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A PSEUDO-GAMES VS. GAMES

To see why GNEs cannot be expressed as Nash equilibria, consider a cake cutting problem between
two players, in which each agent i = 1, 2 receives payoff ui(xi, x�i) = x

2
i �

1
1�x2

�i
where x�i is

the action of i’s opponent. In this problem, each player can request a share of the cake, i.e., for all i,
xi 2 [0, 1], and the total share of the cake demanded must be less than or equal to 1, i.e., x1+x2  1.
This is a pseudo-game where any player i can take an action xi 2 [0, x�i]. A solution can then be
modelled as a GNE , i.e., (x⇤

1, x
⇤

2) s.t. x
⇤

i 2 argmaxxi2[0,x⇤
�i]

ui(xi, x
⇤

�i), which corresponds to
the set �2, i.e., the unit simplex in R2. Although the cake splitting problem cannot be expressed as
a game due to the joint constraint x1 + x2  1, a common first intuition of many who are familiar
with games is to penalize the payoffs of the players by �1 for any (x1, x2) such that x1 + x2 � 1.
This then gives us the following payoff:

ui(xi, x�i) =

⇢
x
2
i �

1
1�x2

�i
if x1 + x2  1, or

�1 otherwise.
(3)

The Nash equilibria of the game defined by the above payoffs are {(x1, 1) | x1 2 [0, 1]}[ {(1, x2) |
x2 2 [0, 1]}[�2, and even if the penalty term was more than �1, the set of Nash equilibria would
not be equal to the set of GNE. Note that {(x1, 1) | x1 2 [0, 1]} are all Nash equilibria since the
payoff of the first player is �1 not matter what actions it chooses. A similar argument holds for
{(1, x2) | x2 2 [0, 1]}.

B GNE COMPUTATION METHODS SURVEY

Following Arrow & Debreu’s introduction of GNE, Rosen (1965) initiated the study of the math-
ematical and computational properties of GNE in pseudo-games with jointly convex constraints,
proposing a projected gradient method to compute GNE. Thirty years later, Uryas’ev & Rubinstein
(1994) developed the first relaxation methods for finding GNEs, which were improved upon in sub-
sequent works Krawczyk & Uryasev (2000); Heusinger & Kanzow (2009). Two other types of algo-
rithms were also introduced to the literature: Newton-style methods Facchinei et al. (2009); Dreves
(2017); von Heusinger et al. (2012); Izmailov & Solodov (2014); Fischer et al. (2016); Dreves et al.
(2013) and interior-point potential methods Dreves et al. (2013). Many of these approaches are
based on minimizing the exploitability of the pseudo-game, but others use variational inequality
Facchinei et al. (2007); Nabetani et al. (2011) and Lemke methods Schiro et al. (2013).

Additional, novel methods that transform GNE problems to Nash equilibria problems have also
been analyzed. These models take the form of either exact penalization methods, which lift the con-
straints into the objective function via a penalty term Facchinei & Lampariello (2011); Fukushima
(2011); Kanzow & Steck (2018); Ba & Pang (2020); Facchinei & Kanzow (2010b), or augmented
Lagrangian methods Pang & Fukushima (2005); Kanzow (2016); Kanzow & Steck (2018); Bueno
et al. (2019), which do the same but augmented by dual Lagrangian variables. Using these methods,
Jordan et al. (2022) provide the first convergence rates to a "-GNE in monotone (resp. strongly mono-
tone) pseudo-games with jointly affine constraints in Õ(1/") (Õ(1/p")) iterations. These algorithms,
despite being highly efficient in theory, are numerically unstable in practice Jordan et al. (2022).
Nearly all of the aforementioned approaches concern pseudo-games with jointly convex constraints.
Goktas & Greenwald (2021) also introduce first-order methods to minimize exploitability in a large
class of jointly convex pseudo-games in polynomial-time.

C GNE APPLICATIONS

Some economic applications of pseudo-games and GNE solvers include energy resource allocation
Hobbs & Pang (2007); Jing-Yuan & Smeers (1999), environmental protection Breton et al. (2006);
Krawczyk (2005), cloud computing Ardagna et al. (2017; 2011b), ride sharing services (Jeff) Ban
et al. (2019), transportation Stein & Sudermann-Merx (2018), capacity allocation in wireless and
network communication Han et al. (2011); Pang et al. (2008), and applications to machine learning
such as adversarial classification Bruckner et al. (2012); Bruckner & Scheffer (2009). Competitive
equilibria concepts have also been used to solve many problems in resource allocation Varian (1973);
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Gutman & Nisan (2012), with specific applications to college course allocation Budish (2011), pric-
ing of cloud computing Lai et al. (2005); Zahedi et al. (2018), ad market platforms Conitzer et al.
(2022a), economic forecasting Partridge & Rickman (2010), and economic policy assessment Dixon
& Parmenter (1996).

One of the other motivations of research in pseudo-games is their mathematical significance for
general equilibrium theory, the branch of microeconomics which models the interactions between
economic agents Facchinei & Kanzow (2010a). General equilibrium theory is a cornerstone of eco-
nomic theory Debreu (1996), and is also widely used in policy analysis Dixon & Parmenter (1996).
The most established general equilibrium model is the Arrow-Debreu model of a competitive econ-
omy Arrow & Debreu (1954), which is an instantiation of a pseudo-game in which a seller sets
prices for commodities, a set of firms choose what quantity of each commodity to produce, and a
set of consumers choose what quantity of each commodity to consume in exchange for their endow-
ment of each commodity. This model is a pseudo-game, rather than a game, because the prices set
by the sellers determine the value of the consumers’ endowments, i.e., their budget, which in turn
determines the consumptions of goods they can afford.

The canonical solution concept for this model, and other general equilibrium models more broadly
Facchinei & Kanzow (2010a), is a competitive equilibrium (CE) Walras (1896); Arrow & Debreu
(1954). Here, there is a collection of demands, one per consumer, a collection of supplies, one
per firm, and prices, one per commodity, such that given equilibrium prices: 1) no consumer can in-
crease their utility by unilaterally deviating to a consumption they can afford, 2) no firm can increase
their profit by deviating to another feasible production schedule, and 3) the aggregate demand for
each commodity (i.e., the sum of the commodity’s consumption across all consumers) is equal to
its aggregate supply (i.e., the sum of the commodity’s production and endowments across firms and
consumers respectively), while the total cost of the aggregate demand is equal to the total cost of the
aggregate supply . CE are intrinsically related to GNE since the set CE of an Arrow-Debreu com-
petitive economy corresponds to the set of GNE of the corresponding pseudo-game. This approach
also works for general equilibrium models more broadly: assuming local non-satiation of consumer
preferences, and given a general equilibrium model, one can construct an associated pseudo-game
and show that the set of CE is equal to the set of GNE of the associated pseudo-game.

Potential Applications for GAES. Applications of economic equilibrium concepts such as GNE
and CE often require a decision maker to solve a fixed parametric model either 1) en masse over a
distribution of parameters or 2) quickly in an iterative fashion for a sequence of different parameters.

The first common use case for the former setting occurs in internet platforms that have to price
advertisers in exchange for ad impressions. One standard approach to solve this problem is to let
advertisers compete in sequential first price auctions, where winning each auction gives the adver-
tiser the right to show their ad to the website visitor associated with the auction Bigler (2019). As
the number of auctions that each advertiser participates in is enormous, the bidding procedure on
these platforms is automated. However, beyond certain large advertising companies, it is in general
hard for advertisers to come-up with effective automated bidding strategies, as a result companies
provide their own bidding strategies to advertisers. One example of these strategies are first-price
pacing equilibria, in which the platform seeks a vector of pacing multipliers, one for each adver-
tiser, and buyers bid their value times their pacing multiplier. These pacing multipliers correspond
to CE Conitzer et al. (2022a;b), but for large platforms many ad markets run simultaneously, which
requires these platforms to solve for CE en masse.

A second common use case, is in computable general equilibrium, i.e., the study of economic data
through the lens of general equilibrium theory, which uses CE to make economic forecasts Dixon
& Parmenter (1996). In these applications, in order to understand the takeaways from a general
equilibrium model on the economy, one fixes certain parameters of the model and varies others to
understand the consequences of a change in parts of the economy on the economy as whole. This
practice of comparative statics Nachbar (2002), requires once again to solve the model for a family
of parameters en masse.

For the setting which requires fast and iterative computation of GNE and CE, a common application
is in the context of shared computational resources on platforms such as Mesos Hindman et al.
(2011), Quincy Isard et al. (2009), Kubernetes Burns et al. (2016), and Yarn Vavilapalli et al. (2013).
To this end, a long line of work has studied resource sharing on computing clusters Chen et al.
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(2018); Ghodsi et al. (2011; 2013); Parkes et al. (2015), with many methods making use of the
repeated computation of competitive equilibrium Gutman & Nisan (2012); Lai et al. (2005); Budish
(2011); Zahedi et al. (2018); Varian (1973) or generalized Nash equilibria Ardagna et al. (2017;
2011b;a); Anselmi et al. (2014). In such settings, as consumers request resources from the platform,
the platforms have to compute an equilibrium iteratively while handling all numerical failures within
a given time frame.

Another application that requires one to solve for GNE and CE iteratively is that of state-value
function-based reinforcement leaning algorithms for solving market equilibria in stochastic envi-
ronments, such as Model-based Optimistic Online Learning for Markov Exchange Economy and
Model-based Pessimistic Online Learning for Markov Exchange Economy, which iteratively con-
struct state-value functions by solving a sequence of competitive equilibrium problems that have to
be solved quickly Liu et al. (2022). Other related online learning algorithms such as randomized
exchange equilibrium learning Guo et al. (2021), which compute a competitive equilibrium when
agents’ payoffs can be obtained from sample observations, also require solving for a competitive
equilibrium iteratively and quickly.

D NON-LIPSCHITZ EXPLOITABILITY AND UNBOUNDED GRADIENTS

Example 1. Consider a two-player pseudo-game with action space A1 = A2 = [0, 1], payoffs
u1(a1, a2) = a1 u2(a1, a2) = a2, and constraints h1(a1, a2) = a2 � a1

2, h2(a1, a2) = a1 � a2
2.

The exploitability of this pseudo-game for all a = [0, 1]2 is given by

'(a) = max
(b1,b2):

a2�b21�0
a1�b22�0

b1 + b2 � a1 � a2 (4)

= max
(b1,b2):

p
a2�b1

=
p
a1�b2

b1 + b2 � a1 � a2 (5)

=
p
a1 +

p
a2 � a1 � a2 (6)

The gradient of the exploitability, when it exists is given by @'
@ai

(a) = 1
2
p
ai

� 1 for i = 1, 2. Note
that the payoffs u and constraints h are both Lipschitz-continuous over [0, 1]2, however, whenever
a1 = 0 or a2 = 0, the exploitability grows unboundedly, i.e., if for some ai ! 0, then @'

@ai
(a) ! 1,

and hence exploitability is not Lipschitz continuous, and its gradients cannot be bounded over the
set [0, 1].

Example 1 shows that exploitability in pseudo-games behaves differently than in normal-form
games, where exploitability is Lipschitz-continuous. The fact that gradients are unbounded means
in turn turn that gradients can explode during training if the GNE is located near the non-
differentiability (Example 1 shows this can happen, since the GNE strategy for either player can
occur at 0). As a result, first-order methods can fail, not only theoretically but also in practice.

E ADDITIONAL PRELIMINARY DEFINITIONS

Notation. We use caligraphic uppercase letters to denote sets (e.g., X ); bold lowercase letters to
denote vectors (e.g., p,⇡); bold uppercase letters to denote matrices (e.g., X , �), lowercase letters
to denote scalar quantities (e.g., x, �). We denote the ith row vector of a matrix (e.g., X) by the
corresponding bold lowercase letter with subscript i (e.g., xi). Similarly, we denote the jth entry
of a vector (e.g., p or xi) by the corresponding Roman lowercase letter with subscript j (e.g., pj or
xij).

Models. An "-variational equilibrium (VE) (or normalized GNE) of a pseudo-game is a strategy
profile a⇤

2 X s.t. for all i 2 [n] and a 2 X , ui(a
⇤) � ui(ai,a

⇤

�i)� ". We note that in the above
definitions, one could just as well write a⇤

2 X (a⇤) as a⇤
2 X , as any fixed point of the joint

action correspondence is also a jointly feasible action profile, and vice versa. A VE is an ✏-VE with
" = 0. Under our assumptions, while GNE are guaranteed to exist in all pseudo-games by Arrow &
Debreu’s lemma on abstract economies Arrow & Debreu (1954), VE are only guaranteed to exist in
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pseudo-games with jointly convex constraints Von Heusinger & Kanzow (2009). Note that the set
of "-VE of a pseudo-game is a subset of the set of the "-GNE, as X (a⇤) ✓ X , for all a⇤ which are
GNE of G. The converse, however, is not true, unless A ✓ X . Further, when G is a game, GNE and
VE coincide; we refer to this set simply as NE.

Mathematical Preliminaries. Fix any norm k·k. Given A ⇢ Rn, the function f : A ! R is
said to be `f -Lipschitz-continuous iff 8x1,x2 2 X , kf(x1)� f(x2)k  `f kx1 � x2k. Consider
a function f : X ! Y , we denote its Lipschitz-continuity constant by `f . If the gradient of f is
`rf -Lipschitz-continuous, we then refer to f as `rf -Lipschitz-smooth. A function f : X ! R is
said to be convex if f(x) � f(y)+rf(y) · (x�y), for all x,y 2 X and concave if �f is convex.
A function f : A ! R is said to be µ-Polyak-Lojasiewicz (PL) if for all x 2 X , 1/2 krf(x)k22 �

µ(f(x)�minx2X f(x)). A function f : A ! R is said to be µ-quadratically growing (QG), if for
all x 2 X , f(x)�minx2X f(x) � µ/2 kx⇤

� xk2 where x⇤
2 argminx2X

f(x).

F OMMITED RESULTS AND PROOFS

We first revisit the proof of the observation that is central to GAES.

Observation 1. For any D 2 �(�), we have minh2X� EG⇠D

⇥
'
G(h(G))

⇤
=

minh2X� maxf2A
�:8G2�,f (G)2X

G(h(G)) EG⇠D

⇥
 
G(h(G),f (G))

⇤

Proof of Observation 1.

min
h2X�

EG⇠D

⇥
'
G(h(G))

⇤
(7)

= min
h2X�

EG⇠D

2

4
X

i2[n]

max
bi2Xi(h�i(G))

RegretGi (hi(G), bi;h�i(G))

3

5 (8)

= min
h2X�

EG⇠D

2

4 max
b2X (h(G))

X

i2[n]

RegretGi (hi(G), bi;h�i(G))

3

5 (Observation 3.2. Goktas & Greenwald (2022))

(9)

= min
h2X�

EG⇠D


max

b2X (h(G))
 
G(h(G), b)

�
(10)

= min
h2X�

EG⇠D


max

fG2A�:fG(G)2XG(h(G))
 
G(h(G),fG(G))

�
(11)

= min
h2X�

max
f2A�:8G2�,f (G)2XG(h(G))

EG⇠D

⇥
 
G(h(G),f (G))

⇤
(12)

In Equation (11), for each pseudo-game we optimize over the space of functions from (pseudo-
game, action profile) pairs to action profiles. Equation (12) then follows because the solution to the
optimization problem over fG is independent for each game G 2 �, allowing us to pull it out of the
expectation and optimize over f for all pseudo-games. In words, optimizing action profiles for each
pseudo-game is equivalent to optimizing a function point-wise over all pseudo-games. To see this
clearer, consider the following example:

1/2 max
x12[0,1]

(x1) + 1/2 max
x22[0,1]

(x2 � 1/2)2 (13)

The optimal value of the above problem is equal to 1/2(1) + 1/2(1/4) = 5/8 with the solution to the
first maximization being x

⇤

1 = 1 and to the second x
⇤

2 = 1/4.

Notice that instead of optimizing each variable individually, we can instead optimize over a function
space f : {1, 2} ! [0, 1], where f(1) and f(2) correspond respectively to the value of x1 and x2 ,
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giving us:

1/2 max
x12[0,1]

(x1) + 1/2 max
x22[0,1]

(x2 � 1/2)2 (14)

=

⇢
1/2 max

f2[0,1]{1,2}
f(1) + 1/2 max

f2[0,1]{1,2}
(f(2)� 1/2)2

�
(15)

= max
f2[0,1]{1,2}

�
1/2f(1) + 1/2(f(2)� 1/2)2

 
(16)

where the last line follows from the fact that the maximization problem in any summand is indepen-
dent from the other. Indeed, the above optimization’s value is also 5/8 and its solution is the function
f
⇤(1) = 1, f⇤(2) = 1/4.

F.1 CONVERGENCE AND GENERALIZATION BOUND

We now present the proof of Theorem 4.1. At a high-level, we first show that under our assump-
tions (Assumption 1) the weights of the discriminator satisfy a gradient domination condition (also
known as the PL condition Lojasiewicz (1963); Bassily et al. (2018)). With this lemma in hand,
our min-max optimization problem becomes a non-convex-PL optimization problem. Our proof
then proceeds as follows. We first bound the euclidean distance between the gradient of the em-
pirical cumulative regret and the empirical exploitability for the weight iterates computed by our
algorithm, i.e.,

���rb'(wh,(t))�rwh
b 
�
wh,(t)

,wf ,(t)
����

2
, as a function of Tf . This requires a

quadratic growth condition, i.e., that our the empirical exploitability satisfies w.r.r. the discrimina-
tor’s weights wf . We then give a progress lemma for wh for the outer loop of our algorithm, which
can be telescoped to obtain our convergence theorem.

The algorithm’s convergence rate Õ(1/✏3) is much faster than known convergence rates for similar
non-convex-concave problems Õ(1/✏6) Lin et al. (2020). Moreover, we conjecture that a faster
convergence rate is not achievable by simultaneous gradient descent ascent type algorithms since
even for PL-PL min-max optimization, the best known convergence rate of simultaneous gradient
descent ascent type algorithms is Õ(1/"10) Golowich et al. (2020). As such we conjecture that a
nested stochastic gradient descent ascent type algorithm is computationally optimal for our problem,
i.e., has a lower gradient evaluation complexity.

To start, we first restate a lemma introduced by Bassily et al. Bassily et al. (2018), which character-
izes the types of compositions that preserve the PL property of a function.
Lemma 1 (Claim 1 of Bassily et al. Bassily et al. (2018)). Let f : Rd

! R be `rf -Lipschitz-
smooth and µf -PL function for some `rf , µ > 0. Let h : Rk

! Rd be any differentiable and
Lipschitz-continuous map, such that d � k. Let �min and �max be respectively the smallest and
largest eigenvalues of rh(w)Trh(w). Then, there exists a  �minrh(w)Trh(w) and b �

�maxrh(w)Trh(w) such that the function f(h(·)) : Rk
! R is `rf�h-smooth and µf�h-PL.

where `rf�h � b`rf and µf�h
.
= aµf .

We also recall the following lemma by Karimi et al. Karimi et al. (2016), which states the relation-
ship between PL-functions and quadratically growing functions.
Lemma 2 (Corollary of Theorem 2 Karimi et al. (2016)). If a function f is µ-PL, then f is 4µ-
quadratically-growing.

We prove our results under the following assumptions which are weaker than Assumption 1:
Assumption 2. For any player i 2 [n] and G 2 supp(D): 1. (Lipschitz-smoothness) their payoff
u
G

i is `ru -Lipschitz smooth, 2. (Strong concavity) their payoff uG

i is µui
-strongly-concave in ai,

and 3. (Lipschitz-smooth hypothesis classes) For all h 2 H ⇢ X
�⇥R! , f 2 F ⇢ A

�⇥X⇥R! ,
h(G; ·),f (G; ·) are injective, i.e., !  nm, and Lipschitz-continuous differentiable functions.

While Assumption 2 holds that the hypothesis class is Lipschitz-continuous and differentiable, in
Assumption 1 we assume for ease of presentation that the hypothesis class is Lipschitz-smooth. Note
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that Assumption 1 is stronger and does imply the above assumption since any Lipschitz-smooth
function is Lipschitz-continuous over any compact subset of the parameter space.

The following proofs and lemma statements hold in expectation over all runs of the algorithm; for
notational simplicity, we omit this expectation. We first bound the Euclidean squared distance be-
tween the gradient of the empirical cumulative regret and the empirical exploitability for the weight

iterates computed by our algorithm, i.e.,
���rb'(wh,(t))�rwh

b 
�
wh,(t)

,wf ,(t)
����

2

2
, as a function

of Tf .

Lemma 3 (Inner Loop Error Bound). Suppose that Assumption 2 holds. If Algorithm 1 is run with

inputs that satisfy 8t 2 Th , s 2 Tf , ⌘
(t)
h > 0 and ⌘(s)f = 2s+1

µ b (s+1)2 , Th 2 N++, and Tf
.
=

`3r b `
2
b 

2µ b "
,

where " > 0. Then, the outputs (wh,(t)
,wf ,(t))

Th

t=1 satisfy:

���rb'(wh)�rwh
b 
⇣
wh,(t)

,wf ,(t)
⌘���

2

2
 ".

Proof of Lemma 3. Let wf ⇤

(wh) 2 argmaxwf
2R! :8G2�,f (G;wf )2X (h(G,wh ))

b 
�
wh

,wf
�
. For

all wh
2 R! , b 

�
wh

, ·
�

is the composition of E [ (a, ·)] for all a 2 X , a `r -Lipschitz-
smooth and µ -strongly-concave function (Assumption 1), with an injective Lipschitz-continuous
differentiable function, f (G, ·), which means that for all wh

2 R! , b 
�
wh

, ·
�

is a µb -PL func-
tion and `b -Lipschitz-smooth function (Lemma 1), and the following convergence bound holds if

⌘
(t)
f

.
= 2t+1

2µ b (t+1)2 for the inner loop iterates as a corollary of of convergence results on stochastic
gradient ascent for PL objectives (Theorem 4, Karimi et al. (2016)), we have:

b'(wh,(t))� b 
⇣
wh,(t)

,wf ,(t)
⌘


`
rb `

2
b 

2µb Tf
(17)

Since for all wh
2 R! , is µb -PL, by Lemma 2, we have:

b'(wh,(t))� b 
⇣
wh,(t)

,wf ,(t)
⌘
� 4µb 

���wf ⇤

(wh,(t))�wf ,(t)
���
2

2
, (18)

Combining the two previous inequalities, we get:

4µb 

���wf ⇤

(wh,(t))�wf ,(t)
���
2

2


`
rb `

2
b 

2µb Tf
(19)

���wf ⇤

(wh,(t))�wf ,(t)
���
2

2


`
rb `

2
b 

8µ2
b 
Tf

(20)

���wf ⇤

(wh,(t))�wf ,(t)
���
2


`b 

2µb 

s
`
rb 

2Tf
(21)

Finally, we bound the error between the approximate gradient computed by Algorithm 1 and the true
gradient rb'(wh) at each iteration t 2 N++. Note that r is Lipschitz-continuous in (wh

,wf )

since the composition of Lipschitz continuous functions is Lipschitz. Hence, rb is also Lipschitz
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and we have:

=
���rwh b'

⇣
wh,(t)

⌘
�rwh

b 
⇣
wh,(t)

,wf ,(t)
⌘���

2
(22)



���r(wh ,wf )
b 
⇣
wh,(t)

,wf ⇤

(wh)
⌘
�r(wh ,wf )

b 
⇣
wh,(t)

,wf ,(t)
⌘���

2
(23)

 `
rb 

���(wh,(t)
,wf ⇤

(wh,(t)))� (wh,(t)
,wf ,(t))

���
2

(24)

 `
rb 

⇣���wh,(t)
�wh,(t)

���
2
+
���wf ⇤

(wh,(t))�wf ,(t)
���
2

⌘
(25)

= `
rb 

���wf ⇤

(wh,(t))�wf ,(t)
���
2

(26)



`
3/2

rb 
`b 

2µb 
p
2Tf

(Equation (21))

(27)

Then, given " > 0, for any number of inner loop iterations such that Tf �
`3r b `

2
b 

2µ b "
, for all t 2 [Th ],

we have:

���rb'(wh)�rwh
b 
⇣
wh,(t)

,wf ,(t)
⌘���

2

2
 " (28)

Using the above gradient error bound we derive a progress bound for the outer loop of our algorithm.
Lemma 4 (Progress Lemma for Approximate Iterate). Suppose that Assumption 2 holds. If Al-
gorithm 1 is run with inputs satisfying 8t 2 [Th ], s 2 [Tf ], ⌘

(t)
h > 0 and ⌘

(s)
f

.
= 2s+1

2µ b (s+1)2 ,

Th 2 N++, and for Tf �
`3r b `

2
b 

2µ b "
, where " > 0. Then, the outputs (wh,(t)

,wf ,(t))
Th

t=1 satisfy:

b'(wh,(t+1))  b'(wh,(t))� ⌘
(t)
h

���rh b'(wh,(t))
���
2

2
+ ⌘

(t)
h "+

(⌘(t)h )2`b `
2
rb'

2
(29)

Proof of Lemma 4. Fix t 2 Th . Define err(t) .
= rb'(wh,(t)) � rwh

b (wh,(t)
,wf ,(t)). Since b 

is Lipschitz-smooth, b' is weakly-convex Lin et al. (2020), and as such we have:

b'(wh,(t+1)) (30)

 b'(wh,(t)) +
D
rh b'(wh,(t)),wh,(t+1)

�wh,(t)
E
+ `r b'/2

���wh,(t+1)
�wh,(t)

���
2

2
(31)

 b'(wh,(t)) +

*
rb'(wh,(t)),�⌘(t)h rwh 1/B(t)

h

X

G2B
(t)
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where the last line follows from  
G

being `b -Lipschitz continuous. Taking the expectation w.r.t B(t)
h

conditioned on (wh,(t)
,wf ,(t)), we get:
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By Lemma 3, we then have (err(t))2  ", which gives us for all t 2 Th :
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Finally, telescoping the the inequality given in the above lemma we can obtain our convergence
result.
Theorem 4.1 (Convergence to Stationary Point). Suppose that Assumption 1 holds. Let " > 0.
If Algorithm 1 is run with inputs satisfying ⌘

(t)
h 2 ⇥ (1/pt), ⌘(s)f 2 ⇥ (1/s)), Th 2 N++,
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Proof of Theorem 4.1. By Lemma 4, we have:
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Summing up the inequalities for t = 0, . . . , Th � 1:
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Taking the minimum of
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Suppose that ⌘(t)h = 1
p
t
, we then have:
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Taking an expectation over all runs of the algorithms and using Jensen’s inequality, we obtain the
result.

This result characterizes the generalization capacity of the generator and discriminator as a function
of the covering number of the hypothesis classes. The proof relies on the following lemma, which
states that the distance of any generator and discriminator from the hypothesis class to their r-cover
is bounded in payoff space.
Lemma 5 (Bounded Expected Cumulative Regret). Suppose that part 1. of Assumption 1 holds. For
any hypothesis classes H ⇢ X

�, F ⇢ A
X⇥� and hypotheses h 2 H and f 2 F , any pseudo-game

distribution D 2 �(�):
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Proof of Lemma 5. Since part 1. of Assumption 1 holds, we have that  G is ` G -Lipschitz continu-
ous with ` G = max(a,b)2A⇥A

��r G(a, b)
�� and let ` = maxG2� max(a,b)2A⇥A

��r G(a, b)
��.
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Theorem 4.2 (Sample Complexity of Expected Cumulative Regret). Suppose that part 1. of As-
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Let r = "
6` 

, then using Lemma 5, we then have:
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where the penultimate line follow from the Lipschitz continuity of the Nash approximation error,
and the final line from r = "

6` 
. Applying a union bound we then get:
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Note that for all G 2 �,  
G

is bounded above by  max = max
G2supp(D)
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G(a, b) and

bounded below by  min = min
G2supp(D)
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G(a, b) where  max and  min are well-defined

since A and supp(D) are compact and  G is continuous. Hence, by Hoeffding’s inequality, we
have:
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Re-organizing expressions, in order to get that:
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we obtain that the sample size k should be set as follows to obtain the result:
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G EXPERIMENTS

We run three sets of experiments in which we train GAES in three different pseudo-game settings.
All experiments are run with 5 randomly selected different seeds ({5, 10, 25, 30, 42}), with hyperpa-
rameter selection being done over all 5 seeds. Unless otherwise mentioned, all results correspond to
an average over these 5 seeds, with confidence intervals reported across these seeds as appropriate.
In all of our experiments, we adopt the update rule in ADAM for the gradient step, making use of
the ADAM implementation in the OPTAX library. We use JaxOPT’s projected gradient method to
compute best-responses and thus the exploitability of an action profile when a closed form is not
available for the best-response. For all of the networks used in our experiments, if BatchNorm is
used, it is applied before the activation layer. We describe whether if BatchNorm is used in the
architecture of each network individually in the following sections.

Computational Resources. Our normal-form game experiments were run on GPUs while our
other experiments were run on CPUs.

Programming Languages, Packages, and Licensing. We ran our experiments in Python 3.7
Van Rossum & Drake Jr (1995), using NumPy Harris et al. (2020), Jax Bradbury et al. (2018), OP-
TAX Bradbury et al. (2018), Haiku Hennigan et al. (2020), JaxOPT Blondel et al. (2021), and pycdd
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Troffaes (2020). All figures were graphed using Matplotlib Hunter (2007) and Seaborn Waskom
(2021).

Numpy and Seaborn are distributed under a liberal BSD license. Matplotlib only uses BSD compati-
ble code, and its license is based on the PSF license. CVXPY is licensed under an APACHE license.
Jax and Haiku are licensed under the Apache 2.0 License. Pycdd is distributed under a GNU license.

G.1 NORMAL-FORM GAMES

Our first set of experiments aims to explore the impact of the accuracy of the discriminator on the
performance of the generator. To this end, we consider normal-form games in which there exists a
closed form solution for the discriminator. We observe that with an accurate enough discriminator,
GAES achieves a performance similar to the neural architecture proposed by Duan et al. (2021a)
when using the same equilibrium mapping architecture for the generator.

In our experiments, we replicate the setup proposed by Duan et al. (2021a), and we try to solve
five games from the GAMUT library, namely, Traveller’s Dilemma, Bertrand Oligopoly, Grab the
Dollar, War of Attrition, and Majority Voting. We give a description of each game, as presented by
Duan et al. (2021a):

• Traveler’s dilemma: Each player simultaneously requests an amount of money and receives
the lowest of the requests submitted by all players.

• Grab the dollar: A price is up for grabs, and both players have to decide when to grab the
price. The action of each player is the chosen times. If both players grab it simultaneously,
they will rip the price and receive a low payoff. If one chooses a time earlier than the other,
they will receive the high payoff, and the opposing player will receive a payoff between the
high and the low.

• War of attrition: In this game, both players compete for a single object, and each chooses
a time to concede the object to the other player. If both concede at the same time, they
share the object. Each player has a valuation of the object, and each player’s utility is
decremented at every time step.

• Bertrand oligopoly: All players in this game are producing the same item and are expected
to set a price at which to sell the item. The player with the lowest price gets all the demand
for the item and produces enough items to meet the demand to obtain the corresponding
payoff.

• Majority Voting: This is an n-player symmetric game. All players vote for one of the other
players. Players’ utilities for each candidate being declared the winner are arbitrary. If
there is a tie, the winner is the candidate with the lowest number. There may be multiple
Nash equilibria in this game.

Game Generation. We use the GAMUT library Nudelman et al. (2004), which is a normal-form
game generation library designated for testing game-theoretic algorithms, to generate a data set of
games. Following Duan et al. (2021a), the games were generated so that payoffs were normalized
between [0, 1], with all other parameters drawn randomly. We generate 2000 games with 2 players
and 300 actions for both players and for each game category, setting aside 200 for validation and
100 for testing.

Network Architecture. In all our experiments, we use a generator for GAES that has the same
architecture as the equilibrium solver proposed by Duan et al. (2021a). Namely, we use a neural
network with 4 hidden layers each with 1024 nodes and ReLU activations. The final layers of the
generator have the same dimension as an action profile and each action in the profile is passed
through a player-wise softmax activation. We augment the entire network with BatchNorm layers
with non-trainable parameters after each activation layer. The total number of parameters for this
generator is 20,855.

To explore how the accuracy of GAES’s generator degrades as one uses more and more approximate
discriminators, we consider 4 types of discriminators: a true discriminator that takes as input every
player’s expected payoffs for all actions and outputs the action with the highest payoff (this discrim-
inator recovers exactly the Duan et al. (2021a) network architecture); a softmax discriminator with
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a scaling parameter of 100, i.e., softmax(u) = e100uiP
i e

100ui
, that takes as input the expected payoffs of

each player at the given equilibrium actions predicted by the generator and outputs its softmax; a less
precise softmax discriminator with a scaling parameter of 10; and, a neural network with one linear
layer with 1024 nodes and a softmax activation layer with scaling 1 (the total number of parameters
for this discriminator is 7,115).

Training and Hyperparameters. We run our algorithm with no inner loop iterations and 10,000
outer loop iterations for the non-neural network discriminators, since they require no training. We
adopt for the gradient step in our algorithm the ADAM algorithm. We use a learning rate of 0.001
for the optimizer step on each of the generator and discriminator (when appropriate), and use the
default settings for the other hyperparameters of ADAM as given in the OPTAX implementation.
We process the training data in batches of size 50.

Experimental Results. In Figure 5 (train) and Figure 6 (test), we observe that as the quality of
the discriminator becomes more approximate the quality of the generator degrades significantly in
certain games, underscoring the importance of designing optimal discriminators for GAES in cer-
tain settings. Perhaps more interestingly, we observe that GAES with a linear layer discriminator
has a hard time in the Bertrand oligopoly and Traveller’s Dilemma games. The reason for this is
that the discriminator has a hard time learning a pure strategy best-response action, and this seems
crucial for our training algorithm to find an optimal generator in these two games. This is further
justified by GAES’s near perfect performance when coupled with the true best-response discrimi-
nator. In contrast, for other games the neural network’s performance suggests that an approximate
best-response is enough for our training algorithm to find the optimal discriminator. Future work
can investigate the relationship between game classes, and the precision-level w.r.t. the discriminator
that is required for our training algorithms to perform well. We note that normalized exploitability
is given as the exploitability divided by the average exploitability over the action space.
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(a) GAES with discriminator that outputs the true best-response (argmax of the expected payoffs for each
player).

(b) GAES with discriminator that outputs the softmax of the expected payoffs for each player (scaling parameter
100).

(c) GAES with discriminator that outputs the softmax of the expected payoffs for each player (scaling parameter
10).

(d) GAES with a neural network discriminator.

Figure 5: Training Exploitability of GAES on five classes of GAMUT games. We observe that the
performance of GAES degrades significantly in Bertrand oligopoly and traveller’s dilemma when
the discriminator is not precise enough.

G.2 ARROW-DEBREU EXCHANGE ECONOMIES

Additional Preliminaries. A Competitive equilibrium (CE) is a tuple which consists of allocations
X 2 Rm⇥n

+ , and prices p 2 Rm
+ such that 1. all traders i 2 [n] maximize utility constrained by their

budget: x⇤

i 2 argmaxxi2Xi:xi·pei·p ui(xi), 2. the markets clear and goods that are not demanded
are priced at 0, i.e.,

Pm
i=1 x

⇤

i 
Pm

i=1 ei and p⇤
· (
Pm

i=1 x
⇤

i �
Pm

i=1 ei) = 0.

A Scarf economy, denoted (E,V ), is a Leontief exchange economy with 3 buyers and 3 goods,
where the valuation V and endowment E matrices are given as follows:

E =

 
1 0 0
0 1 0
0 0 1

!
V =

 
0 1 0
0 0 1
1 0 0

!
(61)

Related Work. Exchange economies can be solved in polynomial-time via tâtonnement for CES
utilties with ⇢ 2 [0, 1) Bei et al. (2015). However, tâtonnement is not guaranteed to converge be-
yond these domains. There exists a convex programs to compute CE in linear exchange markets in
polynomial time Devanur et al. (2016). The computation of CE is PPAD-complete for Leontief Co-
denotti et al. (2006), piecewise-linear concave, and additively seperable concave Chen et al. (2009),
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(a) GAES with discriminator that outputs the true best-response (argmax of the expected payoffs for each
player).

(b) GAES with discriminator that outputs the softmax of the expected payoffs for each player (scaling parameter
100).

(c) GAES with discriminator that outputs the softmax of the expected payoffs for each player (scaling parameter
10).

(d) GAES with a neural network discriminator.

Figure 6: Testing Exploitability of GAES on five classes of GAMUT games. We observe that the
performance of GAES degrades significantly in Bertrand oligopoly and traveller’s dilemma when
the discriminator is not precise enough.

and exchange markets Vazirani & Yannakakis (2011); Chen & Teng (2009). The complexity of CES
markets for ⇢ 2 (1, 0) is unknown and remains an open question.

Experimental Setup. We consider experiments on six different exchange economies, each with 3
buyers and 5 goods, and with each economy defined by the utility functions of the players: 1) linear,
2) Cobb-Douglas, 3) Leontief, 4) gross substitutes CES where for all buyers i 2 [n], ⇢i 2 [0.5, 1],
5) gross complements CES where for all buyers i 2 [n], ⇢i 2 [�1.25,�0.75], and 6) mixed CES
markets where for all buyers i 2 [n], ⇢i 2 [�1.25,�0.75] \ [0.5, 1].7 In addition to these settings,
we also consider a Leontief economy with 3 buyers and 3 goods with the goal of solving Scarf
economies.

Baselines. We benchmark our algorithm to the most well-known algorithm to solve Arrow-Debreu
markets, tâtonnement, which is an auction-like algorithm that is guaranteed to converge for ⇢ 2

(1, 0] Bei et al. (2015), and thus including the Cobb-Douglas cases, and the exploitability descent

7We reduce the range of the ⇢ parameter to avoid numerical instability in the computation of utilities.

30



Published as a conference paper at ICLR 2024

algorithm8. Tâtonnement is defined by the following sequence of prices:

p(t+1) = p(t) + ⌘
p

t

0

@
X

i2[n]

x(t)
i �

X

i2[n]

e(t)i

1

A t = 0, 1, . . . (62)

x(t)
i 2 argmax

xi:xi·p(t)ei·p(t)

ui(xi) i 2 [n], t = 0, 1, . . . , (63)

while exploitability descent is defined by the following sequence of prices:

(p(t+1)
,X(t+1)) = (p(t)

,X(t))� ⌘
p

t

⇣
r'(p(t)

,X(t))
⌘

t = 0, 1, . . . (64)

where '(p(t)
,X(t)) is the exploitability associated with the exchange economy pseudo-game. For

both of these baselines, we use a decreasing learning rate of ⌘
p
t as a function of the number of

iterations t, and run the baselines until convergences is observed (we observe that experiments all
converge in less than  200 iterations). We note that the use of a learning rate schedule is necessary
for these algorithms to converge Goktas & Greenwald (2022). We run an extensive grid search
for ⌘ over the set {1.0, 0.5, 0.1, 0.05, 0.01, 0.005, 0.001, 0.0005, 0.0001]}, selecting ⌘ to minimize
exploitability over the validation set. We then evaluate these baselines on the test set with the selected
hyperparameters.

Economy Generation. For all experiments, we generate 5,000 exchange economy instances, and
set aside 500 markets for each of validation and test. To generate a market instance, for all buy-
ers i 2 [n] and goods j 2 [m], we sample each endowment eij ⇠ Unif[10�9

, 1], valuations
vij ⇠ Unif[10�9

, 1], and when appropriate we sample the substitution parameters ⇢ from the ranges
mentioned above. A competitive equilibrium is guaranteed to exist for exchange markets in all the
exchange markets we sample by Arrow-Debreu’s first existence theorem Arrow & Debreu (1954)
since buyers are endowed with a non-zero amount of each good.

Figure 7: Architecture of the generator of GAES for exchange economies.

Generator Architecture. We summarize our generator’s architecture in Figure 7. As a reminder,
in this setting, the generator takes as input an exchange economy (E,V ,⇢)9 and outputs equilib-
rium prices p̂ and allocations X̂ . We use the same generator architecture in each of our experiments.

8This algorithm simply corresponds to running gradient descent on the exploitability. More information on
this algorithm can be found in Goktas & Greenwald Goktas & Greenwald (2022).

9If the economy is not a CES economy ⇢ is drawn uniformly at random from [0.25, 0.75]n.
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This generator takes as input the economy matrix (E,V ), and passes it through two fully connected
layers with ReLU activations and 20 and 10 nodes respectively, to obtain a latent buyer represen-
tation. The valuations V , and endowments E are also separately fed through a network with the
same architecture. The network for valuations are augmented with a BatchNorm layer with trainable
parameters. This gives us a latent valuation representation and a latent endowment representation.
Each latent representation as well as the element-wise product of the latent valuations and latent en-
dowments are then concatenated and fed through two fully connected layers with 20 and m (number
of goods) hidden nodes, respectively, followed by ReLU activations at each layer. This gives us a
latent market representation. We then pass the matrix V TE, which we call the good graph, through
two fully connected layers, each with BatchNorm with trainable parameters and ReLU activation.
These layers have 20 and 10 nodes respectively. We refer to the output of this network as the latent
good graph. We then concatenate the flattened, latent good graph and latent market representations
and feed them through three fully connected layers with 40, 20, and m (number of goods) nodes,
respectively. The outputs of the first two layers are passed through ReLU activations, while the last
layer is passed through a softmax. The output of this final layer is the generator’s predicted prices
p̂.

Given these prices, we then build an allocation coefficient matrix of dimensions n ⇥m, where the
(i, j)th entry is given by ei·p̂

p̂j
. We then calculate the budgets Ep̂ of the buyers at prices p̂, and feed

them through two fully connected layers, with 30 and 20 nodes respectively and ReLU activations,
to obtain a latent budget representation. Define the tiled prices as (p̂, . . . , p̂)T 2 Rn⇥m, i.e., a
matrix whose rows consists of the vector p̂ repeated n times so as to obtain “n tiles of prices”. We
concatenate the latent representation of buyers, the tiled prices, the latent endowment representation,
the valuations element-wise divided by the tiled prices, the valuations element-wise multiplied by
the tiled prices, and the latent budget on the last dimension, i.e., we append each matrix horizontally
so as to preserve the number of rows n. We pass the obtained matrix through 3 fully connected
layers, with 100, 50, and 20 nodes respectively and ReLU activations. Finally, the output of this
network is passed through a fully connected layer with m nodes and a softmax activation, leaving us
with a matrix of dimension n ⇥m whose rows sum up to 1. We multiply this matrix element-wise
with the allocation coefficient matrix, which gives us the allocation X̂ for the generator. Notice that
X̂ is budget feasible at price p̂. The total number of parameters of this generator is 20,855.

Discriminator Architectures. We summarize the architecture of our network in Figure 8. As
a reminder, in this setting, the generator takes as input an exchange economy (E,V ,⇢) as well
as an equilibrium (p̂, X̂) and outputs best-responses (p⇤

,X⇤). We build different, modular dis-
criminator architectures for each of the linear, Cobb-Douglas, Leontief, and CES markets. These
networks take as input the market matrix (E,V ,⇢) and the equilibrium (X̂, p̂) predicted by the
generator. For all four discriminators, the discriminator outputs price p⇤ such that p

⇤

j = 1 if
j 2 argmaxj2[m]

P
i2[n]

�
x̂ij � eij

�
and p

⇤

j = 0 otherwise. In regard to the allocations, we build
a modular allocation network, which takes as input a latent representation of each consumer as a
matrix of dimension n ⇥ p, and outputs an allocation. It is in this latent representation that the dis-
criminators for each economy differ. We describe the latent representation associated with different
exchange economies below. We first build an allocation coefficient matrix, where the (i, j)th entry
is given by ei·p̂

p̂j
. We then pass the matrix of latent consumer representations through three fully

connected layers with 100, 50, 20 nodes respectively and ReLU activations. We take this output and
pass it through a final fully connected layer with m (num goods) nodes and softmax activations to
obtain a matrix of dimension n ⇥ m whose rows sum up to 1. We multiply this matrix element-
wise with the allocation coefficient matrix, which gives us allocations X⇤ that are budget feasible
at prices p̂.

With the main architecture out of the way, we can now present the different latent consumer repre-
sentations that we use. For the linear and Cobb-Douglas markets, the latent representation is simply
the matrix that is given by the valuations matrix V whose rows are divided by p̂. For Leontief,
the latent representation is the matrix whose (i, j)th entries are given as vijP

j2[m] pjvij
. Finally, for

CES, the latent representation is given as follows: First we obtain latent representations of each
of ⇢, p̂, (ei

J
p)Ti2[n], and V by passing them through separate but identical, two fully connected

BatchNorm layers with ReLU activations, and 20 and 10 nodes respectively. The concatenation of
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Figure 8: Architecture of the generator of GAES for exchange economies. The latent consumer
representation associated with each exchange economy is described in the description of the dis-
criminator.

all of these latent representations on the last dimension so as to obtain a matrix with n rows and 40
columns, where each row is the concatenation of the latent representations for that consumer gives
us the latent consumer representation.

The number of parameters for the discriminator for each of the linear and Cobb-Douglas markets is
6, 775, for Leontief is 7, 115, and for CES is 14, 125.

Training Hyperparameters. We run our algorithm with an initial warm-up of 10,000 iterations
for the discriminator. This warm-up procedure follows exactly the inner loop of Algorithm 1 but in-
stead uses randomly sampled economies, and randomly sampled action profiles. After the warmup,
we use only one step of inner loop iteration for running Algorithm 1 and run the outer loop for
10,000 iterations. Together with the warmup, the small number of inner loop iterations allow us to
significantly speed up the training process. The gradient step is provided by the ADAM algorithm.
For the discriminator, we use the same learning rate for the warm-up and regular training. The
learning rates used for ADAM in different markets can be found in Table 1. For all other hyperpa-
rameters, we use the default settings of ADAM as given in the OPTAX implementation. We process
the training data in batches of size 200. We found the learning rates for our algorithm by performing
grid search on the validation set for all economies. For the Scarf economy the grid search values
were sampled from a standard lognormal distribution.

We present additional results, missing from the main body of the paper, in Figure 2 and Fig-
ure 11. We see that GAES outperforms all baselines in all economies except Gross Substitutes
CES economies for which tâtonnement performs best. This makes sense since for Gross Substitutes
CES economies tâtonnement is guaranteed to converge to a competitive equilibrium. Even the, we
note that the performance of GAES is remarkable since it achieves a testing normalized exploitabil-
ity of 0.005, meaning that GAES finds an action profile which is closer than 99.95% of allocations
and prices to a competitive equilibrium.
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Economy Type Generator Discriminator
Linear 0.0001 0.001

Cobb-Douglas 0.0001 0.00001
Leontief 0.00001 0.01
GS CES 0.00001 0.0001
GC CES 0.0001 0.0001

Mixed CES 0.0001 0.00001
Scarf 0.000003297599624930109 0.0000014820835507051155

Table 1: Learning rates used for ADAM to train GAES in different markets. These learning rates
are found via grid search on the validation set for all economies.

Figure 9: Training and Testing Exploitability of GAES in GS CES and, GC CES, CES economies.

G.3 KYOTO JOINT IMPLEMENTATION MECHANISM

Experimental Setup For this experiment, we focus on computing a refinement of the GNE known
as VE (see Appendix E), which are guaranteed to exist for this jointly convex pseudo-games.10

This does not change the structure of the generator of GAES or the training algorithm. However,
it allows us to consider discriminators that output best-responses that are in the space of jointly
feasible actions rather than in the space of individually feasible action spaces, greatly simplifying
the architecture of our discriminator. We aim to first replicate the results provided in section 4 of
Breton et al. Breton et al. (2006). To do so, we first consider a 2 country Kyoto JI mechanism,
with all parameters of the Kyoto JI mechanism except ✓ fixed, and compute equilibria for different
values of ✓ (Figure 4). We then also consider a 2 country Kyoto JI mechanism where we sample all
parameters randomly (Figure 14).

Pseudo-Game Generation. We sample 12,000 pseudo-games, putting aside 1,000 for validation
and 1,000 for testing. We sample the payoff and constraint parameters of all the players (✓, �, ⌘,
�), uniformly in the range [0.5, 50] to produce the pseudo-games. For each of these pseudo-games,
since the set of jointly feasible actions is a polytope, we also generate the vertices associated with the
set of jointly feasible actions. To do so, we use the pycdd library Troffaes (2020), and store a matrix
of vertices for each pseudo-game, where the rows correspond to the maximum number of vertices,
denoted MaxNumVertex, for any pseudo-game in the training set, and the columns correspond to
the dimension of the action space, i.e., n ⇤ (n + 1) (the first row corresponds to emissions, the last
n rows correspond to the investment matrix). For the experiments, and replicating the comparative
static analysis of Breton et al. (2006), we randomly sample and fix all parameters of the game except
✓, and sample ✓ from the range [0.5, 50]n as stated above.

Hyperparameters. We run our algorithm with an initial warm-up of 10,000 iterations for the
discriminator. This warm-up procedure follows exactly the inner loop of Algorithm 1 but instead
uses randomly sampled pseudo-games and randomly sampled action profiles. After the warmup,
we use only one step of inner loop iteration for running Algorithm 1 and run the outer loop for
10,000 iterations. Together with the warmup, the small number of inner loop iterations allow us
to significantly speed up the training process. The gradient step in our algorithm is a step of the
ADAM algorithm. For the discriminator, we use the same learning rate for the warm-up and regular

10We recall that a variational equilibrium (VE) (or normalized GNE) of a pseudo-game is a strategy profile
a⇤

2 X s.t. for all i 2 [n] and a 2 X , ui(a
⇤) � ui(ai,a

⇤
�i). See Appendix E for more details.
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(a) Linear economy (b) Cobb-Douglas economy

(c) Leontief economy (d) Mixed CES economy

Figure 10: The distribution of test exploitability on pseudo-games. For Leontief, exploitability
descent is not shown, as it performed much worse than either methods. GAES outperforms all
baselines on average in all markets and in distribution in all markets except Cobb-Douglas.

Figure 11: Distribution of test exploitability on exchange economies/pseudo-games. GAES outper-
forms all baselines on average in all markets, and in distribution in all markets except Cobb-Douglas.

training, following a grid search which is a learning rate of 0.0001, while for the generator we use a
learning rate of 0.001.

Generator Architecture. We summarize the architecture of GAES’s generator for Kyoto JI mech-
anisms in Figure 12. The generator for the Kyoto setting takes as input the game matrix (✓, �, ⌘,
�), and feeds these inputs through a neural network with two hidden layers, each with 20 and 30
nodes respectively and ReLU activations. The output of each layer is also passed through a ReLU
activation, as well as a BatchNorm Ioffe & Szegedy (2015) layer with trainable parameters, and with
default parameters as implemented by Haiku. The output layer of the neural network consists of a
fully connected layer with softmax activation with output dimension equal to MaxNumVertex. The
output of this final layer is multiplied with the matrix of vertices associated with the pseudo-game
(✓, �, ⌘, �) across its rows, i.e., each vertex associated with pseudo-game’s constraint is multiplied
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Figure 12: Architecture of the generator of GAES for Kyoto JI mechanisms.

by some probability. The obtained matrix is then summed up across the rows and output by the
generator after setting the first column to be e, and the matrix formed by the remaining columns to
be X . Since the neural network outputs a convex combination of the vertices associated with the
constraints of the game, the action profile outputted by the neural network is always jointly feasible.
The number of parameters for the generator is 2,824.

Figure 13: Architecture of the generator of GAES for Kyoto JI mechanisms.

Discriminator Architecture We summarize the architecture of GAES’s discriminator for Kyoto
JI mechanisms in Figure 13.Our discriminator takes as input the matrix (e,X), the output of the
generator, and the pseudo-game matrix (✓, �, ⌘, �). The equilibrium (e,X) is first passed through
a neural network with two fully connected trainable BatchNorm layers, each with 500 nodes. Sim-
ilarly, the pseudo-game (✓, �, ⌘, �) is passed through a network with the same architecture. The
output of both networks are then concatenated over the last dimension, i.e., the matrices outputted by
both networks are appended horizontally so as to preserve the number of rows n. and passed through
a neural network with two fully connected trainable BatchNorm layers, each with 500 nodes. For
each of these layers, the output is passed through a ReLU activation. The output of the last neural
network is then flattened and passed through a final fully connected layer with a softmax activation.
The output of this final layer is multiplied with the matrix (✓, �, ⌘, �) of vertices associated with the
pseudo-game across its rows. The obtained matrix is then summed up across the rows and output by
the discriminator after setting the first column to be e, and with the matrix formed by the remaining
columns of the output adopted as X . Since the neural network outputs a convex combination of
the vertices associated with the constraints of the game, the action profile is always jointly feasible,
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meaning that the neural network outputs a best-response (for a VE). The number of parameters for
the discriminator is 1,302,544.

Figure 14: Normalized exploitability achieved by GAES throughout training for a two country JI
mechanism.

37


