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Abstract

In this paper, we investigate the latent geometry of generative diffusion
models under the manifold hypothesis. To this purpose, we analyze the
spectrum of eigenvalues (and singular values) of the Jacobian of the score
function, whose discontinuities (gaps) reveal the presence and dimensionality
of distinct sub-manifolds. Using a statistical physics approach, we derive
the spectral distributions and formulas for the spectral gaps under several
distributional assumptions and we compare these theoretical predictions
with the spectra estimated from trained networks. Our analysis reveals the
existence of three distinct qualitative phases during the generative process:
a trivial phase; a manifold coverage phase where the diffusion process fits
the distribution internal to the manifold; a consolidation phase where the
score becomes orthogonal to the manifold and all particles are projected on
the support of the data. This ‘division of labor’ between different timescales
provides an elegant explanation on why generative diffusion models are not
affected by the manifold overfitting phenomenon that plagues likelihood-
based models, since the internal distribution and the manifold geometry are
produced at different time points during generation.

1 Introduction

Generative diffusion models have revolutionized the fields of computer vision and generative
modeling, achieving state-of-the-art performance on image generation (Ho et al., 2020; Song
and Ermon, 2019; Song et al., 2021) and video generation (Ho et al., 2022; Singer et al., 2022;
Blattmann et al., 2023; Brooks et al., 2024). Generative diffusion models synthesize images
through a stochastic dynamical denoising process. Experimental and theoretical arguments
suggest that different features such as frequency modes and class labels are generated at
different times during the process. For example, it has been shown that separation between
isolated classes, like in the case of mixture of Gaussian models, happens in critical phase
transition points of spontaneous symmetry breaking (speciation events) (Biroli et al., 2024).
It is also well known that subspaces corresponding to different frequency models emerge at
different times of diffusion (Kingma and Gao, 2023). This idea has been recently refined by
(Kadkhodaie et al., 2024), who showed that diffusion models give rise to a local decomposition
of the image manifold into a basis of geometry-adaptive harmonic basis functions. These
decomposition phenomena cannot be directly explained in terms of critical phase transitions
as they are fundamentally linear processes. In this paper, we will provide a precise theoretical
analysis of the separation of subspaces for data defined on low dimensional linear manifolds.
Our main contributions are: I) an in-depth theoretical random-matrix analysis of the
distribution of Jacobian spectra in diffusion models on linear manifolds and II) a detailed
experimental analysis of Jacobian spectra extracted from trained networks on linear manifolds
and on image datasets. The analysis of this spectra is important as it provides a detailed
picture of the latent geometry that guides the generative diffusion process. We show that the
linear theory predicts several phenomena that we observed in trained networks. Based on our
result, we divide the generative process in three qualitatively different phases: trivial phase,
manifold coverage phase and manifold consolidation phase. Using these concepts, we
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Figure 1: Visualization of the gaps in the spectrum of the (negative) Jacobian of the score
for data supported on a latent manifold. Blue line: idealize spectrum of distribution with
uniform internal density; Orange line: spectrum of a more realistic distribution.

provide an elegant explanation of why diffusion models can avoid the manifold overfitting
pathology that characterizes likelihood-based models (Loaiza-Ganem et al., 2022).

2 The manifold hypothesis

The manifold hypothesis states that the distribution on natural data such as images and
sound recordings is (approximately) supported on a m−dimensional manifoldsM embedded
in a larger euclidean ambient space Rd (Peyré, 2009; Fefferman et al., 2016). The probability
of data supported on a m < d manifold M cannot be expressed using a a density function,
and it can instead be written as

p0(x) = δ(1− IM(x)) ρint(x) , (1)

where IM(x) is the index function of the manifold and the internal density ρint(x) is non-
zero for x ∈ M. Loosely speaking, this expression is divergent on the manifold and zero
everywhere else in order to ensure that only events containing the manifold have non-zero
probability.

2.1 Manifold overfitting in likelihood-based models

Likelihood-based generative models are defined by a highly parameterized likelihood function
f(x; θ), whose parameters are trained by minimizing the loss

L(θ) = −Ex∼p0(x)[f(x; θ)] , (2)

which maximizes the probability of the data given the model. This maximum likelihood
loss is minimized if f(x; θ) = p0(x). Unfortunately, the divergence of p0(x) on the manifold
implies that the model density f(x; θ) on the manifold becomes larger and larger during
training. More problematically, the optimization problem becomes almost insensitive to
the internal density ρint(x). This phenomenon is called manifold overfitting (Loaiza-Ganem
et al., 2022), since the trained model fits the manifold while ignoring its internal density,
resulting in poor generation. While generative diffusion models have often been characterized
in terms of a likelihood function, experimental evidence suggests that they are not affected
by this pathology. In the rest of the paper, we will provide an elegant explanation of their
behavior by analyzing their latent geometry.

3 Background on generative diffusion models

Here, we will consider a simple variance-exploding forward process where the data x0 ∼ p0(x)
evolves according to the equation

dxt = dZt (3)
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where dZt is a standard Brownian motion. The formal solution of Eq. 3 can be given in

term of the heat kernel: p(xt, t) = Ex0∼p0

[
1√
2πt

e−
∥xt−x0∥2

2
2t

]
. The target distribution p0(x)

is then recovered by reversing the diffusion process (Anderson, 1982). We initialize this
reverse process from xtf

∼ N (0, Id), which evolves backward according to
dxt = −∇x log pt(xt)dt + dZt (4)

The function s(x, t) = ∇x log pt(x) is is the so-called score function. From a set of training
points {y1, . . . , yN} iid∼ p0, we can train a neural approximation of s(x, t) by learning a
denoising autoencoder ϵ̂θ(x, t), which is trained to recover the standardized noise ϵt from
the noisy state xt = x0 + tϵt (Hyvärinen and Dayan, 2005; Vincent, 2011; Ho et al., 2020).
The learned score is then obtained using ŝθ(x, t) = − ϵ̂θ(x,t)√

t
.

It is also convenient to define the support score s̃M(x, t), defined as the score function
obtained from the uniform data distribution p0(x) = δ(1− IM(x)).

4 Dynamic latent manifolds and spectral gaps

Consider a generative diffusion model with p0(x0) defined on a d-dimensional manifold M0
according to Eq. 2. In the course of the diffusion process, we can define a time-dependent
family of stable latent manifolds

Mt = {x∗ | s̃M(x∗, t) = 0, with JM(x∗, t) n.s.d.} , (5)
where the negative semi-definiteness (n.s.d.) is a stability condition on the Jacobi matrix
JM(x, t) of the support score s̃M(x∗, t). Due to the noise, the diffusing particles are likely
to be found in shells of radius

√
t around each point of the latent manifold.

For a small perturbation p around a point x∗ on the latent manifold at time t, the score
function is well approximated by its linearization:

s(p, t) ≈ J(x∗, t) p = −
∑

j

(vj · p) λj(x∗, t)vj , (6)

where J(x∗, t) is the Jacobian of the score and the vj and λj(x∗, t) are respectively the j-th
eigenvector and the associated eigenvalue of −J(x∗, t). The spectrum of eigenvectors provides
detailed information concerning the local geometry of the manifold around. Perturbations
aligned to the tangent space of Mt correspond to small eigenvalues, while orthogonal
perturbations correspond to high eigenvalues, as the score tends to push the stochastic
dynamics towards its fixed-points. Therefore, we can estimate the dimensionality of the
manifold from the location of a gap (i.e. a sharp change) in the sorted spectrum of eigenvalues
(Stanczuk et al., 2022). This is visualized in Fig. 1.

4.1 subspaces and intermediate gaps

Consider the situation where the internal density ρint is not locally flat around a point
x∗ ∈ M0. In this case, at a finite time t the actual score function does not vanish on the
latent manifold Mt as there is a gradient of log-density along the tangent directions. This
implies that the spectrum of tangent eigenvalues can have a series of sub-gaps with separate
different tangent subspaces with different ‘local variance’. In image generation tasks, these
subspaces are often associated with different frequency modes, as noted in (Kingma and
Gao, 2023).
Consequently, we can quantify the sensitivity to the internal density at time t by studying
the statistics and temporal evolution of intermediate gaps

∆GAP
k (x∗, t) = λk+1(x∗, t)− λk(x∗, t) , (7)

where the indices k depend on the dimensionality of the subspaces. Note however that under
realistic data distributions it is unlikely to find sharp intermediate discontinuities since each
subspace will have a different eigenvalue, resulting in a smooth gradient.
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5 Phenomenology of generative diffusion on manifolds

This section contains an intuitive picture that follows from our theoretical results on linear
models, which we will fully outline in the next section. The theory considers the case where
linear manifolds are sampled according to fixed-distributions, which account for the fact that
the exact geometry of the manifold is not known in advance when training a diffusion model.
While only linear models are theoretically tractable, we conjecture that their phenomenology
captures the main features of subspace separation in the tangent space of curved manifolds.
We validated the theory using networks trained on both linear data and highly non-linear
data such as natural images (see section 8). Based on the dynamics of the spectral gaps, we
found that the generative dynamics of xt according to Eq. 4 can be separated into three
distinct phases. These phases do not correspond to singularities and there are therefore
cross-over events, not genuine phase transitions. During all our analysis we will exclusively
work with eigenvalues since, in the linear manifold model, the Jacobian of the score is
symmetric, hence invertible. The same phenomenology is nevertheless fully appreaciable
when using the singular values in our experimental tests.

5.1 Phase I: The trivial phase

In the trivial phase, the diffusing particle moves according to the noise distribution without
strong biases towards the manifold directions. In this dynamic regime, the latent manifold
Mt is a single point surrounded by an isotropic quadratic well of potential. The spectral gaps
are not visible and all eigenvalues have approximately the same value due to the isotropy
of the noise distribution. This trivial phase is analogous to the initial phases described in
(Raya and Ambrogioni, 2023) and (Biroli et al., 2024).

5.2 Phase II: Manifold coverage

The manifold coverage phase begins with the opening of the first of a series of spectral
gaps corresponding to local subspaces. In this phase, different subspaces with different
variances can therefore be identified by intermediate gaps in the spectra, as sketched in
Fig. 2. When the intermediate gaps are opened, the diffusing particles spread across the
relevant manifold directions according to their relative variances. In other words, during this
regime of generative diffusion the process fits the distribution of the data internal to the
manifold.
In term of random matrix theory, the gap-forming phenomenology provides for two distinct
processes: the emergence of intermediate gaps (i.e. steps in the dimensionality plot) between
separated bulks of the spectrum, the opening of a final gap that allows to infer the dimen-
sionality of the full manifold. Our analysis has allowed us to define the time scale at which
such intermediate gaps are maximally opened, i.e.

t(k)
max =

√
γ+(σk)γ−(σk+1), (8)

where γ−(σk+1) and γ+(σk) are specific eigenvalues in the spectrum of the projection matrix
F ⊤F (see Fig. 9), associated to two hierarchically consecutive variances (see Appendix A.2
for an exhaustive analysis). In most of the cases, when σ2

k+1 ≪ σ2
k, the dependence on the

two variances is O(σk · σk+1). This is the timescale where the score is maximally sensitive
to the relative variance of the two subspaces, which guides the particles toward the correct
internal distribution.

5.3 Phase III: Manifold consolidation

Finally, the manifold consolidation phase is characterized by the asymptotic closure
of the intermediate gaps and the sharpening of the total manifold gap, indicating the full
dimensionality of M. In this final regime, the score assumes the form

∇x log pt(x) ≃ 1
t

[
Π− Id

]
x. (9)
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Spectra

Figure 2: Visualization of the trivial (I), cov-
erage (II) and consolidation phase (III).

where Π = F (F ⊤F )−1F ⊤ is the projection
matrix over the manifold. Without any pos-
terior normalization, the component of the
score orthogonal to the manifold diverges
proportionally to t−1, while the tangent com-
ponents converge to a constant and become
therefore negligible in this regime. This re-
sults in the consolidation of the gap corre-
sponding to the manifold dimensionality m
and to the (relative) closure of the interme-
diate gaps. Therefore, in this final phase
the dynamics of the model simply projects
the particles into the manifold Mt →M0.
In the generative modeling literature, this
phenomenon is also known as manifold over-
fitting as the terms corresponding the the
internal distribution is negligible (Loaiza-
Ganem et al., 2022). Fortunately, this inter-
nal coverage occurs in the model throughout
intermediate phases across the previous diffusion process, resulting in a balanced coverage of
the internal distribution.

6 Theoretical analysis of the spectral of linear diffusion
models

In this section, we provide our main theoretical results concerning the spectral distribution
for random linear subspaces and the relative spectral gaps formulas. We start by reviewing
diffusion with data supported on linear manifolds, where the exact score function can be
computed.

6.1 Linear manifolds

Normally the distribution p0(x) is unknown. It is however interesting to investigate tractable
special case where the distribution is a multivariate Gaussian defined on a linear manifold:

yµ = 1√
m

Fzµ (10)

where F ∈ Rd×m is an arbitrary projection matrix that implicitly define the structure of the
latent manifold. and zµ ∼ N (0, Im) the latent space vector. In this setting, the distribution
can be explicitly written as

p0(x) =
∫

dz δ(x− 1√
m

Fz). (11)

Therefore, the density of the process at a given time t takes the form

pt(x) =
∫

Dz 1
√

2πt
d

e
− 1

2t ∥x− 1√
m

F z∥2
. , (12)

where
∫

Dz denotes standard Gaussian integration in Rm.
While linear manifolds are very simple when compared with real data, they still exhibit a
rich and non-trivial phenomenology that elucidate several universal phenomena of diffusion
under the manifold hypothesis. In fact, these linear models capture the structure of tangent
spaces of smooth manifolds.
The score function of the linear model is solvable analytically, since we only have to perform
Gaussian integrals, from which we obtain a quadratic form in x that we can rewrite as

log pt(x) = 1
2t

x⊤Jtx + const. (13)
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(c) t = 0.01

(d) t = 10 (e) t = 1 (f) t = 0.01

Figure 3: Spectrum of the eigenvalues of Jt and drop in the dimensionality of the data-
manifold estimated from theory in the single-variance case, with αm = 0.5, σ2 = 1. Numerical
data are generated with d = 100 and collected over 100 realizations of the F matrix.

where the constant does not depend on x and

Jt = 1
t
F

[
Im + 1

t
F ⊤F

]−1
F ⊤ − Id. (14)

The score function is thus derived as ∇x log pt(x) = 1
t Jtx. It is then useful to analyze the

spectrum of the matrix Jt, since Jt is proportional to the Jacobian of the score function.
Indeed, since the gradient of the score is orthogonal to the manifold sufficiently close to
it, the number of null eigenvalues of Jt will correspond to the manifold dimension and we
should expect to see a drop in the spectrum.

6.2 The linear random-manifold score in large dimensions: A random matrix
analysis

In the following, we provide an outline of our theoretical results on the distribution of spectral
gaps in the matrix Jt under random linear manifolds. This choice reflects the fact that the
distribution and support of the data is usually not known in advance, and it is therefore
important to quantify the statistical variability induced by this uncertainty. Specifically, we
will consider random projection matrices F distributed according to different distributions.
To ensure tractability, we perform the analysis in the limit of large d (visible) and m (latent)
dimensions while keeping the ratio αm = m/d constant.

6.3 The isotropic case

If F ∼ N (0, σ2) we are able to derive analytically the full expression of the distribution of
the eigenvalues of Jt, as it is a simple transformation of the distribution of the eigenvalues of
F ⊤F , which is known to be the Marchenko-Pastur distribution reported in Appendix A.1.
As observable from Fig. 3, which reports the shape of the spectrum in time, the bulk of the
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distribution, inherited from the density of the eigenvalues of F ⊤F , gradually shifts from left
to right in the support. By measuring the cumulative function of the spectrum, one can
isolate a drop in the effective dimensionality of the manifold, as also plotted in Fig. 3. The
step is present at any time in the process and it is implied by the gap between the left bound
of the bulk and the spike in −1. The width of this gap evolves in time according to

∆GAP
fin (t; σ) = σ2(1 + α

−1/2
m )2

t + σ2(1 + α
−1/2
m )2

. (15)

If we name γ+(σ) the left bound eigenvalue of the bulk in the spectrum of F ⊤F (see Fig. 8),
one can recover a more general expression for the gap, being

γ+(σ)
t + γ+(σ) = ∆. (16)

Hence we can resolve the gap at a scale ∆ at time

tin = γ+(σ)
(

1−∆
∆

)
. (17)

6.4 Intermediate gaps and subspaces with different variances

Another relevant case for our study is the one where we consider a manifold having multiple
subspaces with different variances. We will here focus on the instance of two distinct variances.
This scenario is reproduced by considering a number f ·m of columns of F to be Gaussian
distributed with zero mean and a variance σ2

1 , and the remaining (1− f) ·m columns with
variance σ2

2 . The spectrum of Jt can be computed also in this case, as explained in Appendix
A.2. The density function of the eigenvalues shows a transient behaviour of the spectrum in
the form of an intermediate drop in the estimated dimensionality of the hidden data manifold.
This behaviour is reported in Fig. 4. Even though the expression of the spectral density
has a not an explicit analytical form, but has to be computed numerically, one can adopt a
special assumption on the behaviour of the density of the eigenvalues of F ⊤F to estimate
the typical times at which the intermediate drop occurs. Generally speaking, the spectrum
of F ⊤F can be composed by two separated bulks, as observable in Fig. (9). This happens
when σ2

2 and σ2
1 are significantly different. In analogy with the single variance scenario, we

name γ+ the left bound of the bulk associated to higher eigenvalues, i.e. with the higher
variance, and γ− the right bound of the bulk associated with smaller eigenvalues, i.e. smaller
variance. Most commonly, γ− = γ−(σ2) and γ+ = γ+(σ1). In this case the gap-forming
phenomenology provides for two distinct processes: the emergence of intermediate gaps (i.e.
steps in the dimensionality plot) between spearated bulks of the spectrum, the opening of
a final gap that allows to infer the dimensionality of the full manifold. The width of the
intermediate gap between two bulks can be obtained from Eq. (27) as

∆GAP
inter (t; σ1, σ2) = t

t + γ−(σ2) −
t

t + γ+(σ1) . (18)

By imposing ∆GAP
inter (t; σ1, σ2) = ∆ one finds the following quadratic form

∆t2 +
[
(∆− 1)γ− + (∆ + 1)γ+

]
t + ∆γ−γ+ = 0. (19)

Considering ∆≪ 1 and γ+ ≪ γ− the opening time for the intermediate gap can be found by

tin(∆) ≃ ∆−1γ−(σ1), (20)

that is a reference time at which the gap becomes visible. On the other hand, by assuming
the closure time to be close to zero, it can be obtained as

tfin(∆) ≃ ∆γ+(σ2). (21)
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(b) t = 0.1
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(c) t = 0.01
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(d) t = 5e-4

(e) t = 10 (f) t = 0.1 (g) t = 0.01 (h) t = 5e-4

Figure 4: Spectrum of the eigenvalues of Jt and drop in the dimensionality of the data-
manifold estimated from theory in the double-variance case, with αm = 0.5, σ2

1 = 1, σ2
2 = 0.01,

f = 0.75. Numerical data are generated with d = 100 and collected over 100 realizations of
the F matrix.

Furthermore, the time at which the gap is maximum in width, and so maximally visible, is
located in between tin and tfin. This is the most important time scale for the problem, it is
obtained by imposing ∂∆GAP/∂t = 0 and it measures

tmax =
√

γ−(σ1)γ+(σ2). (22)
Indeed, when σ2

1 ≫ σ2
2 the total spectrum can be approximated by a mixture of two separated

Marchenko-Pastur distributions, with variances σ2
1 and σ2

2 , and parameters αm and γ to be
rescaled with respect to f and (1− f). This approximation becomes exact under a slight
modification of F which does not imply any loss of the quality of the description. Now the
relevant quantities for the gap become

∆GAP
inter (t; σ1, σ2) =

t
[
fσ2

1(1−
√

1
fαm

)2 − (1− f)σ2
2(1 +

√
1

(1−f)αm
)2][

t + (1− f)σ2
2(1 +

√
1

(1−f)αm
)2
][

t + fσ2
1(1−

√
1

fαm
)2
] (23)

tin(∆) ≃ ∆−1f

(
1−

√
1

fαm

)2

σ2
1 , (24)

tfin(∆) ≃ ∆(1− f)
(

1 +

√
1

(1− f)αm

)2

σ2
2 . (25)

tmax =
√

f(1− f)
(

1−
√

1
fαm

)(
1 +

√
1

(1− f)αm

)
σ1 · σ2. (26)

This same analysis can be extended to the more general case where the spectral density is
known to be formed by different detached bulks, associated to hierarchically smaller variances
of the data. The evolution of the intermediate gaps in a double-variance diffusion model is
reported in Fig. 4: notice that tmax = O(σ2) is consistent with Fig. 4b and 4f, where the gap
was found to be maximum in width. It is worth noting that subspaces with higher variances
are the first ones to be explored by diffusion, and to be learned by the model. This point
suggests that the model is sensitive to the parameters of the probability distribution on the
manifold as recently suggested by other works in the literature (see section 9 for further
details).

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

7 Experiments with synthetic linear datasets

We first measure the spectrum of the singular values of the Jacobian of a score function
trained through a neural network on a linear manifold data-model generated by two variances
σ2

1 , σ2
2 . Results are reported in Figure 5 (left and central panels) for one arbitrary choice of

the fraction f . The opening of the gaps is consistent with the theory for the exact score: an
intermediate gap associated to the subspace with higher variance first opens; subsequently,
the gap relative to the lower variance subspace, which here corresponds to the final gap,
opens. We can infer the dimensions of the subspaces by subtracting the dimension signed by
the dashed line to d. We underline the fact that higher-variance subspaces are learned first
by repeating the experiment after swapping the values of the variances. Eventually, the right
panel in Figure 5 reports the same experiments where variances are uniformly generated in
the interval [10−3, 1]: it is evident that the d intermediate gaps is now a continuous line, as
it is expected to be in more realistic natural data-sets.
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Figure 5: Ordered singular values obtained with the trained score model, for difference
variances on the subspaces. Data are generated according to the linear-manifold model with
d = 100 and m = 40. Left: σ2

1 = 1, σ2
2 = 0.01, f = 0.75; Center: σ2

1 = 0.01, σ2
2 = 1, f = 0.75;

Right: variances sampled uniformly between 10−3 and 1.
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Figure 6: Comparison between spectra obtained with the trained score model and with the
numerical analysis, for difference variances on the subspaces. Data are generated according
to the linear-manifold model with d = 100 and m = 40, σ2

1 = 1, σ2
2 = 0.01, f = 0.75; from

left to right, the spectra are evaluated a time t ≈ 0.45, t ≈ 0.3, t ≈ 0.11.

We will now compare the gaps computed analytically with ones obtained from real neural
networks trained on the same linear data-model. The results of such comparison are presented
in figure 6, and they show a decent agreement between the ordered distribution of the singular
values obtained through empirical methods, and the relative analytical counterpart, computed
through the replica method. The opening of the predicted intermediate gaps signal the right
dimension of the linear subspaces as verified from the experiments. One can notice from
the figure that the analytical profile shows the shape of a sharp step between the zero value
along the x-axis and the first appearing gap: this shape is related to the Dirac-delta spike
that the spectrum of the eigenvalues presents at r = −1 (see Appendix A.2 for details about
the spectrum); on the other hand, the numerical profile looks different in the same region,
and this behaviour is associated to the absence of the spike in the distribution of the singular
values, that leaves room to a separated bulk from the other ones. This evident discrepancy
between theory and experiment is probably due to the final configuration of the trained
neural network and leaves space for further investigations.
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Figure 7: Jacobian spectra of diffusion models trained on MNIST, Cifar10 and CelebA.

8 Experiments with natural image datasets

While our theoretical analysis is limited to linear random-manifold models, several qualitative
figures of its phenomenology can be observed in networks trained in natural images. Fig. 7
shows the temputal evolution of the spectrum estimated numerically from the Jacobian of
models trained on MNIST, Cifar10 and CelebA and averaged over 100 images. The details
of this experiment are given in Supp. C and Supp. B. We see that for low times, the network
trained on MNIST shows a sharp total manifold gap at around the 700-th singular value.
Consistently with our theory, for larger time the spectrum becomes smoother. The non
averaged result obtained around single images also reveal the presence of several discernible
small intermediate gaps (see left panel in Fig. 7). The results on Cifar10 and CelebA
are more difficult to interpret, probably due to a less well-defined manifold and subspace
structure. However, the inflection points of the spectra reveal a more suble gap structure,
which recedes for small values of t as more local subspaces are revealed.

9 Related work & Discussion

The evolution of the fixed-points of the exact score was studied in (Raya and Ambrogioni,
2023) for the analysis spontaneous symmetry breaking and in (Biroli and Mézard, 2023) for
the analysis of memorization and disordered phase transitions. The use of spectral gaps
to quantify the dimensionality of the manifold was introduced in (Stanczuk et al., 2022).
This work was concerned with the total manifold gap and did not investigate sub-gaps
and temporal dynamics. Several recent studies investigated the local linear structure of
trained diffusion models. For example, (Kadkhodaie et al., 2024) studied the expansion of
the Jacobian of trained models and described it as an optimal geometry-adaptive Harmonic
representation. Similarly, (Chen et al., 2024b) characterized the linear expansion of the
Jacobian of trained networks and characterized the resulting components in terms of their
frequency content. Our work can be seen as a theoretical complement with this more applied
line of research, as we provide a comprehensive random-matrix analysis of the phenomenon
in tractable models. The dynamic geometry of diffusion manifolds were also investigated in
(Chen et al., 2024a) using techniques inspired by research on latent generators such as GANs
and autoencoders. Another recent work (Wang et al., 2024) links the underlying structure
of real data to the generalization abilities of diffusion models, showing an equivalence
to subspace clustering. Finally, (Sakamoto et al., 2024) studies the dynamic geometry of
tubular neighborhoods of the latent manifold and connect their singularities with spontaneous
symmetry breaking events. Generative diffusion models exhibit rich geometric structures that
have the potential to explain their impressive generative capabilities. Our work introduces
the use of random-matrix theory techniques for the analysis of their dynamic local geometry
and gives room to the use of advanced statistical physics techniques, which may in the future
unveil more global, topological and non-linear aspects of the dynamic geometry of diffusion
generative models.
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A Analytical derivation of the Spectrum of Jt

A.1 Single variance scenario

We want to compute the spectrum of the matrix in 14. Let us first consider the case in
which F is a d×m matrix with Gaussian entries, and call γ the eigenvalues of FF ⊤.
The function that gives the eigenvalues r of Jt as function of γ is

rj = 1
t

γj

1 + 1
t γj

− 1 = − t

t + γj
(27)

Thus, knowing that the distribution of γ is Marchenko-Pastur, we can obtain the distribution
of r

ρt(r) = −αm

2π

1
r(1 + r)

√
(r+ − r) (r − r−) + (1− αm) δ (r + 1) θ

(
α−1

m − 1
)

(28)

for r ∈ [r−(t), r+(t)], with r±(t) = − t(
1± 1√

αm

)2
+t

.

One could ask whether the bulk of Jt separates from r = −1 at a discrete time. This
separation corresponds to a drop in the histogram of eigenvalues. According to Eq. (28), the
bulk is always separated from the spike at finite time t, because (1 + α

−1/2
m )2 + t for every t,

and the width of the gap is given by ∆GAP(t) = r−(t) + 1

∆GAP(t) = (1 + α
−1/2
m )2

t + (1 + α
−1/2
m )2

. (29)

With respect to the starting spectrum of F ⊤F , this condition reads

γ+

t + γ+
= ∆ (30)

so the time when we see the drop at a scale ∆ is t = γ2
+

(1−∆)
∆ .
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Figure 8: Spectrum of the eigenvalues of F ⊤F as obtained from random matrix theory with
eigenvalue γ+ indicated by red arrow. γ+ is provided by the Marchenko-Pastur density
function. Control parameters are chosen to be αm = 0.5, σ2 = 1.
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A.2 Double variance scenario

We want to compute the spectrum of Jt when Fiµ ∼ N (0, σ2
1) for µ < fm/2 and Fiµ ∼

N (0, σ2
2) for µ > (1 − f)m/2, with f ∈ [0, 1]. We use the replica method to compute the

spectrum of A = 1
m FF ⊤, then with a transform we obtain the spectrum of Jt. In order

to obtain the spectrum we need to compute the expectation of the resolvent of A in the
d→ +∞ limit, and to do this we will rely on the replica method

E [gA(z)] = −2
d

∂

∂z
E

[
log 1√

det (zId −A)

]
(31)

= −2
d

∂

∂z
lim
n→0

E
[

Zn − 1
n

]
(32)

with

Zn = det (zId −A)−n/2 (33)

=
∫ n∏

a=1

d∏
i=1

dϕa
i√

2π
e

− 1
2

∑n

a=1

∑d

i,j=1
ϕa

i

(
zδij− 1

m

∑
µ

FiµFjµ

)
ϕa

j (34)

and taking the expectation

E [Zn] =
∫ ∏

a,i

dϕa
i√

2π
e− z

2

∑
a

∑
i

(ϕa
i )2

E
[
e

1
2m

∑
a

∑
µ

(
∑

i
ϕa

i Fiµ)2
]

(35)

=
∫ ∏

a,µ

dηa
µ√

2π
e

− 1
2

∑
a

∑
µ

(ηa
µ)2
∫ ∏

a,i

dϕa
i√

2π
e− z

2

∑
a

∑
i

(ϕa
i )2 ∏

µ

E
[
e

1√
m

∑
a
(
∑

i
ϕa

i Fiµ)ηa
µ

]
(36)

where in the last step we have used the independence of the rows of F and applied a
Hubbard-Stratonovic transform.
We can separate the product over µ and integrate over the distribution of F

E [Zn] =
∫ ∏

a,µ

dηa
µ√

2π
e

− 1
2

∑
a,µ

(ηa
µ)2
∫ ∏

a,i

dϕa
i√

2π
e

− z
2

∑
a,i

(ϕa
i )2

(37)

×
fm−1∏
µ=1

E
[
e

1
2

√
m

∑
a
(
∑

i
ϕa

i Fiµ)ηa
µ

] m∏
µ=fm

E
[
e

1
2

√
m

∑
a
(
∑

i
ϕa

i Fiµ)ηa
µ

]
(38)

=
∫ ∏

a,µ

dηa
µ√

2π
e

− 1
2

∑
a,µ

(ηa
µ)2
∫ ∏

a,i

dϕa
i√

2π
e

− z
2

∑
a,i

(ϕa
i )2

(39)

× e
σ2

1
2m

∑
i

∑
µ<fm

(
∑

a
ϕa

i ηa
µ)2+

σ2
2

2m

∑
i

∑
µ≥fm

(
∑

a
ϕa

i ηa
µ)2

(40)

=
∫ ∏

a,µ

dηa
µ√

2π
e

− 1
2

∑
a,µ

(ηa
µ)2

∫ ∏
a,i

dϕa
i√

2π
e

− z
2

∑
a,i

(ϕa
i )2

) (41)

× e
σ2

1
2m

∑
ab

(
∑

i
ϕa

i ϕb
i)
(∑

µ<fm
ηa

µηb
µ

)
+

σ2
2

2m

∑
ab

(
∑

i
ϕa

i ϕb
i)
(∑

µ>fm
ηa

µηb
µ

)
. (42)

Introducing qab = 1
d

∑
i ϕa

i ϕb
i
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E [Zn] =
∫ ∏

a,b

dqabdq̂ab

2π

∫ ∏
ai

dϕa
i√

2π
e−
∑

ab

1
2 q̂ab(dqab−

∑
i

ϕa
i ϕb

i)− z
2

∑
a

∑
i

(ϕa
i )2

(43)

×

[∫ n∏
a=1

dηa

√
2π

e− 1
2

∑
a

(ηa)2+
σ2

1
2αm

∑
ab

qabηaηb

]fm

(44)

×

[∫ n∏
a=1

dηa

√
2π

e− 1
2

∑
a

(ηa)2+
σ2

2
2αm

∑
ab

qabηaηb

](1−f)m

(45)

=
∫ ∏

a,b

dqabdq̂ab

2π
endΦ(q,q̂) (46)

with

Φ(q, q̂) = − 1
2n

∑
a,b

qabq̂ab + GS(q̂) + fαmGE(q, σ1) + (1− f)αmGE(q, σ2) (47)

where

GS(q̂) = 1
n

log
∫ n∏

a=1

dϕa

√
2π

e− z
2

∑
a

(ϕa)2+ 1
2

∑
ab

q̂abϕaϕb

(48)

GE(q, σ) = 1
n

log
∫ n∏

a=1

dηa

√
2π

e− 1
2

∑
a

(ηa)2+ σ2
2αm

∑
ab

qabηaηb

(49)

Using the replica symmetric ansatz qab = δabq, q̂ab = −δabq̂

GS(q̂) = −1
2 log(z + q̂) (50)

GE(q, σ) = −1
2 log(1− σ2q

αm
). (51)

Putting all together we have

Φ(z) = 1
2 q̂q − 1

2 log(z + q̂)− f
αm

2 log
(

1− σ2
1q

αm

)
− (1− f)αm

2 log
(

1− σ2
2q

αm

)
. (52)

The integral can be evaluated by the saddle point method

q = 1
z + q̂

(53)

q̂ = −f
αmσ2

1
αm − σ2

1q
− (1− f) αmσ2

2
αm − σ2

2q
. (54)

We can find the Stieltjes transform

E[gA(z)] = −2αm
∂Φ(z)

∂z
(55)

= αmq∗(z) (56)
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where q∗ is found by solving the saddle point equation

zq3 + q2
(

αm − 1− zαm

σ2
1
− zαm

σ2
2

)
+

+ q

(
α2

m

σ2
1σ2

2
(z − fσ2

1 − (1− f)σ2
2) + αm

σ2
1

+ αm

σ2
2

)
− α2

m

σ2
1σ2

2
= 0. (57)

The asymptotic distribution of eigenvalues can be obtained from the Stieltjes transform as

ρ(γ) = 1
π

lim
ϵ→0+

Im (gA(γ − iϵ)) (58)

= 1
π

lim
ϵ→0+

ImΦ′(γ − iϵ) (59)

= 1
π

αm lim
ϵ→0+

Im[q∗] (60)
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Figure 9: Spectrum of the eigenvalues of F ⊤F as obtained from random matrix theory
with eigenvalues γ− and γ+ indicated by red arrows. Control parameters are chosen to be
αm = 0.5, f = 0.5, σ2

1 = 1, σ2
2 = 0.1.

Once the density of the eigenvalues is computed one can perform the same change of variables
described in Appendix A.1 for the case of single variance, and obtain the density ρt(r) for
the eigenvalues of Jt.
Figures (6.4) and (4) report the evolution in time of the spectral density, as well as its
cumulative function, when f = 0.25 and f = 0.75. The cumulative function has been used
to estimate the formation of the intermediate gaps to compare with the experiments for the
estimation of the data-manifold dimension.

B Network training and Model Architecture Details

Dataset Image Size Latent Dim. Channel Mult. Param. Count Batch size Iterations
Cifar10 32 128 (1, 2, 2, 2) 35.7M 128 500,000
MNIST 28 128 (1, 2, 2) 24.5M 128 400,000
CelebA 64 64 (1, 1, 2, 2, 4, 4) 27.4M 64 800,000

Table 1: Table displaying both model and training configurations for each dataset.

For the image datasets, we used the diffusion setting in (Ho et al., 2020). We use the variance
scheduler with βmin = 10−4 and βmin = 2 × 10−2, T = 1000 time steps, and score model
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backbone (PixelCNN++ (Salimans et al., 2017)). Furthermore, for each of the datasets, we
adjusted the partameters to account for the different complexity see Table 1.
For the linear models, we used a Variance Exploding continuous score model trained with
2M steps (batch size 128). The model had a Residual architecture with size 128 hidden
channels in each layer, two residual blocks comprised by two linear layers with SiLu.
We primarily utilized NVIDIA Tesla V100 GPUs with 32 GB of memory.

C Experimental methodology: Computing the Singular Values
of the Jacobian of the Score Function

For computing the singular values, we use the procedure from (Stanczuk et al., 2022) reported
in algorithm 1. For the linear models and MNIST models we used a symmetrized version
which we empirically found to be more stable, reported in algorithm 2.

Algorithm 1 Estimate singular values at x0

Require: sθ - trained diffusion model (score), t0 - sampling time, K - number of score
vectors.

1: Sample x0 ∼ p0(x) from the data set
2: d← dim(x0)
3: S ← empty matrix
4: for i = 1, ..., K do
5: Sample x

(i)
t0
∼ N (xt0 |x0, σ2

t0
I)

6: Append sθ(x(i)
t0

, t0) as a new column to S
7: end for
8: (si)d

i=1, (vi)d
i=1, (wi)d

i=1 ← SVD(S)

Algorithm 2 Estimate singular values at x0 with central difference
Require: sθ - trained diffusion model (score), t0 - sampling time, K - number of score

vectors.
1: Sample x0 ∼ p0(x) from the data set
2: d← dim(x0)
3: S ← empty matrix
4: for i = 1, ..., K do
5: Sample x

+(i)
t0
∼ N (xt0 |x0, σ2

t0
I)

6: Sample x
−(i)
t0
∼ N (xt0 |x0,−σ2

t0
I)

7: Append sθ(x
+(i)
t0

,t0)−sθ(x
−(i)
t0

,t0)
2 as a new column to S

8: end for
9: (si)d

i=1, (vi)d
i=1, (wi)d

i=1 ← SVD(S)
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