
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

Losing dimensions: Geometric memorization
in generative diffusion

Anonymous authors
Paper under double-blind review

Abstract

Generative diffusion processes are state-of-the-art machine learning models
deeply connected with fundamental concepts in statistical physics. Depend-
ing on the dataset size and the capacity of the network, their behavior is
known to transition from an associative memory regime to a generalization
phase in a phenomenon that has been described as a glassy phase transi-
tion. Here, using statistical physics techniques, we extend the theory of
memorization in generative diffusion to manifold-supported data. Our theo-
retical and experimental findings indicate that different tangent subspaces
are lost due to memorization effects at different critical times and dataset
sizes, which depend on the local variance of the data along their directions.
Perhaps counterintuitively, we find that, under some conditions, subspaces
of higher variance are lost first due to memorization effects. This leads to a
selective loss of dimensionality where some prominent features of the data
are memorized without a full collapse on any individual training point. We
validate our theory with a comprehensive set of experiments on networks
trained both in image datasets and on linear manifolds, which result in a
remarkable qualitative agreement with the theoretical predictions.

1 Introduction

Generative diffusion models (Sohl-Dickstein et al., 2015) have achieved spectacular perfor-
mance in image (Ho et al., 2020; Song and Ermon, 2019; S. et al., 2021) and video (Ho
et al., 2022; Singer et al., 2022; Blattmann et al., 2023; B. et al., 2024b) generation and
currently form the backbone of most state-of-the-art image generation software (Betker
et al., 2023; Esser et al., 2024). The defining feature of these models is their remarkable
ability to generalize on complex high-dimensional data distributions. However, diffusion
models are known to be capable of fully memorizing the training set in the low-data regime
(Somepalli et al., 2023a;b; Kadkhodaie et al., 2024), and in this regime have been shown
(Ambrogioni, 2024; Hoover et al., 2023) to be mathematically equivalent to Dense Associative
Memory networks, which are modern variants of the celebrated Hopfield model admitting
very large memory storage capacity (Krotov and Hopfield, 2016). The ability of the models
to memorize has widespread societal implications, as in case of memorization their adoption
would likely violate existing copyright laws. Therefore, understanding the factors that lead
to generalization and memorization has great practical and theoretical value and drives
future developments. It is often conjectured that natural images and other high-dimensional
natural data have most of their variability confined on a relatively small sub-space of the
ambient space of all possible pixel-values (Peyré, 2009; Fefferman et al., 2016). This latent
manifold charts the space of possible images, which is embedded in a significantly larger
space of meaningless configurations of pixels. The dimensionality of the latent manifold
provides an estimate of the richness of generalizations since it quantifies the number of
(linearly independent) ways in which an image can be altered while remaining in the space of
possible generations. From this geometric perspective, a network that fully memorized the
training set corresponds to a zero-dimensional latent manifold (i.e., a collection of points),
because the individual “memories” cannot be altered without leaving the space of possible
generated images. Generative diffusion models have a rich mathematical structure that
closely mirrors systems that have been heavily studied in statistical physics (Montanari,
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A) B)

Memorization
(0-dimensional)

One-dimensional
generalization

Figure 1: Visualization of the latent manifold of a diffusion model. The contour lines denote
the log-probability (i.e. the (negative) ‘energy’). The manifold of fixed points is drawn as a
red line. A) Manifolds corresponding to memorization and one-dimensional generalization.
B) Tangent and orthogonal singular vectors of the score.

2023; Raya and Ambrogioni, 2024; B. et al., 2024a; Biroli and Mézard, 2023; Ambrogioni,
2023). Recent works have shown that the transition from generalization to memorization in
diffusion models is the result of a glass phase transition in the underlying energy function
(B. et al., 2024a; Ambrogioni, 2023), which turns generative diffusion in a form of Dense
Associative Memory network (Ambrogioni, 2024; Hoover et al., 2023). When the data is
supported on a latent manifold, it is then natural to ask if all dimensions are lost at once due
to memorization, or if instead they are lost gradually in separate transition events. In this
paper, we refer to this intermediate memorization phenomenon as geometric memorization
(Ross et al., 2024).

2 Related work

Diffusion Models (DMs) are the current state-of-the-art generative models in several domains,
and works such as (De Bortoli, 2022; Pidstrigach, 2022) show that they are capable of
learning the manifold structure of the data. There are several methods that, given a trained
DM, can then estimate the Local Intrinsic Dimensionality (LID) at individual datapoints,
defined as the dimension of the manifold in the component corresponding to the datapoint
(Stanczuk et al., 2022; Horvat and Pfister, 2024; Kamkari et al., 2024b). Our analysis makes
use of the method from (Stanczuk et al., 2022) to extend the analysis of manifold learning
by DMs. The idea that memories can be detected as datapoints with lower LID is formalized
in (Kamkari et al., 2024a). While our work shares similar conclusions, our focus is on
the interplay between memorization and generalization for diffusion models, and provide
a theoretical explanation of such phenomenon. Furthermore, (Kadkhodaie et al., 2024)
show, both theoretically and empirically, how generalization arises in diffusion models as a
function of the number of datapoints as well as the way the manifold dimension varies along
the diffusion trajectory. While their findings are related to our results, our analysis differs
as we analyze the nonparametric empirical score and we provide for a statistical physics
perspective similar to the work of (Biroli and Mézard, 2023) on mixture of Gaussian data.
This differs from (W. et al., 2024) which considers parameterized low-rank score functions.
The advantage of the non-parametric empirical formulation is that it provides insight on
the large capacity regime, which can cast insight on the behavior of modern large scale
architectures. Regarding the usage of statistical mechanics, our work takes inspiration from
the analysis conducted by (B. et al., 2024a; Raya and Ambrogioni, 2024; Ambrogioni, 2023)
to describe the backward process of DMs as a series of phase transitions similar to those
ones occurring in disordered systems.

3 Generative diffusion models

We will consider a Brownian process where an ensemble of “particles” x0 starts from an
initial distribution p0(x) and then evolves through the stochastic equation

dxt = dZt (1)
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Figure 2: Illustration of the gaps in the singular values of the Jacobian of the score function
in the presence of a latent manifold. The small values correspond to the tangent manifold
(possible generations) while the high values correspond to the orthogonal manifold (forbidden
generations). The singular values determine the steepness of the potential well along each
eigen-direction.

where dZt is a standard Wiener process. In generative modeling applications, x0 is usually
chosen to be the distribution of data such as natural images. Eq. (1) is “solved” by

the following formal expression: p(xt, t) = Ex0∼p0

[
1

(2πt)d/2 e−
∥xt−x0∥2

2
2t

]
, where d is the

dimensionality of the ambient space. The target distribution p0(x) can be recovered by using
a reversed diffusion process (Anderson, 1982). At large time tf , we start from a sample
xtf
∼ N (0, tf Id), and let it evolve through the backward process defined by

dxt = −∇x log pt(xt)dt + dZt (2)

backward from tf to t0 = 0. In the machine learning literature, the term s(x, t) = ∇x log pt(x)
is commonly referred to as the score function. These formulas are given according to what is
known as the variance-exploding framework in the generative diffusion literature. However,
all results can be ported directly to the variance-preserving (i.e. Ornstein–Uhlenbeck) case.
Given a training set {y1, . . . , yN} sampled from p0(x), we can obtain a neural approximation
of the score function by training a noise-prediction network ϵ̂θ(x, t) (parameterized by θ)
using the empirical denoising score matching objective (Hyvärinen and Dayan, 2005; Vincent,
2011; Ho et al., 2020). The network ϵ̂θ (xt, t) is trained to predict the added noise ϵ from
a noisy state xt = x0 +

√
tϵ. The estimated score is then given by ŝθ(x, t) = − ϵ̂θ(x,t)√

t
.

Learning ϵ̂θ instead of ŝθ has the advantage of maintaining finite the output of the network
for small t→ 0, where we known that the magnitude of the score becomes infinite outside of
the support of the data.

4 Local geometry and latent manifolds

Here, we assume that the data distribution p0(x) is supported on a d-dimensional manifold
M0 embedded in Rn. We study the family of latent manifoldsMt for different values of the
diffusion time t. When the distribution inside the manifold is uniform, these manifolds can
be defined as sets of stable fixed-points of the score function:

Mt = {x∗ | s(x∗, t) = 0, with s(x∗, t) n.s.d.} (3)

where the negative semi-definiteness (n.s.d.) condition refers to the Jacobian of the score
function at x∗. Due to the Gaussian annulus theorem, during high-dimensional generative
diffusion the samples “orbit” a shell around the manifold. However, while the manifold itself
is not usually visited by the particles, its shape reflects the shape of the potential around it,
which guides the generated trajectories. In order to understand the generative process, it is
therefore important to study how the manifold emerges and changes during generation, and
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how its shape depends on the distribution of the data and on the number of training samples.
Its local geometry can be studied by analyzing the linearization of the score function around
each point (Stanczuk et al., 2023). More precisely, for a given point x∗ in Mt, we can
analyze the effect of adding a small perturbation vector p with magnitude in the order of

√
t:

s(x∗ + p, t) ≈ J(x∗, t) p , (4)

where J(x∗, t) is the smoothed Jacobian matrix J(x, t), whose columns are defined as

J j(x, t) =
[
s(x +

√
tej , t)− s(x, t)

]
/
√

t , (5)

where ej is a vector in an orthonormal basis set, which converges to the exact Jacobian of the
score for t→ 0. This discretization in the definition has the advantage of only considering
perturbations on the scale given by

√
t, since smaller perturbations cannot be resolved at

the given noise level (Stanczuk et al., 2023). The effect of the linear perturbations can be
expressed in terms of the singular values of J(x∗, t):

J(x∗, t) p =
∑

j

λj(x∗, t) vj (wj · p) , (6)

where the wj (vj) is the j-th right (left) singular vector and λj(x∗, t) is its associated (non-
negative) singular value. The right singular vectors wj define a set of linearly independent
perturbations of x∗, while the scaled left singular vectors −λj(x∗, t)vj give a linearization of
the score at the perturbed point. Generally, vj is roughly aligned to wj , meaning that the
tend to push the diffusing particle back towards the point on the manifold with a strength
determined by λj(x∗, t). For t→ 0, the matrix J(x, t) becomes symmetric and the singular
values correspond to the negative of the eigenvalues. We refer the set of singular values of
J(x∗, t) as its spectrum. By analyzing these spectra, we can extract important information
concerning the local geometry ofMt. For a given x∗, consider the set of left singular vectors
that are orthogonal to TMt

(x∗). These vectors correspond to perturbations that move
the particle orthogonally outside of the manifold, which are therefore associated with large
singular values. On the other hand, perturbations that lie inside the tangent space correspond
to a set of vanishing singular values since along these directions the particles can diffuse
almost freely. This is visualized geometrically in Fig. 2 B. From these considerations, it
follows the dimensionality of TMt can be estimated as the dimensionality of the right singular
space of J(x∗, t) with 0 singular value. The drop between non-zero and zero singular values
can be detected as a discontinuity (i.e. a gap) in its spectrum (see Fig. 2) (Stanczuk et al.,
2023). In real datasets, the target distribution is generally not uniform when restricted to the
manifold. In this case, the latent manifold cannot be defined as a set of fixed-points, we can
still define Mt by annealing the target distribution into a uniform distribution defined over
its support. Aside from definitional issues, the main consequence of having a non-uniform
distribution is that the Jacobian will generally not have zero singular values. Instead, the
singular value corresponding to tangent right singular vectors v ∈M0 will have a magnitude
that depends inversely on the local variance of the data along that direction. While we
cannot simply count the space corresponding to zero singular values, we can still quantify
the dimensionality of the latent manifold by analyzing the time-dependency of gaps (i.e.
sharp jumps) in the spectrum:

∆(k)
GAP(x∗, t) = λk+1(x∗, t)− λk(x∗, t) . (7)

In this case, the spectra of J(x∗, t) contain more information than just the local dimensionality
of the manifold Mt. Vectors in the tangent space TM(x∗, t) define locally linear sub-spaces
with different variance. The variances of these local linear sub-spaces characterize the
variability of the data along the corresponding directions.

5 Theoretical analysis

Here, we will provide a theoretical explanation of geometric memorization (dimensionality
loss) using concepts from random-matrix theory and the statistical physics of disordered
systems. To study the dynamics of the latent manifold evolution analytically, we will consider
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data distributed according to the linear model x0 = F z where z is a m-dimensional standard
Gaussian vector and F is a d×m projection matrix. Equivalently, x0 ∼ N (0, FF ⊤). The
choice of the linear model simplifies the statistical analysis while qualitatively capturing
important features of the local phenomenology of the tangent spaces. In fact, at time t the
curvature of Mt is suppressed by the smoothing induced by the forward process, which,
roughly speaking, linearizes the geometry at the same scale as our local Jacobian analysis
(see Eq. (5)).

5.1 The exact score

In the linear Gaussian case, the Jacobian of the exact score function is independent of x and
is given by the formula

Jt/t = 1
t
F

[
Im + 1

t
F ⊤F

]−1
F ⊤ − Id. (8)

where we considered Jt/t to control the divergence of the score at t→ 0. If the columns of
F are mutually orthogonal with ∥Fk∥2

2 = σ2 for all indices, the singular spectrum of Jt has a
single gap at d−m, which encodes the dimensionality of the manifold. In a parallel paper
(Anonymous, 2024), it is shown that the size of the gap at time t is give by

∆GAP (t; σ) = σ2(1 + α
−1/2
m )2

t + σ2(1 + α
−1/2
m )2

. (9)

where αm = m/d denotes the ratio between the dimensionality of the manifold and the
ambient dimensionality. While the gap is always present, in practice it only becomes
distinguishable from the background noise at a finite time. Therefore, this formula indicates
that subspaces with large variance emerge earlier during the generative reverse process. In the
presence of m different subspaces with dimensions {d1, . . . , dm} and variance

{
σ2, . . . , σ2

m

}
,

we will have one total manifold gap at d − m and m − 1 intermediate gaps whose size
approaches (σ−2

k − σ−2
k+1)/t for t→ 0. Only the total manifold gap remains for t→ 0 due to

the 1/t normalization of the score. This reflects the fact that the component of the score
orthogonal to the manifold diverges while the parallel component reaches a constant value,
leaving us with: ∇x log pt(x) ≃ 1

t

[
Π− Id

]
x. where Π = F (F ⊤F )−1F ⊤ is the projector on

the linear space M.

5.2 The empirical score

Computing the exact score function involves an average with respect to the true target
distribution p0. In real applications, we do not have direct access on p0, whose behavior can
only be inferred through a finite training set comprised of N samples {y1, . . . , yN}, with
yµ iid∼ p0. When training, we sample from the empirical distribution which we use as a
proxy of the true distribution. The empirical distribution at time t in the variance exploding
framework is

pN
t (x) = 1

N
√

(2πt)d

N∑
µ=1

e− ∥x−yµ∥2
2t . (10)

From the empirical distribution, we can write down the empirical score:

∇ log pN
t (x) =

N∑
µ=1

wµ(x, t) (yµ − x) /t , (11)

where the weight wµ(x, t) = p(yµ | x)/
∑N

ν=1 p(yν | x) is the posterior probability of the
pattern yµ given the noisy state x, were the possible states are restricted to the empirical
set. This estimator is consistent, meaning that its bias approached the true score for
N →∞. The random sampling of the dataset introduces statistical fluctuations that we can
quantify by considering the estimator variance, which for large N can be approximated as
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Figure 3: Visualization of the dimensionality loss phenomenon. Manifold sub-spaces with
higher variance are lost due to ‘condensation’ (i.e. memorization). Panels A,B and C show
the score estimated from a bivariate distribution with unequal variances for β = 1, β = 10
and β = 100 respectively. The red arrows show the empirical score while the heat-map
visualizes the density.

var
[
∇ log pN

t (x)
]
≈ var(x0 | x)/E

[
Ñt(x)

]
, where var(x0 | x) is the true posterior variance

and Ñt(x) =
(∑N

µ=1 w2
µ(x, t)

)−1
≤ N is the effective number of data points used to estimate

the score. When t→ 0, we always have that Ñt(x)→ 1, because the empirical score always
fully memorizes in this limit. However, the empirical score exhibits generalization when the
expected value is larger than the standard deviation induced by Ñt(x). Note that Ñt(x) is a
function of the state x and that, consequently, the fluctuations in the empirical score depend
on the “location” x. This property is fundamental in our analysis of geometric memorization.

5.3 Memorization as glassy phase transition

The statistical behavior of the empirical score can be analyzed in the large N limit by
interpreting Eq. (10) as proportional to the partition function of a Random Energy Model
(REM) (B. et al., 2024a; Lucibello and Mézard, 2024), which offers a simple model of
disordered thermodynamic systems. The thermodynamic analysis of generative diffusion
models is outlined in (Ambrogioni, 2023). In summary, each energy level Eµ is associated
with a data point yµ in the training set and its energy depends on its Euclidean distance
with the current state xt (Ambrogioni, 2023), with the energy given by

Eµ(x) = −1
2∥y

µ∥2 + x · yµ (12)

which leads to the partition function

ZN (x, t) =
N∑

µ=1
e− 1

t Eµ(x) (13)

where the time parameter t is analogous to the temperature of the system, which can be
used to express the weights as a Boltzmann distribution: wµ(x, t) = 1

ZN (x,t) e− 1
t Eµ . Since

the empirical score is a Boltzmann average according to Eq. (13), studying its fluctuation
under the random sampling of the data allows us to quantify the deviations from the exact
score due to memorization effects. In our case, the energy levels are distributed according to

p(E; x) =
∫
Rn

δ

(
E + 1

2∥y∥
2 − x · y

)
dP0(y) (14)

For small values of t and large dataset sizes, the empirical score can be shown to be self-
averaging, meaning that it is insensitive to the specific sampling of the training points,
resulting to generalization of the underlying distribution. More formally, from the physical
theory of REMs (Derrida, 1981), we know that, at the asymptotic limit of d → ∞, the
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Figure 4: The ordered singular values of the Jacobian of the empirical score function of a linear
manifold model as a function of the diffusion time t. Lighter colours are associated to larger
times in the colour map. The parameters for the model are d = 30, m = 7, log(N)/d = 0.23
with subspaces associated to variances σ2

1 = 1 and σ2
2 = 0.3 with dimensions m1 = 2 and

m2 = 5 respectively. Left: approximated theoretical prediction in the memorization phase
according to Eq. (19). Center: prediction from the approximated Jacobian in Eq. (18). Right:
singular values obtained by the numerical measure of the Jacobian of the empirical score
function (as described in Supp. B), evaluated from a synthetic data set of N = 103 points.

statistical system specified by Eq. (10) undergoes a random phase transition that separates a
self-averaging high-temperature regime to a condensation regimes where Boltzmann averages
depend on a small (i.e. sub-exponential) fraction of energy levels (Montanari and Mézard,
2009). In Supp. C, we show that, for d much smaller that N , the condensation time for
linear manifold data is, to a leading exponential order, equal to

tc(x) =

√
d

2log(N)

(r4,σ

2 + ω2(x)
)

, (15)

which demarcates the diffusion time when the empirical score becomes susceptible to fluc-
tuations introduced by the random sampling of the dataset. In the formula, the term
r4,σ = d−1 ∑d

i=1 σ4
i captures the fluctuations in the norm of the data, while the directional

quantity ω2(x) = d−1 ∑d
i=1 x2

i σ2
i is the variance density along the direction x. As we shall

see, the balance between these two quantities plays a crucial role in geometric memorization
effects. From standard REM calculations (see Supp. D), we can express the effective number
of data points used to estimate the score at x at time t as

Ñt(x) = min
(

N,
t

1− t−1
c (x)

)
. (16)

where we introduced the minimum operator heuristically to account for the finite size of
the system. The exact asymptotic theory is recovered for N →∞. Note that, since these
quantities scale to the leading exponential order, they are therefore neglected quantities that
scale sub-exponentially in N .

5.4 A theory of geometric memorization

The large N analysis outlined in the previous sections give us a description of the fluctuations
in the empirical score as a function of the state x. The “spatial” dependency of these
fluctuations ultimately depend on the data distribution p0(x), which outlines a rich geometric
landscape that interacts in a complex way with the “spatial” variations in the exact score
∇ log pt(x). To study the effect of this “spatially” non-homogeneous random fluctuations
on the spectrum, we start from an approximate formula for the empirical score obtained by
restricting the average to only Ñt(x) “active samples”:

∇x log pt(x) ≈ 1
Ñt(x)

Ñt(x)∑
µ=1

(yµ − x) /t (17)

where the “active samples” yµ are sampled from the posterior distribution p(x0 | x; t). In
the linear Gaussian case, Eq. (17) follows a Normal distribution, since the posterior is itself

7
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Normal. In the following, for the sake of simplicity, we will assume that F is a diagonal
d× d with diagonal entries σk, with σk = 0 for d−m indices. This corresponds to a rotation
to the basis of eigenvectors of F ⊤F . If we assume that the fluctuations in the score are
uncorrelated for a separation of the order of

√
t, we can quantify the statistical variability of

the (smoothed) Jacobian (Eq. (5)) through the formula

Jij(t) ∼ N
(
−δij

(
t + σ2

i

)−1
,

σ2
i

t (t + σ2
i )

[
ϕ(t, 0) + ϕ(t, ej ·

√
t)

])
, (18)

where we defined the function ϕ(t, x) = max
(
1/N, t−1 − t−1

c (x)
)

. The expected value of
this expression is just the Jacobian of the exact score, which determines the opening of the
spectral gaps as explained in Sec. 5.1. On the other hand, in this model gaps can close due
to the variance term. We can see this phenomenon qualitatively by considering the singular
values spectrum of the expected value of Eq. (18):

s̄i =

√√√√ 1
(t + σ2

i )2 +
d∑

k=1

σ2
k

t2 (t + σ2
k)2

[
ϕ(t, 0) + ϕ(t, ei ·

√
t)

]2
. (19)

Remember that we see a gap in the sorted spectrum if there is a large difference between
two consecutive sorted singular values sk and sk+1. This gap can disappear if I) ϕ(t, ek ·

√
t)

is larger than ϕ(t, ek+1 ·
√

t), or II) if the contribution of these variance terms make the
contribution of the expected value negligible. Case I) is directional, as it depends on the
direction of perturbations ek and ek+1 and it leads to the selective suppression of a particular
subspace. On the other hand, case II) is non-directional: it induces a synchronous suppression
of all gaps and leads to complete memorization. The phenomenon of selective memorization
is visualized in Fig. 3 for a two-dimensional distribution. For linear Gaussian, the closing
times are determined by the critical time t−1

c (x), which itself depends on the constant term
r4,σ = d−1 ∑d

i=1 σ4
i and on the “directional” term ω2(x) = d−1 ∑d

i=1 x2
i σ2

i . This latter
term is proportional to the variance along the subspace spanned by x and plays a crucial
role in determining the differential disappearance of different subspaces at different times.
Perhaps counter-intuitively, the subspace spanned by ek is more vulnerable to memorization
when ω2(ek) is large. Therefore, subspaces that are more prominent in the distribution
of the data and that emerge earlier during the diffusion process are also more vulnerable
to memorization in the later stages of diffusion. This correspond to the form of feature
memorization suggested in (Ross et al., 2024).

6 Experiments

6.1 Testing numerically the theory of geometric memorization

Fig. 4 shows the evolution in time of the spectrum of the singular values obtained from
Eq. (19) (left panel) Eq. (18) (central panel) and the direct computation of the empirical
score introduced in section 5.2 (right panel). The experimental curves obtained from the
empirical score look consistent with the theory, both in signaling the dimension of the
subspaces and the opening times for the gaps, displaying the hierarchical structure associated
to the ordering of the variances. Additional experiments are reported in Supp. D.1.

6.2 Diffusion networks trained on linear manifold data

While our theory analyzes the empirical score, our experiments show that our results cast
fundamental insight on geometric memorization in trained networks. Fig. 5 shows the spectra
estimated from network trained on a linear manifold where the matrix F is built such that
datapoints live in two sub-spaces with variances equal to 1 (high variance) and 0.3 (low
variance) respectively. The details of the experiment are given in Supp. E. We can compare
these results with the spectra obtained in Fig. 4. The behavior of the trained network has
several of the qualitative features predicted by our theoretical analysis. When N is large,
the spectra show the total manifold gap, as predicted by the exact theory. This gap remains
present in the network even for t = 1e−5, which shows that that trained network have a
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Figure 5: Spectra for different t estimated from diffusion networks trained on linear Normal
data with two subspaces with different variance using a range of dataset sizes. The red
(green) dashed line correspond to the location of the theoretical spectral gap for the high
(low) variance subspace. The black dashed line corresponds to the total manifold gap.

tendency to generalize, likely due to their finite capacity and by the implicit regularization
induced by the parameterization. For intermediate values of N (e.g. N = 1000), the theory
predicts that, for small t, only the low variance gap should be observable, as the high variance
sub-space is lost due to geometric memorization. Interestingly, this counterintuitive behavior
seems to be present in the trained networks, where for N = 250 and N = 500, the drop in the
spectrum is roughly aligned with the low-variance gap (green dashed line). Furthermore, the
final generalization profile at t = 1e−5 still behaves according to this prediction, suggesting
that the ultimate generalization of the network can be predicted by the temporal dynamic of
the empirical score. Finally, for small dataset sizes the behavior of the network disaligns
from the theoretical prediction as the network returns to exhibit the high variance gap even
for t = 1e−5. This is not surprising since in this regime our large N analysis is outside its
domain of applicability, and the behavior of the network seems to reflect the global fit of a
parameterized linear model. This is also visible in an additional experiment given in Supp. E.

6.3 Geometric memorization in natural image detasets

We will now report the results of a series of experimental analysis where we trained on a
series of increasingly large sub-datasets extracted from MNIST, Cifar10 and Celeb10. For
each dataset size and time point, we estimate the latent dimensionality by locating the
largest spectral gap and we study how dimensionality changes with the dataset size. The full
details of dimensionality estimation and training are given in Supp. A and Supp. B. Fig. 6
shows the average spectra (left) and the average detected dimensionality (right) for the whole
dataset (both train and test set), and see how that changes as a function of dataset size
and diffusion time. Sharp spectral gaps are visible in the network trained on the MNIST
dataset, where the estimated dimensionality increases sharply starting from 400 data points
and reaches its peak at around 4000. The other datasets show less clear gaps in their spectra.
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However, the location of their spectral inflection point decreases predictably as function of
the dataset size, revealing an increasing trend in the estimated dimensionality. Interestingly,
the dimensionality in Cifar10 does not seem to saturate, suggesting that the total dataset
size still results in partial (geometric) memorization.
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Figure 6: Spectra at t = 1e−5 estimated on deep networks trained on natural image datasets
with different dataset sizes. The estimated diminsionality tend to increase with the dataset
size, suggesting a phenomenon of geometric memorization.

7 Conclusions

Our work opens the door for further analysis of generative diffusion using the tools of
statistical physics, differential geometry and random matrix theory, which may cast light on
generalization in these fascinating generative methods. Our theoretical analysis was focused
on the empirical score function, further research may analyze theoretical Jacobian spectra in
simple trained models and elucidate their deviations from the empirical theory.
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A Experimental methodology: Training and Model
Architecture Details

Dataset Image Size Latent Dim. Channel Mult. Param. Count Batch size Iterations
Cifar10 32 128 (1, 2, 2, 2) 35.7M 128 500,000
Mnist 28 128 (1, 2, 2) 24.5M 128 400,000

CelebA-HQ 64 64 (1, 1, 2, 2, 4, 4) 27.4M 64 800,000

Table 1: Table displaying both model and training configurations for each dataset.

For the toy examples, we train a Variance Exploding continuous score model with 2M training
steps with batch size 128. We use a Residual Multi Layer Perceptron with hidden size of 128,
with two residual blocks. Each block is composed by two linear layers with SiLu activation.
For the image models, we follow the diffusion setting in (Ho et al., 2020). We kept the
variance scheduler, where βmin = 10−4 and βmin = 2× 10−2, the time steps T = 1000, and
the score model backbone (PixelCNN++ (Salimans et al., 2017)) the same. In addition,
for each of the datasets, we varied the model’s channel multipliers, latent dimension, batch
size, and training iterations to account for the complexity of the dataset and our available
computing resources; see Table 1. For context, we primarily utilized NVIDIA Tesla V100
GPUs with 32 GB of memory for the training of our models.
For consideration of the data sizes we chosen for our experiment, we closely followed the setup
of (Y. et al., 2023). Specifically, we first trained multiple diffusion models using different
data split sizes from {0.5k, 1k, 2k, 4k, . . . , |S|}, where |S| is the full size of a given dataset.
We trained our models without random flipping and utilized the exponential moving average
version of the trained models, where we set the decay value to 0.9999 during training. For
Cifar10 (Krizhevsky et al., 2014) and Mnist (Deng, 2012), we did not center-crop or resize
the images. However, for CelebA-HQ (Liu et al., 2015), we center-cropped and downsized
the images to 64× 64 resolution. Moreover, we only use dropout for Cifar10 with the value
of 0.1. To get a more comprehensive view of the reduction in the manifold size, in Fig. 6,
we provide additional points for the low data size region. Specifically, for Mnist, we have
{2, 4, 8, 16, 32, 64, 128, 256, 325, 400, 500}, and {100, 200} for CelebA-HQ.

B Experimental methodology: measuring the intrinsic
dimension of the data manifold

The method used to geometrically visualize the intrinsic dimension of the data manifold
is the same as in (Stanczuk et al., 2022): the score function is measured across several
independent positions in the vicinity of the manifold and ordered as the columns of a
rectangular matrix S; the singular values of the matrix S are computed and collected; the
intrinsic dimension of the manifold is given by the d− ker(S), with the kernel is estimated
directly from the spectrum of the singular values of S.

On the other hand, we propose a new method to geometrically estimate the in-
trinsic dimension of the data manifold. The procedure is based on empirically computing
the absolute value of the second derivative of the singular values, selecting the first bigger
value with respect to the median multiplied by a threshold factor. We further discard the
initial singular value as it tends to be large, resulting in instabilities. We found this method
to be more robust than the one proposed in (Stanczuk et al., 2022), especially for high
dimensional datasets where there is no sharp drop in the spectrum of the singular values.

B.1 Computing the Singular Values of the Jacobian of the score

For computing the singular values, we use the procedure described in (Stanczuk et al., 2022)
reported in algorithm 1. For the linear models and MNIST models we used a symmetrized
version which we empirically found to be more stable, reported in algorithm 2.
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Algorithm 1 Estimate singular values at x0

Require: sθ - trained diffusion model (score), t0 - sampling time, K - number of score
vectors.

1: Sample x0 ∼ p0(x) from the data set
2: d← dim(x0)
3: S ← empty matrix
4: for i = 1, ..., K do
5: Sample x

(i)
t0
∼ N (xt0 |x0, σ2

t0
I)

6: Append sθ(x(i)
t0

, t0) as a new column to S
7: end for
8: (si)d

i=1, (vi)d
i=1, (wi)d

i=1 ← SVD(S)

Algorithm 2 Estimate singular values at x0 with central difference
Require: sθ - trained diffusion model (score), t0 - sampling time, K - number of score

vectors.
1: Sample x0 ∼ p0(x) from the data set
2: d← dim(x0)
3: S ← empty matrix
4: for i = 1, ..., K do
5: Sample x

+(i)
t0
∼ N (xt0 |x0, σ2

t0
I)

6: Sample x
−(i)
t0
∼ N (xt0 |x0,−σ2

t0
I)

7: Append sθ(x
+(i)
t0

,t0)−sθ(x
−(i)
t0

,t0)
2 as a new column to S

8: end for
9: (si)d

i=1, (vi)d
i=1, (wi)d

i=1 ← SVD(S)

B.2 Computing the intrinsic dimension at x0

We report in 3 the algorithm used to find the intrinsic manifold dimension given the singular
values. For MNIST we use d̄ = 100, c = 15 and t = 0, for Cifra10 d̄ = 1000, c = 10 and
t = 15, and for CelebA d̄ = 1000, c = 10 and t = 0. Here t correspond to the diffusion index
in DDPM. We report an example of second derivative in Fig. 7.

Algorithm 3 Estimate intrinsic manifold dimension at x0

Require: (si)d
i=1 from algorithms 1 or 2 - diffusion time, t - datapoint size, d - threshold, c

- discard values, d̄.
1: d2

svd ←| d2

ds st[d̄ :] |
2: m← median(d2

svd)
3: n← arg where(d2

svd > c ∗m)
4: k ← d− n + d̄
5: return manifold dimension k

C Condensation time for positional REM

For simplicity, we will perform the analysis for coordinate-aligned linear manifolds. Consider
d-dimensional normally distributed vector-valued data yµ where each component yµ

k follows
a centered normal distribution with variance σ2

k. In the linear manifold case, number d−m
of these variances is equal to zero, meaning that the distribution spans a m-dimensional
linear manifold. The number of datapoints are taken to be exponential in the size of the
ambient space, i.e. N = exp (αd), with α > 0. Notice that σ2

k correspond to the eigenvalues
of F ⊤F in the random projection model and we assume we have changed the coordinate
system. Let us take a fixed x. Hence, in the variance exploding framework we have
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Figure 7: The figure shows the absolute values of the second derivatives computed with
algorithm 3. The vertical line is the detected manifold dimension.

pt(x) = 1
N
√

2πt
d

N∑
µ=0

e− 1
2t ∥x−yµ∥2

(20)

= 1
N
√

2πt
d

e− ∥x∥2
2t

N∑
µ=0

exp
(
− 1

2t
∥yµ∥2 + 1

t
xyµ

)
. (21)

It is useful, at this point, to introduce the Random Energy Model (REM), firstly proposed
by physicists (Derrida, 1981; Montanari and Mézard, 2009), now imported to computer
science to characterize diffusion models (B. et al., 2024a). The REM consists in a collection
of energy levels {Eµ}µ≤N that interact with an external heat-bath at an inverse temperature
β. The energy levels are random variables generated from a probability density function
p(E|θ) where θ can be some parameters of the model and source of disorder for the system.
The thermodynamics of the model shows a condensation phase at a critical temperature
βc that shares similarities with glassy transitions in spin-glass models (Mezard et al.,
1986). Condensation, in turn, is analogous to memorization in diffusion models. The main
thermodynamic quantities, such as the condensation temperature, can be fully recovered
starting from the partition function of the system, given by

ZN (β) =
N∑

µ=1
e−βEµ . (22)

We can now map our diffusion model into a REM by redefining

β(t) = 1/t, (23)

and

Eµ(x) = 1
2∥x− yµ∥2. (24)

We call this model, positional REM, because the occurrence of condensation will depend
on a position in the d-dimensional Euclidean space. Standard REM calculations are now
performed to compute the free energy of the model and then the condensation time. The
moment generating function of the energies is
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ζ(λ) = lim
d→∞

1
d

logEye− λ
2t ∥y∥2+ λ

t xy (25)

= lim
d→∞

1
d

d∑
i=1

log
∫

dyi√
2πσ2

i

exp−y2
i

2

(
1
σ2

i

+ λ

t

)
+ λ

t
xiyi (26)

= lim
d→∞

1
d

[
−1

2

d∑
i=1

log
(

1 + λ
σ2

i

t

)
+ λ2

2t2

d∑
i=1

x2
i σ2

i

1 + λ
σ2

i

t

]
(27)

The derivative of the zeta function is

ζ ′(λ) = lim
d→∞

1
d

[
− 1

2t

∑
i

σ2
i

1 + λ
σ2

i

t

+ λ

t2

∑
i

x2
i σ2

i

1 + λ
σ2

i

t

− λ2

2t3

∑
i

x2
i σ4

i

(1 + λ
σ2

i

t )2

]
. (28)

At large times, ζ(λ) and ζ ′(λ) become respectively

ζ(λ) = − λ

2t
r2,σ + λ2

4t2 r4,σ + λ2

2t2 ω2(x), (29)

ζ ′(λ) = − λ

2t
r2,σ + λ2

2t2 r4,σ + λ2

t2 ω2(x). (30)

Where

r2,σ = lim
d→∞

1
d

∑
i

σ2
i (31)

r4,σ = lim
d→∞

1
d

∑
i

(σ2
i )2 (32)

ω2(x) = lim
d→∞

1
d

∑
i

(xi)2σ2
i . (33)

The condition for the condensation time is α + ζ(1)− ζ ′(1) = 0, from which we obtain

tc(x) =

√
r4,σ

2 + ω2(x)
2α

. (34)

As clear from the formula, this time depends on the variance ω2(x) along the direction
of x. This implies that, when x is aligned to a linear sub-manifold with higher variance,
condensation around this state will happen earlier, leading to a decrease in the estimated
commonality of the latent manifold. Fig. 8 shows a comparison between the exact approach
for computing tc(x) (i.e. using Eqs. (25), (28)) and the small α expansion (i.e. Eq. (15)),
showing a good qualitative agreement between the two quantities at all values of α. The
right panel of the same figure also displays a strong dependence of the exactly computed
condensation time.
If each dimension has equal variance σ2, the directional variance density is just σ2, which
implies that the critical condensation time depends linearly on the dimensionality but only
logarithmically on the number of data points. This implies that in isotropic case, in order
to avoid condensation an exponential number of data points is needed. However, if only
αm dimensions have non-zero variance, it is straightforward to see that the exponential
dependency will scale with αm instead of m. More generally, the exponential scaling depends
on the total variance m ω(x), which implies that it is realistic to learn high-dimensional
spaces as far as most of these dimensions have vanishing variance.
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Figure 8: Condensation time as a function of position x computed according to the REM
calculations. Left: we have generated one single position x in a ambient space of dimension
d = 100 and one single matrix F of dimensions 100 × 50 (with m = 50 dimension of the
latent space). Both x and F are generated according to a Gaussian process with zero mean
and unitary variance; we show the comparison between the exact calculation of the positional
condensation time and the approximated version that is fully explicit in the directional
variance ω2(x). Right: we generate 2000 random positions x around the origin of the ambient
space of dimension d = 100; the latent space dimension is m = 50 and α = 0.15; we show
the dependence of the exact positional condensation time as a function of ω2(x), showing a
qualitatively similar behaviour with respect to the approximated expression of tc.

D Analysis of the empirical Jacobian

We can relate this random energy analysis to the spectra of Jacobian eigenvalues using a
heuristic argument. In the linear manifold example, the Jacobian of the true score function at
t = 0 is diagonal with eigenvalues equal to −1/σ2

k. This results in spectral gaps when different
sub-spaces have different variances. For a finite value of the inverse temperature β(t) = 1/t,
the eigenvalues are −1/σ2

k−β. After the critical condensation time, the empirical score gives
a good approximation of the true score. On the other hand, in the condensation phase the
empirical score is dominated by the (quenched) fluctuations in the data distribution. First,
we can introduce the participation ratio

Y (β, x) = Z(2β, x)
Z(β, x)2 . (35)

This thermodynamic quantity can be roughly interpreted as the inverse of the number of
energy levels with non-vanishing weights. In the condensation phase, this will be a finite
number while it becomes infinite in the high temperature phase.
In the thermodynamic limit and for β(t) ≥ βc(t), the participation ratio of our REM model
is given by

E[Y (β, x)] = 1− βc(t, x)
β(t) , (36)

which implies that the number of datapoints that contribute to the score function at x is

Ñ = eαd̃(β,x) = 1/Y (β, x) = β(t)
β(t)− βc(t, x) . (37)

Note that this number tends to one for β(t)→∞, meaning that in the low-time limit the
score depends on a single pattern.
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In this phase, the score is dominated by approximately eαd̃(β,x) = β(t)
β(t)−βc(t,x) , leading to the

expression

∇x log pt(x) ≈ β

eαd̃(β,x)

eαd̃(β,x)∑
µ=1

(yµ − x) (38)

where yµ ∼ p(yµ | x, β) ∝ e−yT (Λ−1+βId)y/2+βx·y. Therefore, the empirical score approxi-
mately follows the distribution

∇x log pt(x) ∼ N
(
−M(β)x, β(Λ−1 + βId)−1 max(0, β − βc(x))

)
. (39)

where M(β) = β(Λ−1 + βId)−1Λ−1 and Λ being the diagonal matrix collecting the variances
σ2

k and we used the fact that eαd̃(β,x) = β/(β − βc(x)). The minimum in the formula is due
to the fact that, for β < βc, an exponentially large number of patterns participate in the
estimation of the score, which leads to a complete suppression of the variance. On the other
hand, the variance of the empirical score estimator diverges for β → ∞. In fact, during
condensation, the fluctuations in the random sampling of the datapoints are not suppressed
due to the small number of non-vanishing weights.
We can finally estimate the distribution of the eigenvalues estimated from the empirical
Jacobian matrix. Let us set ourselves on x = 0 and perturb along the directions of the
eigenvectors of F ⊤F . We estimate the elements of the Jacobian of the score function with
respect to the orthogonal direction ej using a perturbative approach, i.e.

Jij(β) ≈
√

β
(

∂xi
log pt(ej/

√
β)− ∂xi

log pt(0)
)

. (40)

Using Eq. (39), we can then write an approximate distribution for the elements of the
Jacobian as

Jij(β) ∼ N
(
−βδij

(
1 + βσ2

i

)−1
, β2 (

σ−2
i + β

)−1 [
ϕ(β, 0) + ϕ(β, ej/

√
β)

])
. (41)

where we assumed that the fluctuations in ∇x log pt(ej/
√

β) are independent from the
fluctuations in ∇x log pt(0) and ∇x log pt(ek/

√
β) for all ks. In this expression, we introduced

the function

ϕ(β, x) = max (0, β − βc(x)) . (42)

We can now recover the singular values of J(β) as minus the square roots of the eigenvalues
of J(β)⊤J(β). In general, the matrix J(β)⊤J(β) can have a complex spectral distribution.
An approximate formula for the singular values of J(β) is

si ≈ −

√√√√β2(1 + βσ2
i )−2 + β4

d∑
k=1

(
σ−2

k + β
)−2 [

ϕ(β, 0) + ϕ(β, ei/
√

β)
]2

. (43)

To obtain this formula, we write J as
J = A + B (44)

where A is a diagonal matrix corresponding to the mean of Eq. (41), while B corresponds to
the variance. Therefore, J⊤J becomes

J⊤J = A⊤A + A⊤B + B⊤A + B⊤B. (45)
This expression is dominated by the two symmetric terms, so we can write

J⊤J ≈ A⊤A + B⊤B. (46)
Then, the term A⊤A = A2 is, of course, still diagonal, while the term B⊤B is diagonally
dominant. Calling C =

∑
ik BikBik, we can approximate the singular values as

√
A2 + C2,

obtaining Eq. (43). Note however that the distribution of the spectrum does not concentrate
exactly to Eq. 43 in the large N . Nevertheless, Eq. 43 gives an accurate picture of the
qualitative behavior, as shown in Sec. D.1.
These results also show that in some regimes Eq. 43 is more in agreement with the numerical
empirical score than the correct spectrum of Eq. 41, which is likely due to the fact that
Eq. 41 overestimates the fluctuations by ignoring the correlations of the score at different
points.
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D.1 Numerical analysis
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Figure 9: Ordered singular values of the Jacobian of the empirical score in the case of the
linear data model. The parameters for the model are d = 30, m = 7, α = log(N)/d = 0.23
with a subspace associated to a variance σ2

1 = 1 of dimension m1 = 2 and another subspace
with variance σ2

2 = 0.3 and dimension m2 = 5. Different lines are associated to different sizes
of the training set. Measures have been averaged over 30 realizations of the experiment.

In order to test our theory of the empirical score, we plot the singular values of the Jacobian
in an ordered fashion, as done experimentally in the previous sections: this allows to visualize
the drops forming due to the described memorization phase transition. As a first test, a set
of N data have been generated according to the linear manifold model with two variances,
and the empirical score has been computed out of these points as in Eq. (10). Therefore, we
measured the Jacobian according to same method used for the trained models, described in
section B. The condensation time appearing in the formulas has been computed according to
the method explained in Supp. C. Figs. 9 and 10 report the profiles of the ordered spectra
at different times when data-sets of different sizes are employed to assemble the empirical
score. We notice the same phenomenology of the gaps predicted by the theory: the gaps
indicating the dimensions of both the two subspaces progressively open starting from the
largest variance and ending to the smallest one.
As a second experiment we confront the evolution of the ordered singular values in time,
as obtained from three methods: the functional form in Eq. (19); by extraction from the
random matrix expressed in Eq. (18); by computing the empirical score function from a
synthetic set of N datapoints (i.e. as performed in the previous experiment). The time
evolution of the gaps is reported in figures 11 and 12 for two choices of the parameters of
the model. We conclude that both the random matrix prediction and the simulation capture
the phenomenology predicted by the analytical expression of the singular values obtained in
Eq. (19).
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Figure 10: Ordered singular values of the Jacobian of the empirical score in the case of
the linear data model. d = 30, m = 15, α = log(N)/d = 0.23 with a subspace associated
to a variance σ2

1 = 1 of dimension m1 = 5 and another subspace with variance σ2
2 = 0.3

and dimension m2 = 10. Different lines are associated to different sizes of the training set.
Measures have been averaged over 30 realizations of the experiment.

20 24 28
ordered singular values

0.2

0.4

0.6

0.8

1.0

no
rm

al
ize

d 
sin

gu
la

r v
al

ue
s

Analytical Prediction

20 24 28
ordered singular values

0.0

0.2

0.4

0.6

0.8

1.0

no
rm

al
ize

d 
sin

gu
la

r v
al

ue
s

Random Matrix Prediction

22 26
ordered singular values

0.0

0.2

0.4

0.6

0.8

1.0

no
rm

al
ize

d 
sin

gu
la

r v
al

ue
s

Empirical Score Simulation

Figure 11: The ordered singular values of the Jacobian of the empirical score function of a
linear manifold model as a function of the diffusion time t. Lighter colours are associated
to larger times in the colour map. The parameters for the model are d = 30, m = 7,
α = log(N)/d = 0.23 with a subspace associated to a variance σ2

1 = 1 of dimension m1 = 2
and another subspace with variance σ2

2 = 0.3 and dimension m2 = 5. Left: approximated
theoretical prediction in the memorization phase according to Eq. (19). Center: prediction
from the approximated Jacobian in Eq. (18). Right: singular values obtained by the numerical
measure of the Jacobian of the empirical score function (as described in section B), evaluated
from a synthetic data set of N = 103 points.

Finally, figures 13 and 14 report the evolution of the gaps according to, respectively, the
closed formula for the singular values in Eq. (19) and the approximated random matrix in
Eq. (10), when we change the size of the data-set.
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Figure 12: The ordered singular values of the Jacobian of the empirical score function of a
linear manifold model as a function of the diffusion time t. Lighter colours are associated
to larger times in the colour map. The parameters for the model are d = 30, m = 15,
α = log(N)/d = 0.23 with a subspace associated to a variance σ2

1 = 1 of dimension m1 = 5
and another subspace with variance σ2

2 = 0.3 and dimension m2 = 10. Left: approximated
theoretical prediction in the memorization phase according to Eq. (19). Center: prediction
from the approximated Jacobian in Eq. (18). Right: singular values obtained by the numerical
measure of the Jacobian of the empirical score function (as described in section B), evaluated
from a synthetic data set of N = 103 points.
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Figure 13: Ordered singular values of the Jacobian of the empirical score in the case of the
linear data model estimated from Eq. (19). The parameters for the model are d = 30, m = 7,
α = log(N)/d = 0.23 with a subspace associated to a variance σ2

1 = 1 of dimension m1 = 2
and another subspace with variance σ2

2 = 0.3 and dimension m2 = 5. Different lines are
associated to different sizes of the training set.
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Figure 14: Ordered singular values of the Jacobian of the empirical score in the case of
the linear data model, estimated from the random matrix in Eq. (10). d = 30, m = 15,
α = log(N)/d = 0.23 with a subspace associated to a variance σ2

1 = 1 of dimension m1 = 5
and another subspace with variance σ2

2 = 0.3 and dimension m2 = 10. Different lines are
associated to different sizes of the training set.
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E Additional experimental results on trained networks

In addition to the experiments described in section 6 we report here some tests on synthetic
data generated on the linear manifold introduced in section 5.
First, we report numerical results from experiments in an ambient space of dimension d = 100,
while the manifold lives in a space of dimension m = 40. On the same manifold, through the
choice of a diagonal F matrix, we define subspaces of different variances, which will result in
the opening of gaps at different times in the spectrum of the singular values of the matrix
obtained by sampling the score functions. In the specific, we choose the case of two subspaces
associated to two variances of the data and the particular scenario of m different variances
sampled uniformly at random. In Fig. 15 we plot the spectra at the smallest diffusion time ϵ,
for models trained on datasets with different amount of training samples. With few training
samples, we cannot see any gap opening. However, as the training samples increase, the
model starts generalizing to the sub-spaces with higher variance, indicating both a smooth
transition between generalization and memorization, and that the subspaces with higher
variance are learned first by the model. As we shall see, as predicted by the theory the
network will instead generalize to subspaces of low variance for parameter settings where σ2

2
is lower than σ2

1 but not negligible. Furthermore, in Fig. 16 report a similar experiment with
a smaller ambient dimension, i.e. d = 30. Now the geometric memorization phenomenon
is more evident for medium data-set sizes at small times. Moreover, the phenomenology
emerging from the trained model is fully consistent with the one resulting from the empirical
score, obtained through the same choice of the parameters, as showed in figures 12, 13 and
14. This conclusion suggests two powerful insights about diffusion models: the network
behaviour is consistent with our theory of memorization derived from the physics of Random
Energy Models; the trained score function behaves consistently with the empirical score for
a certain choice of the parameters.
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Figure 15: Singular values for models trained on different number of samples from the dataset
(in the legend) at t = 0.6, t = 0.4 and t = 0.2, from top to bottom respectively. From left to
right: model with σ2

1 = 1, σ2
2 = 0.01; model with σ2

1 = 0.01, σ2
2 = 1; model with uniformly

sampled variances.
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Figure 16: Ordered singular values of the Jacobian of the trained score function in the case
of the linear data model. d = 30, m = 15, α = log(N)/d = 0.23 with a subspace associated
to a variance σ2

i = 1 of dimension m1 = 5 and another subspace with variance σ2
2 = 0.3 and

dimension m2 = 10. Different lines are associated to different sizes of the training set.
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