
Under review as a conference paper at ICLR 2021

APPENDIX

A AWR DERIVATION

In this section, we derive the AWR algorithm as an approximate optimization of a constrained
policy search problem. Our goal is to find a policy that maximize the expected improvement
η(π) = J(π) − J(µ) over a sampling policy µ(a|s). We start with a lemma from Kakade &
Langford (2002), which shows that the expected improvement can be expressed in terms of the
advantage Aµ(s,a) = Rµs,a − V µ(s) with respect to the sampling policy µ, whereRµs,a denotes the
return obtained by performing action a in state s and following µ for the following timesteps, and
V µ(s) =

∫
a
µ(a|s)Ra

s da corresponds to the value function of µ,

Eτ∼pπ(τ)

[∞∑
t=0

γtAµ(st,at)

]
(16)

= Eτ∼pπ(τ)

[∞∑
t=0

γt (r(st,at) + γV µ(st+1)− V µ(st))

]
(17)

= Eτ∼pπ(τ)

[
−V µ(s0) +

∞∑
t=0

γtr(st,at)

]
(18)

= −Es0∼p(s0) [V µ(s0)] + Eτ∼pπ(τ)

[∞∑
t=0

γtr(st,at)

]
(19)

= −J(µ) + J(π) (20)

We can rewrite Equation 21 with an expectation over states instead of trajectories:

η(π) = Eτ∼pπ(τ)

[∞∑
t=0

γtAµ(st,at)

]
(21)

=

∞∑
t=0

∫
s

p(st = s|π)

∫
a

π(a|s)γtAµ(s,a) da ds (22)

=

∫
s

∞∑
t=0

γtp(st = s|π)

∫
a

π(a|s)Aµ(s,a) da ds (23)

=

∫
s

dπ(s)

∫
a

π(a|s)
[
Rµs,a − V µ(s)

]
da ds, (24)

where dπ(s) =
∑∞
t=0 γ

tp(st = s|π) represents the unnormalized discounted state distribution
induced by the policy π (Sutton & Barto, 1998), and p(st = s|π) is the likelihood of the agent being
in state s after following π for t timesteps.

The objective in Equation 24 can be difficult to optimize due to the dependency between dπ(s) and π,
as well as the need to collect samples from π. Following Schulman et al. (2015), we can optimize an
approximation η̂(π) of η(π) using the state distribution of µ,

η̂(π) =

∫
s

dµ(s)

∫
a

π(a|s)
[
Rµs,a − V µ(s)

]
da ds. (25)

η̂(π) matches η(π) to first order (Kakade & Langford, 2002), and provides a reasonable estimate of η
if π and µ are similar. Using this objective, we can formulate the following constrained policy search
problem:

arg max
π

∫
s

dµ(s)

∫
a

π(a|s)
[
Rµs,a − V µ(s)

]
da ds (26)

s.t. DKL (π(·|s)||µ(·|s)) ≤ ε, ∀ s (27)∫
a

π(a|s) da = 1, ∀ s. (28)

13

Under review as a conference paper at ICLR 2021

Since enforcing the pointwise KL constraint in Equation 27 at all states is intractable, we relax
the constraint by enforcing it only in expectation

∫
s
dµ(s)DKL (π(·|s)||µ(·|s)) ds ≤ ε. To further

simplify the optimization problem, we relax the hard KL constraint by converting it into a soft
constraint with coefficient β,

arg max
π

(∫
s

dµ(s)

∫
a

π(a|s)
[
Rµs,a − V µ(s)

]
da ds

)
+ β

(
ε−

∫
s

dµ(s)DKL (π(·|s)||µ(·|s)) ds
)

s.t.
∫
a

π(a|s) da = 1, ∀ s.
(29)

Next we form the Lagrangian,

L(π, β, α) =

(∫
s

dµ(s)

∫
a

π(a|s)
[
Rµs,a − V µ(s)

]
da ds

)
+ β

(
ε−

∫
s

dµ(s)DKL (π(·|s)||µ(·|s)) ds
)

+

∫
s

αs

(
1−

∫
a

π(a|s)da
)
ds,

(30)
with β and α = {αs | ∀s ∈ S} corresponding to the Lagrange multipliers. Differentiating L(π, β, α)
with respect to π(a|s) results in

∂L
∂π(a|s)

= dµ(s)
(
Rµs,a − V µ(s)

)
− β dµ(s) logπ(a|s) + βdµ(s)logµ(a|s)− βdµ(s)− αs.

(31)
Setting to zero and solving for π(a|s) gives

logπ(a|s) =
1

β

(
Rµs,a − V µ(s)

)
+ logµ(a|s)− 1− 1

dµ(s)

αs

β
(32)

π(a|s) = µ(a|s)exp

(
1

β

(
Rµs,a − V µ(s)

))
exp

(
− 1

dµ(s)

αs

β
− 1

)
(33)

Since
∫
a
π(a|s) da = 1, the second exponential term is the partition function Z(s) that normalizes

the conditional action distribution,

Z(s) = exp

(
1

dµ(s)

αs

β
+ 1

)
=

∫
a′
µ(a′|s) exp

(
1

β

(
Rµs,a′ − V µ(s)

))
da′. (34)

The optimal policy is therefore given by,

π∗(a|s) =
1

Z(s)
µ(a|s) exp

(
1

β

(
Rµs,a − V µ(s)

))
(35)

If π is represented by a function approximator, the optimal policy π∗ can be projected onto the
manifold of parameterized policies by solving the following supervised regression problem

arg min
π

Es∼dµ(s) [DKL (π∗(·|s)||π(·|s))] (36)

= arg min
π

Es∼dµ(s)

[
DKL

(
1

Z(s)
µ(a|s) exp

(
1

β

(
Rµs,a − V µ(s)

))∣∣∣∣∣∣∣∣π(·|s)
)]

(37)

= arg max
π

Es∼dµ(s)Ea∼µ(a|s)

[
log π(a|s) exp

(
1

β

(
Rµs,a − V µ(s)

))]
, (38)

B AWR DERIVATION WITH EXPERIENCE REPLAY

In this section, we extend the derivation presented in Appendix A to incorporate experience replay
using a replay buffer containing data from previous policies. To recap, the sampling distribution is a
mixture of k past policies {π1, · · · , πk}, where the mixture is performed at the trajectory level. First,
we define the trajectory distribution µ(τ), marginal state-action distribution µ(s,a), and marginal
state distribution dµ(s) of the replay buffer according to:

µ(τ) =

k∑
i=1

widπi(τ), µ(s,a) =

k∑
i=1

widπi(s)πi(a|s), dµ(s) =

k∑
i=1

widπi(s) (39)

14

Under review as a conference paper at ICLR 2021

where the weights
∑
i wi = 1 specify the probabilities of selecting each policy πi. The conditional

action distribution µ(a|s) induced by the replay buffer is given by:

µ(a|s) =
µ(s,a)

dµ(s)
=

∑k
i=1 widπi(s)πi(a|s)∑k

j=1 wjdπj (s)
. (40)

Next, using Lemma 6.1 from Kakade & Langford (2002) (also derived in Appendix A), the expected
improvement of π over each policy πi satisfies

J(π) = J(πi) + Es∼dπ(s),a∼π(a|s) [Aπi(s,a)] (41)

The expected improvement over the mixture can then be expressed with respect to the individual
policies,

η(π) = J(π)− J(µ) (42)

= J(π)−
k∑
i=1

wiJ(πi) (43)

=

k∑
i=1

wi (J(π)− J(πi)) (44)

=

k∑
i=1

wi
(
Es∼dπ(s),a∼π(a|s) [Aπi(s,a)]

)
(45)

In order to ensure that the policy π is similar to the past policies, we constrain π against the conditional
action distributions of the replay buffer,

Es∼µ(s)

[
DKL

(
π(a|s)

∣∣∣∣∣∣µ(a|s)
)]
≤ ε. (46)

Note that constraining π against µ(a|s) has a number of desirable properties. First, the constraint pre-
vents the policy π from choosing actions that are vastly different from all of the policies {π1, · · · , πk}.
Second, the mixture weight assigned to each πi in the definition of µ depends on the marginal state
density dπi(s) for the particular policy. This property is desirable as the policy π is now constrained
to be similar to πi only at states that are likely to be visited by πi. This then yields the following
constrained objective:

arg max
π

k∑
i=1

wi Es∼dπi (s)Ea∼π(a|s)
[
Rπis,a − V πi(s)

]
(47)

s.t. Es∼dµ(s) [DKL (π(·|s)||µ(·|s))] ≤ ε, (48)∫
a

π(a|s) da = 1, ∀ s. (49)

The Lagrangian of the above objective is given by:

L(π, β, α) =

(∑
i

wiEs∼dπi (s)Ea∼π(a|s)
[
Rπis,a − V πi(s)

])

+ β

(
ε− Es∼dµ(s)DKL

(
π(·|s)

∣∣∣∣∣
∣∣∣∣∣
∑k
i=1 widπi(s)πi(·|s)∑k

j=1 wjdπj (s)

))

+

∫
s

αs

(
1−

∫
a

π(a|s)da
)
ds,

(50)

Solving the Lagrangian following the same procedure as Appendix A leads to an optimal policy of
the following form:

π∗(a|s) =
1

Z(s)
µ(a|s) exp

(
1

β

∑
i widπi(s)

(
Rπis,a − V πi(s)

)∑
j wjdπj (s)

)
(51)

15

Under review as a conference paper at ICLR 2021

Finally, if π is represented by a function approximator, the optimal policy π∗ can be projected onto
the manifold of parameterized policies by solving the following supervised regression problem

arg min
π

Es,∼dµ(s) [DKL (π∗(·|s)||π(·|s))] (52)

= arg min
π

Es∼dµ(s)

[
DKL

(
1

Z(s)
µ(a|s) exp

(
1

β

∑
i widπi(s)

(
Rπis,a − V πi(s)

)∑
j wjdπj (s)

)∣∣∣∣∣
∣∣∣∣∣π(·|s)

)]
(53)

One of the challenges of optimizing the objective in Equation 53 is that computing the expected
return in the exponent requires rolling out multiple policies starting from the same state, which would
require the environment to be resettable to any given state. Therefore, to obtain a more practical
objective, we approximate the expected return across policies using a single rollout from the replay
buffer, ∑

i widπi(s)Rπis,a∑
j wjdπj (s)

≈ RDs,a such that (s,a) ∈ D (54)

This single-sample estimator results in a biased estimate of the exponentiated advantage, because the
expectation with respect to the mixture weights appears in the exponent. But in practice, we find this
biased estimator to be effective for our experiments. Therefore, the objective used in practice is given
by:

arg max
π

k∑
i=1

wi Es∼dπi (s)Ea∼πi(a|s)

[
log π(a|s) exp

(
1

β

(
Rπis,a −

∑
j wjdπj (s)V

πj (s)∑
j wjdπj (s)

))]
,

(55)
where the expectations can be approximated by simply sampling from D following Line 6 of
Algorithm 1. Note, the baseline in the exponent now consists of an average of the value functions
of the different policies. One approach for estimating this quantity would be to fit separate value
functions V πi for each policy. However, if only a small amount of data is available from each policy,
then V πi could be highly inaccurate. Therefore, instead of learning separate value functions, we fit a
single mean value function V̄ (s) that directly estimates the weighted average of V πi ’s,

V̄ = arg min
V

∑
i

wi Es,∼dπi (s)Ea∼πi(a|s)
[
||Rπis,a − V (s)||2

]
(56)

This loss can also be approximated by simply sampling from the replay buffer following Line 5 of
Algorithm 1. The optimal solution V̄ (s) =

∑
i widπi (s)V

πi (s)∑
j wjdπj (s)

is exactly the baseline in Equation 55.

C EXPERIMENTAL SETUP

In our experiments, the policy is represented by a fully-connected network with 2 hidden layers
consisting of 128 and 64 ReLU units respectively (Nair & Hinton, 2010), followed by a linear output
layer. The value function is modeled by a separate network with a similar architecture, but consists of
a single linear output unit for the value. Stochastic gradient descent with momentum is used to update
both the policy and value function. The stepsize of the policy and value function are 5× 10−5 and
1× 10−4 respectively, and a momentum of 0.9 is used for both. The weight clipping threshold ωmax

is set to 20. At each iteration, the agent collects a batch of approximately 2000 samples, which are
stored in the replay buffer D along with samples from previous iterations. The replay buffer stores
50k of the most recent samples. Updates to the value function and policy are performed by uniformly
sampling minibatches of 256 samples from D. The value function is updated with 200 gradient steps
per iteration, and the policy is updated with 1000 gradient steps.

To set the value of the Lagrange multiplier β, we found that a simple heuristic of setting β adaptively
through advantage normalization works well in practice, and alleviates the need for extensive task-
specific tuning. For a given advantage value A(s,a), the normalized advantage Ā(s,a) is given
by,

Ā(s,a) =
A(s,a)− µA

σA
, (57)

16

Under review as a conference paper at ICLR 2021

where µA and σA represents the mean and standard deviation of all advantage values in the replay
buffer. This method is akin to setting β = σA. The normalized advantages Ā(s,a) are then used
to compute the weights ωs,a = exp

(
Ā(s,a)

)
for the policy update. This advantage normalization

technique is commonly used in standard implementations of algorithms such as PPO (Dhariwal et al.,
2017).

D SIMILARITIES TO POLICY GRADIENTS

On the surface, the AWR policy update bears striking similarities to a conventional policy gradient
(PG) update (Sutton et al., 2000):

Es∼dπ(s)Ea∼π(a|s)
[
∇πlog π(a|s)

(
Rπs,a − V π(s)

)]
(Policy Gradient)

Es∼dµ(s)Ea∼µ(a|s)

[
∇πlog π(a|s) exp

(
1

β

(
Rµs,a − V µ(s)

))]
. (AWR)

However, there are a number of subtle but important differences between the two. First, basic policy
gradient algorithms are on-policy methods, which requires the data to be sampled from the same
policy π that is being optimized s ∼ dπ(s) and a ∼ π(a|s), whereas AWR can in principle learn using
data from any sampling distribution µ. This requirement for policy gradient methods is because PG
directly differentiates through the sampling distribution to compute the gradient of the expected return
with respect to the policy parameters. But with AWR and other EM algorithms, they first construct
an estimate of the optimal action distribution at each state, and then projects that action distribution
onto the space of parameterized policies. Therefore AWR does not need to differentiate through the
sampling distribution, which is a critical feature for settings such as batch RL, where the sampling
distribution (e.g. demo policy) may not be available to the agent. In AWR, the log probability of an
action logπ(a|s) is weighted by the exponentiated advantage exp

(
1
β (Rs,a − V (s))

)
, while in PG

the log probability is weighted just by the advantage (Rs,a − V (s)) without the exponential. Since
the exponentiated advantage is non-negative, the objective used in the AWR update is a maximum
likelihood objective that tries to maximize the likelihood of all actions, but to varying amounts
depending on the exponentiated advantage. In the case of PG, the advantage can be both positive and
negative, therefore PG updates decrease the likelihood of actions with negative advantages, and thus
it is not a conventional maximum likelihood objective. In practice, negative TD updates are often a
source of instability when applying PG to off-policy data.

17

Under review as a conference paper at ICLR 2021

E ADDITIONAL EXPERIMENTS

A comprehensive comparison of AWR with prior methods on all of the tasks considered are available
in Figure 6 and 7. Due to the slow wall-clock times of TD3 and SAC, some training runs did not
have sufficient time to collect as many samples as other algorithms.

Figure 6: Learning curves of the various algorithms when applied to OpenAI Gym tasks. Results are
averaged over 10 random seeds. AWR is generally competitive with the best current methods.

Figure 7: Learning curves on motion imitation tasks. On these challenging tasks, AWR generally
learns faster than PPO and RWR.

Figure 8 illustrates more focused comparisons between AWR and closely related algorithms, including
RWR (Peters & Schaal, 2007), LAWER (Neumann & Peters, 2009), and REPS (Abdolmaleki
et al., 2018a). AWR consistently outperforms these prior methods on standard continuous control
benchmarks. The performance figures of the prior algorithms are consistent with prior work (Duan
et al., 2016), which have also evaluated these methods on this suite of tasks. While AWR share some

18

Under review as a conference paper at ICLR 2021

resemblances with these prior methods, our design decisions appear vital for effective performance
with neural network function approximators. In the case of REPS, we found that the procedure of
fitting a value function by optimizing a dual function tends to result in instability during training,
which prevents the policy from learning effective behaviors. While in AWR, the value function is
fitted with simple least squares regression, which yields a much more stable update procedure.

Figure 8: Learning curves comparing AWR to closely related algorithms on OpenAI Gym tasks.
AWR consistently outperforms these prior methods.

E.1 WEIGHT CLIPPING

To analyze the effects of weight clipping on the stability of AWR, we compare learning curves of
policies trained with weight clipping using a threshold of ωmax = 20, and policies trained without
weight clipping. Figure 9 compares the learning curves with and without clipping. 10 separate
AWR runs with different random seeds are visualized separately. With weight clipping, performance
remains stable throughout training. Policies trained without weight clipping are substantially more
unstable, exhibiting drastic fluctuations in performance as a result of exploding gradients from
excessively large weights. Some training runs without clipping are terminated early due to exploding
gradients causing the networks to output NaNs. These experiments suggest that weight clipping is
vital for ensuring stable training with AWR.

Figure 9: Learning curves comparing AWR policies trained with and without weight clipping. Weight
clipping is vital for ensuring stable training with AWR. Policies trained without weight clipping are
susceptible to exploding gradients due to excessively large weights.

E.2 NORMALIZATION TECHNIQUES

Our implementation of AWR includes additional normalization techniques such as state normalization
and reward scaling, which are also commonly incorporated into widely used RL frameworks, such
as OpenAI Baselines (Dhariwal et al., 2017), RLKit (Pong, 2019), Softlearning, TFAgents (Hafner
et al., 2017). These techniques are also used by other algorithms, such as PPO, in our experiments.
Data whitening is also standard practice in most machine learning applications. Here, we evaluate the
effects of these design decisions on the perform of AWR.

The state features are normalized using the running mean µs and standard deviation σs computed
from data collected by the agent

s̄ =
s− µs

σs
, (58)

19

Under review as a conference paper at ICLR 2021

where s denotes the original unnormalized state, s̄ represents the normalized state, and all operations
are applied element-wise to each feature. The normalized state is then used as input to the policy and
value function. The rewards are also scaled according to

r̄ = (1− γ)r, (59)

where γ is the discount factor. This scaling reduces the magnitude of the returns, which can improve
stability when training the value function. While we have found these techniques to be useful for
reducing the amount of hyperparameter tuning required for AWR, they are by no means critical
components of the algorithm. To evaluate the effects of these normalization techniques, we evaluate
the performance of AWR when these normalization techniques are disabled. Figure 10 compares
learning curves for AWR with and without these additional normalization techniques. Performance
is similar on most tasks even when these techniques are removed, indicating that these standard
techniques from prior work are not critical to the performance of AWR.

Figure 10: Learning curves comparing AWR with and without normalization techniques. Performance
is similar on most tasks even when these techniques are disabled.

20

	AWR Derivation
	AWR Derivation with Experience Replay
	Experimental Setup
	Similarities to Policy Gradients
	Additional Experiments
	Weight Clipping
	Normalization Techniques

