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A Comparison with Existing GNN Variants

As described in Section 2, there are two directions to augment the expressive power of MPNNs:
augmenting node features and designing novel architectures. However, we show in Proposition 3.2
that the important graph property of Ego-AE cannot be captured by the classical MPNN framework,
which has not been explored by existing GNN variants. Specifically, previous efforts in feature
augmented GNN variants aimed to improve the power by incorporating various additional feature,
e.g., graph position [59, 27], spatial orientation of edges [25] and port numbering [42]. However,
these additional features are often difficult to generalized [5] and they do not investigate the Ego-AE
property. In terms of novel architecture, GIN [55] and k-GNN [38] were proposed to optimize
the expressiveness in graph isomorphism test, which followed the hierarchy of 1-WL and k-WL
framework, respectively. Recent work showed that combining multiple aggregator functions can also
improve the expressive power [9]. However, these works mainly investigated the expressiveness of
GNNs with graph isomorphism test, which is proven to be an easier task than Ego-AE in previous
work [46].

Our work follows the later branch of research. Specifically, we propose a novel GNN model, i.e.,
GRAPE, which can theoretically capture the structural roles defined by Ego-AE. Moreover, we design
a genetic algorithm and a compatible incremental subgraph matching algorithm to efficiently search
the architecture of GRAPE, which allows it to automatically focus on the most relevant Ego-AE
feature in given datasets. To conclude, the proposed GRAPE fundamentally extends GNN’s capability
in modeling automorphic equivalences and reduces the barrier of generalizing to different datasets.

(a) Example graph G1. (b) Example graph G2. (c) Computation graph of MPNN.

Figure A1: An illustration of the Ego-AE sets in example graphs and the limitations of current GNNs,
where the nodes with same colors have identical features.

B Proofs

B.1 Proposition 3.2

Proof. We provide a constructive proof for Proposition 3.2 in Figure A1. We can observe that
example graphs G1 and G2 have different Ego-AE sets for the corresponding ego node v1, but
their computation graphs of 2-layer GNN are exactly the same, which are shown in Figure A1
(c). In fact, since each node in graph G2 can be mapped to a node in graph G1 with identical
1-hop neighborhood, GNNs with arbitrary layers cannot discriminate these two nodes. Therefore, it
constitutes a constructive proof for Proposition 3.2.

B.2 Theorem 3.1

Proof. Suppose node va and vb have different Ego-AE sets T a = {Aa
1 , ...Aa

j , ...} and T b =

{Ab
1, ...,Ab

j , ...}. Without loss of generality, we assume Aa
j and Ab

j are the two sets of nodes that are
different. The recently developed “deep set” theory provides a framework for injective functions on
set data [60], which is then extended to set scenario showing sum operator is an injective function on
set [55]. Therefore, SUM(·) will map them to distinct embeddings ya

i and yb
j since it is an injective

function.
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Algorithm A1 GRaph AutormorPhic Equivalent Network (GRAPE)

1: Input graph G = (V, E), node feature X (v), Ego-AE sets {T1, ..., TL} for L subgraph templates,
layer k ∈ [1,K1], non-linearity σ(·);

2: Node embedding h(v), h0(v)← X (v),∀ v ∈ V;
3: Ground truth y(v); loss function Loss(·, ·); epochs n ∈ [1, N ];
4: for n ∈ 1, ..., N do
5: for k ∈ 1, ...,K1 do
6: # AE-aware aggregator with various subgraph templates
7: for Tl ∈ {T1, ..., TL} do
8: Compute hk

l (v) using (2)
9: end for

# Squeeze-and-excitation module to fuse multi templates embeddings
10: compute αk using (4);
11: compute hk(v) using (3);
12: end for
13: ŷ(v) = MLP (hK1(v))
14: Back_Propagation(Loss(ŷ(v), y(v)))
15: end for
16: Return Accuracy(ŷ(v), y(v))

Since node feature X is countable, the embedding of Ego-AE sets y is also countable. Therefore, it
can be mapped to natural numbers with some functionZ : Y → N. Each node has a set of embeddings
corresponding to its Ego-AE sets Y = {SUM({X (v)|v ∈ Aj}) | Aj ∈ T }, Y = {yj} ⊂ Y , where
the cardinality of Y is defined by the number of Ego-AE sets M for the given subgraph template. We
can construct a function f(y) = M−Z(y) so that

∑
j∈[1,M ] βjf(yj),yj ∈ Y is unique for each set

of embeddings, i.e.,
∑

j∈[1,M ] βjf(·) is an injective function on Y [60].

Therefore, for any injective function g(·), the g(
∑

j∈[1,M ] βjf(SUM({X (v)|v ∈ Aj}))) can learn
distinct embedding for va and vb, since the composition of three injective functions is still an injective
function. If we use ψ(·) to denote g ◦ f , then it is equivalence to ψ(

∑
j∈[1,M ] βjSUM({X (v)|v ∈

Aj})), where ψ(·) is an injective function since both f(·) and g(·) are injective. Therefore, there exist
some injective functions ψ(·) that allow the AE-aware aggregator to learn distinct node embedding
for va and vb. Note that since the initial node feature X is countable and the AE-aware aggregator is
injective, the hidden embeddings hk−1(v), k ∈ [2,K] is also countable. Therefore, this argument
holds for AE-aware aggregators in all hidden layers as described in (2). Besides, the universal
approximation theorem suggest that we can use multi-layer perception (MLP) with at least one
hidden layer to approximate any injective function. Therefore, we can use MLP(·) to approximate
the injective function ψ(·). As a result, our AE-aware aggregator described in (2) can discriminate
the nodes with distinctive Ego-AE feature.

B.3 Proposition 3.1

Proof. As defined in Figure A2 and Appendix C.2, we have two types of mutations: a) node mutation
that attaches a new node to a randomly selected node in parent subgraph template; and b) edge
mutation that randomly adds an edge between two unconnected nodes in parent subgraph template.

Given a graph G = (V, E), let the matched instance set of a parent subgraph template Sp = (Up,Rp)
be Mp. We define the mutated children subgraph template as Sc = (Uc,Rc). Based on the
definitions of edge mutation and node mutation, the parent subgraph template is a subgraph of the
children subgraph template, i.e., Up ⊂ Uc,Rp ⊂ Rc. Therefore, the matched instances of parent
subgraph template will be a partial match of the children subgraph template, i.e., mp ⊂ mc : ∃mp ∈
Mp,∀mc ∈Mc. Therefore, mc can be efficiently identified by incrementally extending mp.
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Figure A2: Illustration of the mutate and crossover operations in the proposed genetic algorithm.

Figure A3: Illustration of identifying Ego-AE sets with incremental subgraph matching.

C More Details for Section 3

C.1 GRAPE Algorithm in Section 3.1

The GRAPE algorithm (Algorithm A1) takes a graph G, node feature vector X (v) and the Ego-AE
sets {T1, ..., TL} identified by given subgraph templates as input. In each layer, GRAPE uses AE-
aware aggregator to transform the features in each Ego-AE set based on (2). Besides, the embeddings
learned from each subgraph template are fused together with a squeeze-and-excitation module based
on (3) and (4). Finally, the final layer embedding is transformed by a two-layer multi-layer perception
module (MLP) to generate prediction results.

C.2 Genetic Algorithm in Section 3.2

C.2.1 Illustration of Genetic Operations

Figure A2 illustrates the node mutation, edge mutation and crossover operations in the proposed
genetic algorithm. Specifically, the node mutation will generate a children subgraph by randomly
adding one node to the input parent subgraph, while edge mutation generates a children subgraph
by randomly an edge between two unconnected nodes in the input parent subgraph. Besides, the
crossover operation will randomly exchange some subgraph templates between two genes. These
operations effectively allow us to gradually search for slightly more complicated subgraph templates
and try out different combinations of subgraph templates.

C.2.2 Incremental Subgraph Matching

To accelerate the matching from the subgraph template to each node’s neighborhood, we propose to
leverage the similarity between children subgraph and parent subgraph. Inspired by Proposition 3.1,
we design an incremental subgraph matching algorithm that identifies the matched instances of
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children subgraph by only examining the matched instances of parent subgraph, which is illustrated
in Figure A3. Specifically, given the matched instances of Template 1, i.e., [v1, v2, v3, v4] and
[v1, v3, v7, v6], we identify the matched instances of its node mutation children Template 2 by
exploring the neighbors of the current matched instances. Since the newly added node is attached to
u4, we will only examine the neighbors of nodes that mapped to u4, i.e., v6 and v4. Therefore, we
find v8 as a feasible candidate and identify the matched instance of Template 2 as [v1, v2, v3, v4, v8].
As for the edge mutation children Template 3, we only need to examine the newly added edge
between u2 and u3 in the matched instances. We find v2 and v3 are indeed connected but there
is no edge between v3 and v7. Therefore, we identify one matched instance for Template 3, i.e.,
[v1, v2, v3, v4]. Complex subgraph templates with numerous nodes usually result in exponential
growth in matching computation time compared to the simpler ones [8], but they often have much
fewer matched instances. Therefore, by leveraging the feature of genetic search with incremental
subgraph matching, we can significantly reduce the computation complexity by only examining the
matched instances of parent subgraph instead of starting from scratch.

C.3 Time Complexity

GRAPE model. Here, we analyze time complexity of one forward pass of GRAPE model. Specif-
ically, suppose we have L subgraph templates, each template has M Ego-AE sets and each set
contains Q nodes on average, the overall time complexity of training GRAPE with K layers is
O(|V|LMQK), where |V| is the number of nodes on graph. Empirically, the matched neighbor of
each subgraph is a subset of each node’s neighborhood, i.e., MQ ≤ |N |. Therefore, GRAPE’s time
complexity is comparable to the popular MPNNs, e.g., GraphSAGE and GCN, which typically have
a time complexity of O(|V||N |K).

Incremental subgraph matching. We assume the parent subgraph has Πe ego-centered automor-
phisms and |Mp| match instances, and each node has |N | neighbors on the target graph. Then, the
complexity of identifying the match instances after adding node mutation is O(|Mp||N |Πe), since
we only need to examine the possible extensions. Similarly, the complexity of examining adding
edge mutation is O(|Mp|Πe). They both have significantly lower the O(|V|!|V|) worst case com-
putation complexity deduced by previous work [8]. The average case computation complexity can
not be analytically estimated unless very restrictive assumptions are made. However, the empirical
experiments in Table 3 and Figure 5 demonstrate our proposed incremental search algorithm can
significantly outperform baselines on real-world datasets. Moreover, similar sampling approach as in
GraphSAGE [19] can be adopted to control the size of match instance set |Mp|, which can ensure
the computational footprint of our algorithm is feasible.

D Experiments Details

D.1 Experiment Setting and Hyper-parameter

Following the setting in previous works [55], we perform a grid search on the following hyper-
parameters: 1) embedding size ∈ {16, 32}; 2) the dropout rate ∈ {0.3, 0.5}; 3) L2 regularization
coefficient ∈ {3 · 10−5, 5 · 10−5}; 4) initial learning rate ∈ {0.01, 0.03}, which is decayed by 50%
for every 100 epochs. To improve the robustness of experiment results, we report the average and
standard deviation of each model’s performance over 10 runs. In each run, we randomly split the
datasets into 60% training set, 20% validation set and 20% test set. Specifically, we use the training
set to learn the models, and report the classification performance o test set. We train each model
for 500 epochs with early stopping of 50 window size, i.e. the training is terminated if the model’s
performance on validation set does not improve for consecutive 50 epochs. Our model and all the
baseline models are implemented in Pytorch [39] with the Adam optimizer. We evaluate them on a
single machine with 4 NVIDIA GeoForce RTX 2080 GPUs.

D.2 Subgraph Templates Design

We design multiple subgraph templates to allow GRAPE to capture various automorphic equivalences,
which are presented in Figure A4. Here, we discuss the motivations for their design.
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Figure A4: Illustration of the designed subgraph templates.

1) Edge S1: it captures the basic connection in graph data, and has two sets of Ego-AE nodes,
i.e., {u1} and {u2}. Therefore, it leads to two Ego-AE sets: one contains the ego node itself
(corresponding to u1) and the other contains all the 1-hop neighbors (corresponding to u2).

2) 3-path S2: it captures the 2-hop neighborhood of the ego node and partition the neighbors into three
Ego-AE sets based on their hops from ego node, which maps to {u1}, {u2} and {u3}, respectively.
In the context of citation network, it captures the documents that co-cite one document. Besides, it
captures the individuals that have common friends in social network.

3) Triangle S3: This template captures an important pattern in graph data, i.e., triangle. Based on
the triadic closure theory [23, 20], this template captures the strong ties in social graph, i.e., the
individuals that form triangle structure tend to have similar feeling about an object. This template
maps the neighborhood into two Ego-AE sets that corresponds to {u1} and {u2, u3}, respectively.
But differs from edge template S1, {u2, u3} maps to the neighbors that tend to have stronger
influence on the ego node.

4) 4-path S4: similar to the 3-path template, this template maps the nodes in 3-hop neighborhood
into 4 Ego-AE sets based on their hops from ego node. It allows the model to access more far
away features.

5) 4-clique S5: this template captures the closed connected communities in graph data, which tend
to exhibit the “homophily effect” [36]. It maps the neighborhood into two Ego-AE sets that
corresponds to {u1} and {u2, u3, u4}, respectively.

6) Tailed-triangle S6: on the basis of triangle template S3, this template adds an additional neighbor
to the ego node. Therefore, it partitions the neighborhood into three Ego-AE sets, i.e., {u1},
{u2, u3} and {u4}, where {u2, u3} identifies the neighbors with strong ties and {u4} identifies
the neighbors connected by simple edge.

7) To S7: it identifies the neighbors that point to the ego node in directed graph. In the context of
e-commerce co-purchase network, u2 maps to items that often lead to the purchase of u1.

8) From S8: it identifies the neighbors that have directed edges from the ego node. In the context of
e-commerce co-purchase network, the purchase of ego node u1 often leads to the purchase of u2.

9) Bi-direct S9: it identifies the neighbors that are connected to and from the ego node, which are the
intersection of the nodes identified by template S7 and S8. Therefore, u2 maps to the items that
are frequently co-purchased with S11.

10) From-to S10: it maps to the unions of the nodes identified by template S7 and S8. Specifically, it
partitions the neighborhood into three Ego-AE sets, i.e. {u1}, {u2} and {u3}, which correspond
to the ego node itself, the nodes that point to ego node, and the nodes that are pointed from ego
node, respectively.

11) Directed-triangle S11: similar with the triangle template S3, this template captures the triangle
patterns in directed graph setting. Specifically, it leads to two Ego-AE sets, which correspond to
{u1} and {u2, u3}, respectively.

Specifically, we use {S1, S2, S3, S4, S6} for citation datasets, {S1, S2, S3, S5, S6} for social datasets,
and {S7, S8, S9, S10, S11} for amazon dataset.
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D.3 Results with Dummy and Random Initialized Node Feature

Here, we present the model performance on datasets with dummy and random initialized node feature
in Table A1 and Table A2, where the original node feature vectors are replaced by all-ones vectors
and randomly generated vectors. We can observe that GRAPE consistently outperforms all baseline
models with both experiment settings, where the relative accuracy gain over the best baseline models
reaches up to 44.7% and 48.6%, respectively. It indicates GRAPE is expressive with or without node
feature, which showcases its capacity in capturing rich structural features.

Table A1: Classification accuracy on datasets with dummy node feature (%). The best-performing
GNNs are in boldface.

Social Citation Ecomm.
Model Hamilton Lehigh Rochester JHU Amherst Cora Citeseer Amazon

GCN 19.5±1.5 23.4±1.3 22.4±1.6 19.3±0.8 18.1±1.7 31.0±1.2 21.5±0.9 38.8±1.0
GraphSAGE 18.8±3.3 20.6±3.1 20.4±2.3 18.6±2.2 17.0±2.4 29.7±1.6 20.0±0.9 38.5±1.0

GIN 22.7±5.1 19.2±2.5 22.1±1.7 24.2±4.0 18.9±3.9 29.5±1.3 21.1±1.5 39.1±0.9
GAT 16.8±1.4 23.5±3.4 21.5±0.9 17.6±1.1 16.9±2.3 25.8±2.9 18.2±0.9 38.7±1.2

Geniepath 27.5±2.8 23.3±1.7 21.7±1.5 21.4±3.6 25.3±3.4 31.4±1.7 19.1±1.0 38.2±0.9

Meta-GNN 23.7±1.6 25.6±1.5 25.8±1.1 28.8±2.3 23.1±3.2 30.4±1.4 24.5±1.7 38.6±1.1
Mixhop 19.8±0.0 23.1±0.1 17.9±0.1 18.6±0.2 17.3±0.1 31.9±0.1 18.1±0.0 38.9±0.1

DE-GNN 21.7±2.1 24.7±2.2 18.0±0.0 18.3±0.1 18.6±2.2 31.8±0.1 17.9±0.3 38.9±0.0

GRAPE 39.8±3.8 28.9±2.4 32.5±1.4 35.8±2.3 36.6±3.2 34.4±3.3 26.3±0.8 42.9±0.7

Table A2: Classification accuracy on datasets with random initialized node feature (%). The best-
performing GNNs are in boldface.

Social Citation Ecomm.
Model Hamilton Lehigh Rochester JHU Amherst Cora Citeseer Amazon

GCN 19.7±3.3 23.2±0.1 21.9±0.8 19.0±2.4 17.2±1.2 39.9±9.8 29.6±9.6 38.9±0.1
GraphSAGE 17.3±5.6 15.2±8.2 17.8±6.2 15.4±7.9 15.0±5.9 34.9±0.7 23.0±2.4 35.9±1.1

GIN 35.7±2.4 24.3±2.1 32.1±1.6 32.4±3.0 30.0±5.4 27.3±0.1 20.0±0.0 37.0±0.2
GAT 17.6±3.4 24.3±2.1 21.9±1.8 18.0±3.4 16.2±1.4 25.1±2.2 19.2±1.7 38.6±0.6

Geniepath 28.1±3.1 23.3±2.1 21.4±0.6 22.1±4.3 24.9±3.6 31.2±7.2 18.0±3.5 38.0±1.2

Meta-GNN 24.7±2.6 25.1±1.8 26.0±2.2 28.9±3.1 23.6±2.8 30.1±1.6 25.3±0.7 38.4±0.7
Mixhop 21.3±0.2 24.1±1.3 18.4±0.3 17.6±0.4 18.5±0.9 31.8±0.5 19.8±1.2 38.7±0.4

DE-GNN 21.9±1.6 23.2±0.1 18.0±0.0 21.6±1.0 20.7±3.3 31.9±0.0 18.2±0.1 38.9±0.0

GRAPE 38.9±3.0 31.1±1.5 34.3±0.6 34.0±2.0 37.2±3.5 40.7±3.5 44.0±4.7 39.1±3.5

D.4 Results with Different Subgraph Templates

Table A3: Classification accuracy with different subgraph templates on Lehigh dataset (%).
Subgraph Templates

Model S1 S2 S3 S4 S5 S6

GRAPE 23.3±1.7 22.6±1.3 26.1±4.0 22.9±0.6 23.2±1.3 23.3±0.9

D.5 License of Assets

The source code will be shared under MIT license. All the datasets used in this research is public
available.
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