provide a similar example for the local registration of branching vessels. We create
a synthetic pair of source and target vessels with N = 1, 000 and M = 1, 200 points respectively.
We normalize their (x, y, z) coordinates to be contained in the unit cube [0, 1]3 and assign uniform
weights αi = 1 and βj = 1 to each point – we work in a realistic unbalanced scenario. We compute
the raw NN matching using a simple nearest neighbor projection from the source onto the target in R3.
For the RobOT matching, we also use raw (x, y, z) coordinates and the squared Euclidean metric;
we set the blur parameter to 0.0005 units in R3 and the reach parameter to 1 unit (unbalanced OT).
As detailed in Suppl. A.2, we regularize both of the NN and RobOT matchings using an anisotropic
muti-Gaussian-kernel with standard deviations {0.03, 0.05, 0.07} and weights {0.2, 0.3, 0.5}.
As a post-processing step. As discussed above, RobOT matching is good at handling local transla-
tions, dilations and small free-form deformations. We propose to use it as a fast post-processing step
in our D-RobOT architecture, presented in Sec. 3.2. In order to validate its utility, we perform an
ablation study on the PVT1010/DirLab dataset for lung registration.

We benchmark increasingly suitable fine-tuning layers: no fine-tuning; nearest neighbor projection;
RobOT matching; nearest neighbor projection with vessel-preserving smoothing; RobOT matching
with vessel-preserving smoothing. Our results are detailed in Tab. 4: when used in combination with
a smooth deformation model, these layers result in an increasingly higher accuracy. This confirms
the main findings of our work: including sensible geometric priors in a modular deep learning
architecture is the key to reliable state-of-the-art performance.

A.6 Computational Resources

For the evaluation of time and memory cost in Fig. 4, we compare all models on a Ubuntu server
with a single 24GB NVIDIA Quadro RTX 6000 graphics processing unit (GPU) and a 10-core
Intel(R) Xeon(R) Silver 4114 CPU @ 2.20GHz. We trained all of our networks on a single 24GB

36



NVIDIA RTX 3090 GPU, except for the training of PointPWC-Net with 30k sampled points that was
performed on a 48GB NVIDIA RTX A6000 GPU.

A.7 Potential for negative societal impact

Point cloud registration is a fundamental low-level task in computer vision and computer graphics.
As a consequence, negative societal impact of our work may arise in a wide range of use cases. A
first example is that of point cloud registration for autonomous driving: algorithm failure could lead
to incorrect driving decisions. Similar concerns may arise when using these approaches to register
facial scans for the purpose of person identification. In general, while our manuscript demonstrates
improved performance and robustness over competing approaches, the possibility for registration
failures should always be considered when applying our models in safety critical environments.

37


	Supplementary Material
	Pulmonary vascular tree dataset
	Augmentation of the training dataset for vascular tree registration
	Additional material on S-RobOT and global feature matching
	Partial registration
	Diffeomorphic registration
	Deep feature learning

	Additional material on deep deformation prediction
	Deep registration module
	Experiments on lung vascular trees
	Experiments on Kitti

	RobOT matching vs nearest neighbor projection.
	Computational Resources
	Potential for negative societal impact


