
Learning to Iteratively Solve Routing Problems with
Dual-Aspect Collaborative Transformer (Appendix) 

A Issues in existing Transformer-based model for VRP 

We investigate the issues of mixed correlations and noisy biases when the absolute PE method of 
Transformer is directly used to learn improvement heuristics in Wu et al. [11]. By fusing the node 
feature embedding hi and the positional feature embedding gi through an addition operator, four 
attention query terms from input i to j exist during the self-attention of the encoder as follows, 

1 � � � �T 
αAbs = √ (hi + gi)W Q (hj + gj )W K 
i,j 

dk 

1 � � � �T 1 � � � �T 
= √ hiW Q hj W K + √ giW Q gj W K (12) 

dk dk 

1 � � � �T 1 � � � �T 
+ √ hiW Q gj W K + √ giW Q hj W K , 

dk dk 

where we call them node-to-node, position-to-position, node-to-position, and position-to-node, 
respectively. Obviously, they all share the same projection matrices W Q and W K , which might be 
unreasonable since they are used to represent correlations of different information [18]. Furthermore, 
the last two terms are essentially computing the mixed correlations across different information. 
Intuitively, queries from the location of a node (node feature) to the index of another node (positional 
feature) would be meaningless and vice versa. Such design may further bring noisy biases to routing 
problems. To verify this, we visualize the above four attention terms using a pre-trained model of Wu 
et al. [11] on a sampled batch of instances for TSP20. As shown in Figure 8, the last two correlations 
(node-to-position and position-to-node) seem to unreasonably present some random patterns across 
different node pairs, e.g., all nodes tend to have strong correlations with the ones appeared close to the 
end of the solution. This may yield biased attention, and thus affect the accuracy and the performance 
of the learned heuristics. In contrast, our DACT avoids such mixed correlations by learning feature 
embeddings for two aspects separately without fusing them into a unified representation. 
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Figure 8: Visualizations of correlations on a trained model of Wu et al. [11]. From left to right: corre-
lation for node-to-node, position-to-position, node-to-position, and position-to-node, respectively. 

B Details of CPE 

With the angular frequencies ωd decreasing along the vector dimension to make the wavelength 
1 

longer (the wavelength is chosen from [N bdim/2c , N ]), we adopt Eq. (13) to determine the specific 
frequencies. Empirically, we fix the last half of the angular frequencies to N (the largest value) to 
better preserve the desired cyclic and adjacency similarity properties. � 1 1 3bd/3c+1 (N−N bdim/2c )+N bdim/2c, ifd<bdimc ωd = dim 2 (13) 

N, otherwise 
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C Training algorithm 

Algorithm 1 n-step PPO with curriculum learning strategy 

Input: initial policy network parameters θ; initial value function parameters φ; clipping threshold ε; 
initial learning rate ηθ, ηφ, learning rate decay β. 

1: for epoch = 1 to E do 
2: for b = 1 to B do 
3: Randomly generate a batch of training instances Db; 
4: Initialize random solutions {δi} to Db; 

S(e)−S(0) 5: CL: Improve {δi} to {δi 0} by iterating Tinit = ξCLE steps with the current policy S(E)−S(0) � � −κ(epoch−E/2) network (DACT) πθ, where S(epoch) = 1/ 1 + e ; 
6: Set initial state s0 = {δ0}, t ← 0; i 
7: while t < Ttrain do 
8: Collect experience {(st0 , at0 , rt0 )}t+n by running policy πθ for n time steps where t0=t 

at0 ∼ πθ(at0 |st0 ); 
9: Set t ← t + n, πold ← πθ, vold ← vφ; 

10: for k = 1 to K do 
11: R̂ 

t+1 = vφ(st+1); 
12: for t0 ∈ {t, t − 1, ..., t − n} do 

ˆ + γ ˆ 13: Rt0 ← rt0 Rt0+1; 
ˆ ← ˆ 14: At0 Rt0 − vφ(st0 ); 

15: end for 
16: Compute PPO-Clip objective JPPO(θ) using Eq. (14) and clipped value function loss 

LBL(φ) using Eq. (16); 
17: θ ← θ + ηθrJPPO(θ); 
18: φ ← φ − ηφrLBL(φ); 
19: end for 
20: end while 
21: end for 
22: ηθ ← βηθ, ηφ ← βηφ; 
23: end for 

As presented in Algorithm 1, our training algorithm for DACT is adapted from the proximal policy 
optimization (PPO) [32], which is a prevailing RL algorithm. In particular, we follow the actor-critic 
variant of PPO which considers subtracting a baseline vφ(st) (i.e., value function) in the objective 
function (line 14) to reduce the variance. Our vφ is similar to the one in Wu et al. [11] as follows, (1) 
it takes the concatenation of node and positional embeddings as input, and then enhances them by a 
normal multi-head attention layer (with 6 heads); and (2) the enhanced embeddings are passed through 
a mean-pooling layer (similar to the max-pooling layer in the DAC decoder) and then processed by a 
four-layer feed forward network (with 128 and 64 hidden units) to get the output value. 

We train πθ and vφ for E epochs and B batches per epoch. For each batch, we generate training 
instances Db on the fly (line 3) and use the proposed curriculum learning strategy to initialize the state 
(line 4 to 6). We exploit the n-step return estimation to attain a satisfactory trade-off between one 
step temporal difference (TD) method and Monte Carlo (MC) method [11] (line 8 to 15). Afterwards, 
PPO performs K epochs of updates on Db with its objective clipped by a threshold ε to penalize 

πθ (at |st) large policy variances that move the probability ratio away from 1 (as shown in Eq. (14)), πold(at|st 

t+n � � � � XX πθ(at0 |st0 ) πθ(at0 |st0 ) 1 
JPPO(θ)= min Â 

t0 , clip , 1 − ε, 1 + ε Â 
t0 . (14) |Db|n πold(at0 |st0 ) πold(at0 |st0 ) 

Db t0=t 

We also clip the estimated value v̂(st) around the previous one as shown in Eq. (15) for better 
performance [43] and define the baseline loss in Eq. (16). The parameters of our two networks are 
updated by the Adam Optimizer (line 17,18) with a decaying learning rate (line 22), 

vclip(st0 ) = clip [vφ(st0 ), vold(st0 ) − ε, vold(st0 ) + ε] , (15) φ 
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��� ��� ��� ���t+n 
1 XX � �2 

LBL(φ) = φ
clip max vφ(st0 ) − R̂ 

t0 , v (st0 ) − R̂ 
t0 . (16) |Db|n 

Db t0=t 

For our curriculum learning strategy, we adopt κ = 0.2 and adjust the maximum CL step limit 
coefficient ξCL according to the difficulty level and the problem sizes of the routing problems. 
Ideally, the selected ξCL should satisfy the following conditions: (1) it is able to considerably boost 
the sample efficiency of training compared with the smaller ones, and (2) if a larger value is adopted, 
it may not be able to further bring a significant improvement. In practice, we recommend to determine 
the value by performing preliminary short training (around 10 epochs) with different ξCL . 

D Problem-specific description 

D.1 Travelling salesman problem (TSP) 

Problem setup. A TSP instance considers to find the shortest loop that visits N nodes exactly once, 
and finally returns to the original one. We follow Kool et al. [5] to generate the coordinates of N 
nodes in the unit square [0, 1] × [0, 1] with a uniform distribution. 

State feature representations. The node feature xi of node i in the state is represented by its 
location. Let ci denote the 2-dim coordinates of node i. We define xi =ci. 

D.2 Capacitated vehicle routing problem (CVRP) 

Problem setup. On the basis of TSP, we add another node with index 0 as the depot, and let 
the original N nodes be customers. A CVRP instance considers to find the minimum total travel 
distance to serve all customers with multiple vehicles. Hence the solution to CVRP may consist of 
multiple sub-routes, each of which is a loop of nodes visited by one vehicle, i,e., departing from the 
depot, visiting the customers on this sub-route, and finally returning to the depot. The constraints 
of CVRP include: 1) the total demands of a sub-route cannot exceed the vehicle capacity Q , and 
2) all customers must be visited exactly once. Similarly, we follow Kool et al. [5] to generate the 
coordinates of all nodes in the unit square [0, 1] × [0, 1] with the uniform distribution, and sample the 
demand of each customer uniformly from {1, 2, ..., 9}. The Q is set to be 30, 40 and 50 for CVRP20, 
CVRP50 and CVRP100, respectively. 

The length of CVRP solution might be larger than N +1 since the depot could be visited for multiple 
times. It may also vary even for the same instance, since different solutions may contain different 
numbers of sub-routes. For example, both δ0 = {0, 1, 2, 0, 4, 3, 0} and δ1 = {0, 1, 2, 3, 4, 0} with 
different lengths could be feasible solutions to CVRP with 4 customers. Such varying lengths render 
it much hard for parallel batch training. We thus add multiple dummy depots to the end of initial 
solutions following Wu et al. [11], where the number of dummy depots could be also considered as the 
maximum number of available vehicles. In the aforementioned example, after adding dummy depots 
(we index the depots as (1),(2),(3)), the solution δ1 

0 ={0(1), 1, 2, 3, 4, 0(2), 0(3)} will have the same 
length with δ0. In doing so, 1) it guarantees the same length of solutions for a instance batch; and 2) it 
allows the policy to automatically learn the number of sub-routes and their lengths in a solution. E.g., 
δ1 
0 ={0(1), 1, 2, 3, 4, 0(2), 0(3)} at step t could be changed to {0(1), 1, 2, 0(2), 4, 3, 0(3)} (equivalent to 
δ0) at step t+1 using the 2-opt operator given action (3, 0(2)). In our experiments, we empirically set 
10 (dummy) depots for CVRP20, and 20 (dummy) depots for CVRP50 and CVRP100, respectively. 

State feature representations. For CVRP, the node feature xi for node i in the state is represented 
as a 7-dimensional vector [11], which contains, 1) the 2-dim coordinates of node i, i.e., ci; 2) the 
distance from node i to its preceding neighbour; 3) the distance from node i to its succeeding 
neighbour; 4) sum of demands of the corresponding route before node i; 5) the demand of node i; 
and 6) sum of demands of the nodes preceding node i in the same sub-route. Due to the circularity 
and symmetry of VRP solutions, we consider the succeeding neighbour of the last node in a solution 
to be the first node, and the preceding neighbour of the first node to be the last node. 
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Figure 9: Box plots of the objective values obtained by our DACT model (without augments) for 10 
independent runs of 10,000 testing instances (with random seeds 1-10). (a) TSP100; (b) CVRP100. 

E More discussion on the experiments 

E.1 Hyperparameters 

We set ξCL as 0.25, 2, 10 for TSP 20, TSP50, and TSP100; 1, 4, 12.5 for CVRP20, CVRP50, and 
CVRP100, respectively. To avoid exploding gradients, we follow [5, 7, 17] to clip the gradient norm 
of each model parameter to be within 0.04, 0.2, and 0.45 for both TSP and CVRP of the three sizes, 
respectively. The reward discount factor is set to be γ = 0.999 for both problems. 

E.2 Training 

We train our model with E =200 epochs and B =20 batches per epoch with batch size 600 for TSP 
and CVRP. We use 512 for CVRP100 due to the limited GPU memory. Regarding the n-step PPO 
algorithm, we set n =4, Ttrain = 200 for TSP, and n = 10, Ttrain = 500 for CVRP. PPO performs 
K =3 mini-batch updates per batch with its objective function clipped by a threshold � =0.1. We 
adopt the Adam optimizer with a learning rate ηθ = 10−4 for πθ and ηφ =3×10−5 for vφ, both of 
which are decayed with β =0.985 per epoch for convergence. We use pretrained models for TSP50 
and CVRP50 to train TSP100 and CVRP100 for faster convergence, while for others the model is 
initialized randomly. We enable all state transitions of the MDP and the masking for feasibility of a 
batch to be performed in parallel on GPU for higher efficiency. Training time varies with problem 
sizes. An epoch takes 6m (minutes), 9m, and 13m for TSP20, TSP50 and TSP100; 21m, 35m, and 
53m for CVRP20, CVRP50 and CVRP100, which are shorter than those reported in Wu et al. [11]. 

E.3 Stability analysis of our DACT 

We study the stability of our DACT model (without augments) during inference stage. Figure 9 
depicts the box plots of objective values on TSP100 and CVRP100 for 10 independent runs of 10,000 
testing instances, where the minimum, lower quartile, mean, upper quartile, maximum, and possible 
outlets of results are depicted. In each sub-plot, we show the results for three step limit T , i.e., T =1k, 
5k, and 10k as per the settings in Table 1. For T =1k, the range of box plots are within only 0.005 
for TSP100 and 0.01 for CVRP100. As the step limit T increases, the range of box plots could be 
further narrowed. These results show that our DACT model has desirable stability for inference. 

E.4 Generalization on benchmark datasets 

We now evaluate the generalization performance of DACT by directly applying the trained models 
in Section 5 to solve instances from two well-known benchmark datasets, i.e., TSPLIB [38] and 
CVRPLIB [39], respectively. Note that these instances may follow completely different distributions 
from ours, such as clustered customer locations, corner depot location, etc. We report the results on 
instances with size between 50 and 200 for TSPLIB; and size between 100 and 200 for CVRPLIB. 

As recorded in Table 4 and 5, we first compare our DACT with Wu et al. [11] in the first group of 
columns to verify the superior performance of DACT to the existing Transformer based improvement 
model. In the second group of columns, we report the performance of several strong baselines 
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Table 4: Generalization of DACT v.s. baselines on TSPLIB benchmark dataset. 

Instance Wu et al. [11] 
(T=3k) 

DACT 
(T=3k) OR-Tools AM-sampling 

(N=10k) 
POMO 

×8 augment 
Wu et al. [11] 

(T=3k, M=1k) 
DACT 

(T=10k) 
DACT 

×4 augment 

eil51 2.82% 1.64% 2.35% 2.11% 0.00% 1.17% 0.00% 0.00%* 
berlin52 6.34% 0.03% 5.34% 1.67% 0.03% 2.57% 0.03% 0.03%* 

st70 4.59% 0.44% 1.19% 2.22% 0.30% 0.89% 0.30% 0.30%* 
eil76 6.88% 2.42% 4.28% 3.35% 1.49%* 4.65% 2.04% 1.67% 
pr76 1.40% 1.02% 2.72% 2.84% 19.97% 1.37% 0.03% 0.03%* 
rat99 17.18% 4.05% 1.73% 9.50% 7.51% 8.51% 1.16% 0.74%* 

KroA100 18.39% 0.86% 0.78% 79.49% 4.45% 2.08% 0.63% 0.45%* 
KroB100 19.97% 0.27% 3.91% 9.30% 5.83% 5.78% 0.25% 0.25%* 
KroC100 22.14% 1.06% 4.02% 8.04% 6.55% 3.17% 0.84% 0.84%* 
KroD100 16.33% 3.54% 1.61% 10.02% 8.74% 5.00% 3.54% 0.12%* 
KroE100 21.91% 2.17% 2.40% 3.10% 5.97% 3.29% 1.95% 0.32%* 

rd100 0.06% 0.08% 3.53% 1.93% 0.00% 0.06% 0.06% 0.00%* 
eil101 4.61% 3.66% 5.56% 3.97% 2.07%* 4.61% 3.66% 2.86% 
lin105 26.53% 3.41% 3.09% 32.13% 12.00% 2.48% 3.35% 0.69%* 
pr107 19.76% 5.86% 1.74%* 43.26% 5.66% 3.87% 5.01% 3.81% 
pr124 11.82% 1.56% 5.91% 4.41% 0.29%* 2.97% 1.22% 1.22% 

bier127 20.65% 4.08% 3.76% 1.71%* 60.56% 3.48% 3.79% 2.46% 
ch130 16.53% 6.63% 2.85% 2.96% 0.25%* 4.89% 5.48% 1.93% 
pr136 9.14% 5.54% 5.62% 4.90% 1.06%* 6.33% 5.14% 4.54% 
pr144 21.30% 3.44% 1.28% 8.77% 0.80%* 1.40% 3.44% 2.49% 
ch150 21.26% 3.60% 3.08% 3.45% 0.83%* 3.55% 3.45% 1.23% 

KroA150 17.80% 6.93% 4.03% 9.98% 13.15% 4.51% 3.91% 3.91%* 
KroB150 20.20% 6.10% 5.52% 9.87% 11.72% 5.40% 4.10% 2.82%* 

pr152 16.20% 4.48% 2.92% 13.47% 4.11% 2.17%* 3.59% 3.59% 
u159 21.97% 6.84% 8.79% 7.38% 2.19%* 7.67% 5.86% 3.16% 

rat195 25.40% 6.93% 2.84%* 16.57% 29.06% 9.90% 5.81% 4.99% 
d198 13.83% 12.27% 1.16%* 331.58% 45.98% 4.99% 10.74% 8.75% 

KroA200 22.44% 3.60% 1.27% 15.64% 20.00% 7.01% 1.52% 1.25%* 
KroB200 23.69% 10.51% 3.67%* 18.54% 21.06% 7.05% 6.28% 5.66% 

Avg. Gap for [50,100) 6.53% 1.60% 2.93% 3.61% 4.88% 3.19% 0.59% 0.46%* 
Avg. Gap for [100,150) 9.69% 3.01% 3.29% 15.29% 8.16% 3.53% 2.74% 1.57%* 
Avg. Gap for [150,200] 12.76% 6.81% 3.70% 47.39% 16.45% 5.81% 5.03% 3.93%* 

Avg. Gap for all instances 15.56% 3.90% 3.34% 22.83% 10.06% 4.17% 3.01% 2.07%* 
1 Bold indicates that the corresponding method is the best among all learning based ones. 
2 * indicates that the corresponding method is the best among all compared ones. 

including, 1) OR-Tools [37], 2) AM-sampling [5], 3) POMO ×8 augment [8], the state-of-the-art 
neural construction solver, and 4) the enhanced variant of Wu et al. [11], which samples M actions to 
produce multiple solutions at each step and retrieves the best one as the next state. We present the 
performance of our DACT with and without augments in the last group of columns. For TSPLIB, we 
infer the first 5 instances (size< 100) using DACT model trained on TSP50 and the remaining ones 
using model trained on TSP100. For CVRPLIB, we infer all instances using DACT model trained on 
CVRP100 since all the sizes are larger than 100. For AM-sampling and POMO, we use the trained 
models of our sizes which are provided by the authors. The results of Wu et al. [11] and OR-Tools 
are adapted from Wu et al. [11]. The gaps are calculated based on the optimal solutions provided in 
the datasets. We also list the average gaps for instances in different problem size intervals, i.e., [50, 
100), [100, 150) and [150, 200] for TSPLIB; and [100, 150) and [150, 200] for CVRPLIB. 

TSPLIB Pertaining to TSPLIB in Table 4, our DACT (T=3k) significantly outperforms Wu et al. 
[11] (T=3k) for all instances expect for ‘rd100’. It also performs better than the two neural con-
struction solvers AM-sampling (N=10k) and POMO×8 augment for all three problem size intervals 
in terms of the average gaps, where the superiority to them becomes more obvious as the problem 
size increases. With larger steps (T=10k), our DACT continues improving the solution qualities 
and outstrips all the baselines including OR-Tools and Wu et al. [11] (T=3k, M=1k), in terms of the 
overall average gap. Further empowered by 4 augments, our DACT consistently reduces the gaps and 
achieves the best performance on most instances with the lowest overall average gap, i.e., 2.07%. 

CVRPLIB Pertaining to CVRPLIB in Table 5, the depot and the customers follow various distribu-
tions. Though trained on uniform distribution, our DACT (T=5k) outperforms Wu et al. [11] (T=5k), 
AM-sampling (N=5k), and POMO×8 augment in terms of gap on all instances. Compared with 
OR-Tools, it yields lower overall average gap and lower average gaps for two problem size intervals. 
With T=10k and 6 augments, our DACT further reduces the overall average gap to 3.41%. Although 
POMO×8 augment and Wu et al. [11] (T=5k, M=100) win on 5 C (Clustered) typed instances, our 
DACT exhibits better performance on other C typed instances. It also outperforms other baselines on 
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Table 5: Generalization of DACT v.s. baselines on CVRPLIB benchmark dataset. 

Instance Depot 
Type1 

Customer 
Type2 

Wu et al. [11] 
(T=5k) 

DACT 
(T=5k) OR-Tools AM-sampling 

(N=10k) 
POMO 

× 8 augment 
Wu et al. [11] 

(T=5k, M=100) 
DACT 

(T=10k) 
DACT 

×6 augment 

X-n101-k25 R R 7.70% 2.09% 6.57% 32.95% 3.64% 5.60% 1.86% 1.47%* 
X-n106-k14 E C 4.86% 2.93% 3.72% 6.78% 1.85%* 2.83% 2.75% 1.87% 
X-n110-k13 C R 6.39% 1.43% 7.87% 3.15% 2.05% 4.40% 0.87% 0.13%* 
X-n115-k10 C R 13.32% 3.29% 4.50% 7.52% 3.49% 5.19% 3.26% 1.68%* 
X-n120-k6 E RC 16.16% 3.50% 6.83% 4.54% 2.12%* 5.56% 3.20% 2.38% 

X-n125-k30 R C 8.79% 6.51% 5.63% 35.16% 7.14% 4.71%* 5.47% 5.44% 
X-n129-k18 E RC 11.01% 2.93% 8.37% 4.00% 0.97%* 4.63% 2.55% 2.55% 
X-n134-k13 R C 16.06% 6.98% 21.61% 20.13% 4.22% 8.88% 5.56% 2.63%* 
X-n139-k10 C R 14.99% 2.54% 12.02% 4.30% 2.28% 4.90% 2.16% 2.08%* 
X-n143-k7 E R 20.20% 7.80% 11.27% 8.88% 2.79%* 6.61% 6.47% 3.55% 

X-n148-k46 R RC 16.38% 2.69% 7.80% 79.53% 19.88% 3.60% 2.22% 2.22%* 
X-n153-k22 C C 22.94% 11.06% 8.01% 78.11% 12.16% 4.53%* 9.02% 6.53% 
X-n157-k13 R C 17.15% 4.64% 2.57%* 16.30% 2.79% 3.60% 4.44% 3.12% 
X-n162-k11 C RC 19.16% 4.43% 6.31% 6.37% 4.77% 5.26% 3.04% 2.62%* 
X-n167-k10 E R 18.52% 5.37% 9.34% 8.41% 4.05% 8.27% 4.28% 3.47%* 
X-n172-k51 C RC 12.06% 6.23% 10.74% 85.37% 21.99% 4.36% 5.27% 3.41%* 
X-n176-k26 E R 19.49% 10.29% 8.99% 20.39% 10.27% 6.16% 8.07% 5.93%* 
X-n181-k23 R C 6.27% 3.41% 2.94% 6.45% 2.08% 2.08% 2.42% 2.08%* 
X-n186-k15 R R 17.71% 5.99% 7.75% 6.01% 2.15%* 7.65% 5.30% 4.94% 
X-n190-k8 E C 18.64% 7.97% 6.53%* 46.61% 9.25% 6.78% 6.73% 6.73% 
X-n195-k51 C RC 17.04% 7.00% 13.76% 79.26% 9.23% 4.47% 4.54% 4.36%* 
X-n200-k36 R C 9.60% 5.93% 4.15%* 26.25% 5.01% 4.26% 5.87% 5.86% 

Avg. Gap for [100,150) 12.35% 3.88% 8.74% 18.81% 4.58% 5.17% 3.31% 2.36%* 
Avg. Gap for [150,200] 16.24% 6.57% 7.37% 34.50% 7.61% 5.22% 5.36% 4.46%* 
Avg. Gap for all instances 14.29% 5.23% 8.06% 26.66% 6.10% 5.20% 4.33% 3.41%* 

1 There are three types of depot positions: Central (C), Eccentric/Corner (E), and Random (R). 
2 There are three types of customer distributions: Random (R), Clustered (C), and the mixture of Random and Clustered (RC). 
3 Bold indicates that the corresponding method is the best among all learning based ones. 
4 * indicates that the corresponding method is the best among all compared ones. 

most of R (Random) typed and RC (mixture of Random and Clustered) typed instances. This further 
verifies that our DACT generalizes well on real-world instances with various sizes and distributions. 

Remarks It is worth noting that although POMO×8 augment previously achieved the state-of-the-
art performance on synthetic instances according to Kwon et al. [8], it is still lacking in generalization 
on benchmark instances, whose underlying core model is AM (which showed the worst generalization 
performance in Table 1). Meanwhile, we can also infer from the results that the neural improvement 
models including Wu et al. [11] and our DACT have much better generalization capability than the 
neural construction ones including AM-sampling and POMO. Given the advantages of our DACT 
model, it achieves the new state-of-the-art generalization performance among all existing Transformer 
based models on these benchmark instances from TSPLIB and CVRPLIB. 

E.5 Licenses for used assets 

We list the used existing assets in Table 6. All of them are open-sourced assets for academic usage. 

Table 6: List of used assets and the licenses. 

Asset Type License 

OR-Tools [37] Code Apache License, Version 2.0 
LKH, LKH3 [28, 36] Code Available for academic research use 
AM [5] Code MIT License 
Wu et al. [11] Code MIT License 
POMO [8] Code MIT License 
TSPLIB [38] Dataset Available for any non-commercial use 
CVRPLIB [39] Dataset Available for academic research use 

Python Code Python Software Foundation License 
matplotlib Code Python Software Foundation License 
numpy Code BSD License 
PyTorch Code BSD License 
cv2 Code BSD License 
tdqm Code MIT License 
tensorboard Code Apache License 2.0 
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