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A Assumptions for QSA Theory

The assumptions imposed in [30, §4.5, 4.9] are listed below. The setting there is far more general
than here, since the entries of the probing signal are not restricted to functions of sinusoids. In this
prior work it is assumed that the probing signal is a function of a deterministic signal Φ of the form
ξt = G(Φt), where Φ is the state process for a dynamical system,

d
dtΦt = H(Φt) (27)

with H : Ω→ Ω andΩ is a compact subset of the Euclidean space. It is assumed that it has a unique
invariant measure π onΩ.

For the special case treated here, with Φit = exp(2πj[ωit + φi]) for each i and t, we have Ω =
SK ⊂ CK with S the unit circle in C. The dynamics (27) and the function G are:

d
dtΦt = WΦt W := 2πjdiag(ωi)

ξt = G(Φt) G(z) :=G0( 1
2 (z + z−1)) , z ∈ CK

(28)
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where G0 is the function appearing in (9). The function G is then analytic on z ∈ {C \ {0}}K if G0

is analytic on CK .

The proof of Prop. B.2 below begins with a proof that π exists, with density ρ(z1, . . . , zK) =∏K
i=1 u(zi), where u denotes the uniform distribution on S. In particular, since ξt = G(Φt) for

some function G, the function sf in (14) can be expressed,

sf(θ) =

∫

Ω

f(θ,G(z))π(dz) (29)

For any function h : Rd ×Ω→ R that is C1, we define

Dh (θ, z) := at[Dfh](θ, z) + ∂zh (θ, z) ·Wz , (θ, z) ∈ Rd ×Ω (30)

where Dfh is defined in (13). The function Dh is continuous and the functional D is known as the
differential generator in the Markov literature. Upon denoting g = Dh, the chain rule gives

g(Θt,Φt) = d
dth(Θt,Φt) (31)

The remaining assumptions are listed below. Lipschitz bounds on f̂ and those in (QSA5) are partially
justified by Thm. B.1 subject to smoothness assumptions on f .

The first assumption sets restrictions on frequencies.

(QSA0a) ξt = G0(ξ0
t ) for all t, with ξ0

t defined in (9). The function G0 : RK → Rm is assumed to
be analytic, with the coefficients in the Taylor series expansion for G0(ξ0

t ) absolutely summable.

(QSA0b) The frequencies {ω1 , . . . , ωK} are chosen of the form

ωi = log(ai/bi) > 0 , 1 ≤ i ≤ K ,

{ωi} , linearly independent over the rationals,
(32a)

and with {ai, bi} positive integers.

(QSA1) The process a is non-negative, monotonically decreasing, and

lim
t→∞

at = 0,

∫ ∞

0

ar dr =∞. (32b)

(QSA2) The functions sf and f are Lipschitz continuous: for a constant Lf <∞,

‖ sf(θ′)− sf(θ)‖ ≤ Lf‖θ′ − θ‖,
‖f(θ′,ξ)− f(θ,ξ)‖+ ‖f(θ,ξ′)− f(θ,ξ)‖ ≤ Lf [‖θ′ − θ‖+ ‖ξ′ − ξ‖] , θ′, θ ∈ Rd ,ξ,ξ′ ∈ Rm

(QSA3) The ODE d
dtϑt = sf(ϑt) is globally asymptotically stable with unique equilibrium θ∗.

Moreover, one of the following conditions holds:

(a) There is a Lipschitz continuous Lyapunov function V : Rd → R+, a constant δ0 > 0 and a
compact set S such that∇V (ϑt) · sf(ϑt) ≤ −δ0‖ϑt‖ whenever ϑt /∈ S.

(b) The scaled vector field sf∞ : Rd → Rd defined by sf∞(θ) := limc→∞ sf(cθ)/c, θ ∈ Rd, exists
as a continuous function. Moreover, the ODE@∞ defined by

d
dtxt = sf∞(xt) (32c)

is globally asymptotically stable [30, §4.8.4].

(QSA4) The vector field sf is differentiable, with derivative denoted

Ā(θ) = ∂θ sf (θ) (32d)

That is, Ā(θ) is a d× d matrix for each θ ∈ Rd, with Āi,j(θ) =
∂

∂θj
sf i (θ).

Moreover, the derivative Ā is Lipschitz continuous, and Ā∗ = Ā(θ∗) is Hurwitz.
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(QSA5) Φ satisfies the following ergodic theorems for the functions of interest, for each initial
condition Φ0 ∈ Ω:

(i) For each θ there exists a solution f̂(θ, · ) to Poisson’s equation with forcing function f . That
is,

f̂(θ,Φt0) =

∫ t1

t0

[f(θ,ξt)− sf(θ)] dt+ f̂(θ,Φt1) , 0 ≤ t0 ≤ t1 (32e)

with sf given in (29) and for each θ,
∫
Ω
f̂(θ, z) π(dz) = 0. Finally, f̂ is continuously

differentiable (C1) on Rd ×Ω. Its Jacobian with respect to θ is denoted

Â(θ, z) := ∂θf̂(θ, z) (32f)

where
∫

Ω

Â(θ, z) π(dz) = 0 for each θ ∈ Rd (32g)

(ii) For each θ, there are C1 solutions to Poisson’s equation with forcing functions f̂ and Υ. They
are denoted ˆ̂f and Υ̂, respectively, satisfying

ˆ̂f(θ,Φt0) =

∫ t1

t0

f̂(θ,ξt) dt+ ˆ̂f(θ,Φt1) (32h)

Υ̂(θ,Φt0) =

∫ t1

t0

[Υ(θ,Φt)− sΥ(θ)] dt+ Υ̂(θ,Φt1) , 0 ≤ t0 ≤ t1 (32i)

with sΥ(θ) = 〈Υ(θ,Φ)〉 = −
∫

Ω

Â(θ, z)f(θ,G(z)) π(dz) (32j)

Moreover, for each θ,
∫

Ω

ˆ̂f(θ, z) π(dz) =

∫

Ω

Υ̂(θ, z) π(dz) = 0

Proposition A.1. For any integer n ≥ 2 there is a polynomial % satisfying

%(cos(r)) = cos(nr) , r ≥ 0

Consequently, in the special case of (QSA0b) with K = 1, for any increasing sequence of positive
integers n1 = 1 < n2 < · · · < nK• there is a polynomial function G0 : RK → Rm such that

ξt = G0(ω1t+ φ1) =

K•∑

i=1

vi cos(2π[niω1t+ niφ1])

with {vi} as in (10).

Prop. A.1 tells us that if we choose a small value for K in (QSA0) then we must impose stronger
conditions on the values of phases for the mixture of sinusoids model (10).

B Technical Proofs

B.1 Tighter Bounds for Quasi-Monte Carlo

Thm. B.1 below justifies boundedness of the integral (12) and much more. Through careful design of
the frequencies {ωi} appearing in (9) we can apply refinements of Baker’s Theorem, as surveyed in
the monograph [8].
Theorem B.1. Suppose that the function h : Rm → R is analytic in a neighborhood of the unit
hypercube [−1, 1]m, and that ξt in (9) satisfies (QSA0). Then the limit defining 〈h〉 in (11) exists
with ht = h(ξt), and the following ergodic bounds hold for some constant Bf independent of the
phase values {φi}:

∣∣∣ 1

T

∫ T

0

h̃(ξt) dt
∣∣∣ ≤ Bf

1

T
, T > 0 where h̃ = h− 〈h〉. (33)
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Moreover, there is a function ĥ : CK → CK that is analytic in a neighborhood of the domain
Ω := {z ∈ CK : |zi| = 1 , 1 ≤ i ≤ K}, real-valued onΩ, and satisfying

∫ T

0

h̃(ξt) dt = ĥ(Φ0)− ĥ(ΦT ) , T ≥ 0 ,

〈ĥ(Φ)〉 = lim
T→∞

1

T

∫ T

0

ĥ(Φt) dt = 0

(34)

A version of (33) in discrete time is contained in Thm. B.10. This result is a big surprise, given that
there is so much theory predicting O(log(T )K/T ) bounds. Much more surprising is that O(1/T ) is
a very poor rate of convergence for the algorithms developed in this paper, as observed in Fig. 3. This
is explained in Section C.1, along with examples to show how the theory can be applied to obtain
convergence rates of order O(T−2+δ) for specially designed QSA algorithms, and in particular new
approaches to QMC.

A few key ideas are presented here: The assumption that h is analytic is imposed so that we can first
restrict to complex exponentials, H(Φt) = exp(2πjtωt), whose integral equals (2πjω)−1H(Φt)

when ω 6= 0. In the proof of Thm. B.1 we use ω =
∑K
i=1 niωi with {ni} integers; they are not

necessarily positive, but at least one ni is assumed non-zero. Extensions of Baker’s Theorem, as
surveyed in [8], give a strict lower bound of the form |ω| ≥ δn−C , where n = 3 +

∑ |ni| and δ, C
are non-negative constants that are independent of n—see Thm. B.7. This combined with routine
Taylor series bounds establishes the desired conclusions.

Bounds on the constantBf requires bounds on the constant C appearing in Thm. B.7. Current bounds
on this constant grow rapidly with K, such as the doubly exponential bounds obtained in [27] and
[28]. Recall from Prop. A.1 that the nonlinearity G0 in (28) permits the creation of rich probing
signals from simple ones. Hence, large dimension d does not mean that we require a large value of
K.

An Elementary Ergodic Theorem We begin with an alternative characterization of h = 〈h〉.
The ergodic theorems presented here are based upon a stationary relaxation of the solution to the ODE
d
dtΦt = WΦt (recall (28)). We do not require (QSA0) here, but we do require that the frequencies
{ωi : 1 ≤ i ≤ K} are distinct.

Suppose that the initial conditions {Φi0 : 1 ≤ i ≤ K} are chosen randomly with i.i.d. values uniform
on the unit circle S ⊂ C. It follows that {Φit : 1 ≤ i ≤ K} remain i.i.d. with uniform distribution for
each t ∈ R, so that Φ = {Φt : −∞ < t <∞} is a stationary Markov process. Stationarity implies
the Law of Large Numbers: for any Borel measurable function H : SK → C,

lim
T→∞

1

T

∫ T

0

H(Φt) dt = lim
T→∞

1

T

∫ T

0

H(Φ−t) dt = E[H(Φ0)] =

∫

Ω

H(z) dz a.s. (35)

Conditioning on Φ0 = z0 we can extend this limit to a.e. initial condition z0 ∈ Ω := SK .

For this stationary realization of Φ, we henceforth regard {ξt = G(Φt) : t ∈ R} as a steady-state
realization of the probing signal.

Consider any real-valued function h of the probing signal (9). We have h(ξt) = H(Φt) with
H := h ◦G from (28), which then implies a law of large numbers. A characterization of the limit is
obtained in the following, along with a relaxation of the smoothness assumption imposed in Thm. B.1.
Proposition B.2. Suppose that the probing signal is defined using (9), with distinct frequencies {ωi :
1 ≤ i ≤ K}. Consider any Borel measurable function h : Rm → R satisfying E[|h(G0(X))|] <∞,
where the K-dimensional random vector has independent entries, with common distribution equal to
the arcsine law on [−π, π].

The following limits then hold for a.e. set of phase angles {φi}:

lim
T→∞

1

T

∫ T

0

h(ξt) dt = lim
T→∞

1

T

∫ T

0

h(ξ−t) dt = E[h(G0(X))] (36)

If in addition the function h is continuous, then (36) holds for each initial condition, and convergence
is uniform in the initial phase angles.
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Proof. The result (36) for a.e. initial condition Φ0 is immediate from (35), the use of G0 to define
the probing signal in (9), and the definition G(z) :=G0((z + z−1)/2).

To prove the stronger result for continuous h, we make explicit the dependency of the average on the
initial condition:

ht(Φ0) := h(G(eWtΦ0)) = h(ξt) , hT (Φ0) :=
1

T

∫ T

0

ht(Φ0) dt

We show that {ht : t > 0} and {ht : t > 0} are each equicontinuous families of functions on Ω:
Since eWt is an isometry on CK for any t, there exists a Bv <∞ such that:

‖G(eWtz)−G(eWtz′)‖ < Bv‖z − z′‖, for z, z′ ∈ Ω and t ≥ 0 (37)

Now, h is uniformly continuous since this its domain is compact (we can take its domain to be the
range of G). Consequently, for each ε > 0, there exists δ > 0 such that for x, x′ in the domain of h,

‖h(x)− h(x′)‖ < δ, if ‖x− x′‖ < ε

Thus, by (37),
‖ht(z)− ht(z′)‖ < δ, if ‖z − z′‖ < ε/Bv

Equicontinuity of {ht : t > 0} and {ht : t > 0} on Ω follows from these bounds. Pointwise
convergence of hT to 〈h〉 for a.e. Φ0 ∈ Ω, as T →∞, then implies convergence from each initial
condition, and also uniform convergence:

lim
T→∞

max
Φ0∈Ω

‖hT (Φ0)− 〈h〉‖ = 0

ut

This proposition will be refined in the following.

If g : RK → R is analytic in a neighborhood of z ∈ RK , we denote the mixed partials by

g(α)(z) =
∂α1

∂zα1
1

· · · ∂
αK

∂zαKK
g (z) , α ∈ ZK+ .

Denote zα =
∏
i z
αi
i , and α! =

∏
i αi! for α ∈ ZK+ with 0! := 1. This notation is used to express the

multivariate Taylor series formula in the following:
Lemma B.3. Suppose that g : RK → R is analytic in a neighborhoodNg of the hypercube [−1, 1]K .
Then there is rg > 1 such that whenever z ∈ [−1, 1]K and 0 ≤ r ≤ rg we have

g(rz) = g(0)+
∞∑

n=1

rn
∑

|α|=n

1

α!
zαg(α)(0) (38a)

where the sum converges absolutely:
∞∑

n=1

rng
∑

|α|=n

1

α!
|g(α)(0)| <∞ (38b)

A useful representation requires more notation:

g0(ξ0
t ) := h(ξt) = h(G0(ξ0

t )) , t ≥ 0 , (39)

with ξ0
t,i = cos(2π[ωit+ φi]) as defined by (9).

It follows that g0 is analytic if both h and G0 also are. Along with this new notation, Lemma B.3
provides a representation of both h(ξt) and the integral h̃(ξt) = h(ξt)− h.

For α ∈ ZK+ we denote

ξαt =
K∏

i=1

cos(2π[ωit+ φi])
αi = 2−|α|

K∏

i=1

(Φit + Φit
∗
)αi

Ďξα = 〈ξα〉 , ξ̃
α

t = ξαt − Ďξα
(40)
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where |α| = ∑αi (the `1-norm), and Φit
∗ denotes the complex conjugate. Let B denote the set of

all K-dimensional row vectors with entries in {−1, 1}. For fixed α ∈ ZK+ , |α| 6= 0, we decompose
b ∈ B as follows: b = (b1, b2, . . . , bK), where bi has length αi for each i, and necessarily has entries
in {−1, 1}. These are used to define the frequency and phase variables

ωα,b =
K∑

i=1

αiωi
∑

k

bik φα,b =
K∑

i=1

αiφi
∑

k

bik (41)

Let Bα0 ⊂ B denote the set of vectors b ∈ B for which ωα,b = 0. Under the assumption that the
frequencies are linearly independent over the rationals, this is equivalent to the following requirement:

αi
∑

k

bik = 0 for each 1 ≤ i ≤ K

Lemma B.4. The signal {ξαt } in (40), its mean, and its centered integral admit the representations,

ξαt = 2−|α|
∑

b∈Bα
ξα,bt , Ďξα = 2−|α|

∑

b∈Bα0

exp(jφα,b)

ξαI
t = 2−|α|

∑

b 6∈Bα0

1

2πjωα,b
ξα,bt , ξα,bt = exp(2πj[ωα,bt+ φα,b])

(42)

Proof. The representation for ξαt is purely a change of notation. We have ξα,bt = exp(jφα,b)

(independent of t) when b ∈ B0, and 〈ξα,b〉 = 0 otherwise. Consequently,

Ďξα = 2−|α|
∑

b∈Bα
〈ξα,b〉 = 2−|α|

∑

b∈Bα0

exp(jφα,b)

ξαI
t =

∫ t

0

[ξαr − Ďξα] dr − ξ̄αI
t = 2−|α|

∑

b6∈Bα0

∫ t

0

ξα,br dr − ξ̄αI
t = 2−|α|

∑

b6∈Bα0

1

2πjωα,b
ξα,bt

ut

Before we can state the main result of this subsection we require a few more definitions. Let Bα+ ⊂ B
denote the set of vectors b ∈ B for which ωα,b > 0, and Bα− = {−b : b ∈ Bα+}. We also require the
following extension of the notation in (42):

zα,b := z
nα,b1
1 · · · zn

α,b
K

K , with nα,bi = αi

αi∑

k=1

bik , z ∈ CK \ {0}

where the origin is avoided because nα,bi < 0 for some (i, α, b). The following properties will be
useful:

zα,−b = 1/zα,b and hence zα,−b = zα,b
∗

whenever z ∈ Ω. (43)
where the star denotes complex conjugate.
Theorem B.5. Suppose that the function h : Rm → R is analytic in a neighborhood Nh of the
hypercube [−1, 1]m, and suppose that ξt is the m-dimensional probing signal (9) satisfying (QSA0).
The following conclusions then hold:

h̃(ξt) := h(ξt)− h =
∞∑

n=1

∑

|α|=n

1

α!
g

(α)
0 (0)2−|α|

∑

b∈Bα+

2 cos(2π[ωα,bt+ φα,b]) (44a)

∫ t1

t0

h̃(ξt) dt = ĥ(Φt1)− ĥ(Φt0) , 0 ≤ t0 ≤ t1 <∞ , (44b)

where ĥ(z) = − 1

2π

∞∑

n=1

∑

|α|=n

1

α!
g

(α)
0 (0)2−|α|

∑

b∈Bα+

1

jωα,b
[zα,b − zα,−b] (44c)

where g0 : RK → R is given by (39).
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Moreover, the function ĥ is analytic in the domain {z ∈ CK : 0 < ‖z‖ < rg0}, and admits the
following representation when restricted toΩ:

ĥ(Φt) = − 1

π

∞∑

n=1

∑

|α|=n

1

α!
g

(α)
0 (0)2−|α|

∑

b∈Bα+

1

ωα,b
sin(2π[ωα,bt+ φα,b]) (44d)

As mentioned after (12), the function ĥ solving (44b) is known as the solution to Poisson’s equation
with forcing function h. This terminology is standard in ergodic theory for Markov processes. Since
ĥ is also analytic we are assured of multiple integrals that are also bounded in time:

ĥ(ΦT ) = −
∫ T

0

h̃(ξt) dt+ ĥ(Φ0) , ˆ̂h(ΦT ) = −
∫ T

0

ĥ(Φt)dt+ ˆ̂h(Φ0) (44e)

Both are required in the analysis supporting our main results: recall the functions (17) used in
Thm. 2.1 to define the terms in the p-mean flow representation.

The following corollary will prove useful. Note that we relax the assumption of analyticity.

Corollary B.6. Suppose that (QSA0) holds, and that g, h : Rm → R are continuous functions.
Suppose moreover that there is a zero-mean solution to Poisson’s equation ĥ, solving (44b) for any
Φ0 ∈ Ω, and any 0 ≤ t0 ≤ t1 <∞. Then, 〈g(ξ), ĥ(Φ)〉 = 0.

The proof of the theorem and its corollary are postponed to the end of this subsection.

It is clear from (44c) that we require a lower bound on |ωα,b| for b ∈ Bα+ in order to justify that ĥ is
analytic in a neighborhood of Ω. Useful bounds are possible through application of extensions of
Baker’s Theorem concerning linear independence of algebraic numbers [28, 8].

The assumption that the {ωi} defined in (32a) are linearly independent over the field of rational
numbers is equivalent to the requirement that the rational numbers {ri = ai/bi} are multiplicatively
independent. That is, for any integers {ni : 1 ≤ i ≤ K} ⊂ Z, the equation

rn1
1 rn2

2 · · · rnKK = 1

implies that ni = 0 for each i. This is the language used in much of the literature surrounding Baker’s
Theorem. The following follows from [8, Thm. 1.8]:

Theorem B.7. Under the assumptions of Thm. B.1 there is a constant C > 0 depending only on
{ai, bi : 1 ≤ i ≤ K} such that whenever ωα,b 6= 0,

|ωα,b| ≥ β−Cα , βα = max{3, α1, . . . , αd}
ut

Thm. B.1 follows immediately from Thm. B.5, for which the proof is given next:

Proof of Thm. B.5. The function G0 is assumed analytic on RK under (QSA0). Since h is also
analytic, this implies g0 is analytic in a neighborhood Ng0 of the hypercube [−1, 1]K .

The Taylor series expansion in Lemma B.3 combined with Lemma B.4 gives

h(ξt) = g0(0) +

∞∑

n=1

∑

|α|=n

1

α!
g

(α)
0 (0)ξαt

= g0(0) +
∞∑

n=1

∑

|α|=n

1

α!
g

(α)
0 (0)2−|α|

∑

b∈Bα
ξα,bt

(45)

Obtaining the mean of each side gives

h = g0(0) +
∞∑

n=1

∑

|α|=n

1

α!
g

(α)
0 (0)2−|α|

∑

b∈Bα0

ξα,bt
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where ξα,bt = exp(2πjφα,b) for b ∈ Bα0 ; similar arguments were used in the derivation of (42).
Subtracting h from each side of (45) gives

h̃(ξt) =
∞∑

n=1

∑

|α|=n

1

α!
g

(α)
0 (0)2−|α|

∑

b 6∈Bα0

ξα,bt (46)

The proof of (44a) is completed on observing that
∑

b6∈Bα0

ξα,bt =
∑

b∈Bα+

ξα,bt +
∑

b∈Bα−

ξα,bt =
∑

b∈Bα+

[ξα,bt + ξα,−bt ] = 2 cos(2π[ωα,bt+ φα,b])

The representation (46) for h̃ motivates the following definition:

ĥ(Φt) :=−
∞∑

n=1

∑

|α|=n

1

α!
g

(α)
0 (0)ξαI

t (47)

whose extension to CK given in (44c) is duplicated here for convenience:

ĥ(z) = − 1

2π

∞∑

n=1

∑

|α|=n

1

α!
g

(α)
0 (0)2−|α|

∑

b∈Bα+

1

jωα,b
[zα,b − zα,−b]

The extension follows from the preceding arguments, using ωα,−b = −ωα,b.
The remainder of the proof consists of two parts: show that ĥ is analytic in the region {z ∈ CK :
0 < ‖z‖ < rg0}, and then establish the desired properties when z ∈ Ω. Those desired properties are
firstly d

dt ĥ(Φt) = −h̃(ξt), which follows from (44a) provided the sum in (47) converges absolutely.
The final property is the representation (44d) in terms of sums of sin(2π[ωα,bt+ φα,b]). This is also
immediate since

1
j [zα,b − zα,−b] = 2 sin(2π[ωα,bt+ φα,b]) when z = Φt

To complete the proof we establish that ĥ is analytic in the given domain.

From (44c) it follows that ĥ is a function of the 2K-dimensional vector valued function v(z) =
(z1, . . . , zK , z

−1
1 , . . . , z−1

K ). The mapping z 7→ v(z) is analytic in CK \ {0}, so it suffices to obtain
the bound

Bh(r) :=
∞∑

n=1

∑

|α|=n

1

α!
|g(α)

0 (0)|2−|α|
∑

b∈Bα+

ω−1
α,b <∞ , for all r < rg0 .

It will follow that ĥ is analytic in the set {z ∈ CK : 0 < ‖z‖ < rg0}.
Thm. B.7 gives the bound ω−1

α,b ≤ 3C + nC with n = |α|. Consequently, for any r > 0,

Bh(r) ≤
∞∑

n=1

rn[3C + nC ]
∑

|α|=n

1

α!
|g(α)

0 (0)| (48)

The right hand side is finite for any r < rg0 due to the bound (38b). ut

We turn next to the proof of Corollary B.6, which will follow from a sequence of lemmas.
Lemma B.8. Suppose that the functions g, h : Rm → R are analytic in a neighborhood Nh of the
hypercube [−1, 1]m, and suppose that ξt is the m-dimensional probing signal (9) satisfying (QSA0).
Then, 〈g(ξ), ĥ(Φ)〉 = 0, where ĥ is given in (44c).

Proof. Given the representation (44d) it suffices to show that 〈γ, ζ〉 = 0 for the functions defined by
γt = cos(2π[ωα,bt + φα,b]) and ζt = sin(2π[ωα′,b′t + φα′,b′ ]), with (α, b), (α′, b′) arbitrary pairs
appearing in the sum that represents ĥ.
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If ωα,b 6= ωα′,b′ then the conclusion 〈γ, ζ〉 = 0 is immediate (including the case ωα,b = 0).

If ωα,b = ωα′,b′ it follows from the definition (41) that φα,b = φα′,b′ , and the conclusion 〈γ, ζ〉 = 0
follows from the double angle identity:

γtζt = sin(4π[ωα,bt+ φα,b])/2

ut

The next result is required for approximating h and ĥ simultaneously by analytic functions. Denote
for ε > 0,

ĥ
ε
(z) =

∫ ∞

0

e−εth̃(eWtz) dt , z ∈ Ω (49)

Lemma B.9. Under the assumptions of Corollary B.6 we have

ĥ
ε
(z) = ĥ(z)− ε

∫ ∞

0

e−εtĥ(eWtz) dt

lim
ε↓0

max
z∈Ω
|ĥε(z)− ĥ(z)| = 0

Proof. The first limit follows from the differential representation of the solution to Poisson’s equation:
ĥ(eWtz) is absolutely continuous, with dĥ(eWtz) = −h̃(eWtz)dt.

The second limit then follows from the assumption that the mean of ĥ is zero. ut

Proof of Corollary B.6. Lemma B.8 covers the special case in which g, h are analytic.

Consider next the case in which g is analytic, but h and ĥ are only assumed continuous. Let ε > 0,
n ≥ 1 be arbitrary, and apply the Stone-Weierstrass Theorem to obtain a polynomial function hn
satisfying |h(x) − hn(x)| ≤ ε/n for all x ∈ [−1, 1]m. It follows from the definition (49) that
|ĥε(z)− ĥεn(z)| ≤ 1/n for all z ∈ Ω.

We then have
〈g(ξ), ĥ(Φ)〉 = 〈g(ξ), ĥ

ε
(Φ)〉+ o(1)

= 〈g(ξ), ĥ
ε

n(Φ)〉+ o(1) +O(‖g‖∞/n)

= 〈g(ξ), ĥn(Φ)〉+ o(1) +O(‖g‖∞/n) + on(1)

with ‖g‖∞ the maximum of |g(x)| over x ∈ [−1, 1]m and ĥn is a polynomial function defined
by Thm. B.5 using hn. In the final approximation, on(1) → 0 as ε ↓ 0 for each fixed n, but the
convergence is not necessarily uniform in n. Letting ε ↓ 0 gives,

〈g(ξ), ĥ(Φ)〉 = 〈g(ξ), ĥn(Φ)〉+O(‖g‖∞/n) = O(‖g‖∞/n)

where the second bound holds because g and hn satisfy the assumptions of Lemma B.8. It follows
that 〈g, ĥ〉 = 0 since n ≥ 1 is arbitrary.

The general case is similar but simpler: apply the Stone-Weierstrass Theorem to obtain a polynomial
function gn satisfying |g(x)− gn(x)| ≤ 1/n for all x ∈ [−1, 1]m. From the previous bound we have

〈g(ξ), ĥ(Φ)〉 = 〈gn(ξ), ĥ(Φ)〉+O(1/n) = O(1/n)

This completes the proof, since n ≥ 1 is arbitrary. ut

B.2 Extensions to Discrete Time

The extension of Thm. B.1 to the discrete time setting is essentially unchanged, though obtaining
bounds on the constants is more challenging [50, 8].
Theorem B.10. Suppose that the assumptions of Thm. B.1 hold. Then there is a finite constant Bf
independent of the phase values {φi} such that

∣∣∣ 1

N

N∑

k=1

h̃(ξk)
∣∣∣ ≤ Bf

1

N
, N ≥ 1 (50)

ut
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We will see in the proof that the discrete time case is more complex because we require a stronger
condition on ωα,b. A useful bound is obtained from [8, Thm. 2.1]:
Theorem B.11. Under the assumptions of Thm. B.1 there are constants δ, C > 0 depending only on
{ai, bi : 1 ≤ i ≤ K} such that whenever ωα,b 6= 0 and n0 ∈ Z,

|n0 + ωα,b| ≥ δβ−Cα , βα = max{3, α1, . . . , αd}
ut

Proof of Thm. B.10. Denote the partial sums,

SN =
N∑

k=0

h̃(ξk)

Motivated by the foregoing, to bound the sum we consider sums of the primitives obtained from the
Taylor series expansion (38a):

Sα,bN :=
N∑

k=0

exp(2πj[ωα,bk + φα,b])

SαN :=
∑

b6∈Bα0

Sα,bN

The expansion (38a) tells us that SN admits the representation

SN =
∞∑

n=1

∑

|α|=n

1

α!
g

(α)
0 (0)SαN

To prove the theorem, it suffices to establish a uniform bound over N and {φi}.
Consider any α and b 6∈ Bα0 . On denoting w = exp(2πjωα,b) we obtain

Sα,bN = exp(2πjφα,b)

N∑

k=0

wk = exp(2πjφα,b)
wN+1 − 1

w − 1
, |Sα,bN | ≤ 2

1

|w − 1|

Given |w − 1|2 = |1− cos(2πωα,b)|2 + sin(2πωα,b)
2 it is not enough to bound |ωα,b| from zero as

in the continuous time case. Rather, we require a bound on infn0∈Z |n0 + ωα,b|. Thm. B.11 gives us
the desired bound: for some δ0 > 0 and any n0 ∈ Z,

inf
n0∈Z

|n0 + ωα,b| ≥ δ0β−Cα
The remainder of the proof that {SN : N ≥ 1} is bounded is identical to the continuous time case
(see arguments surrounding (48)). ut

B.3 The Perturbative Mean Flow Representation

The derivation of the perturbative mean flow representation (5) is based upon the solutions to Poisson’s
equation in (17). We start by re-writing the QSA ODE (3) in terms of the apparent noise {Ξ̃t},

d
dtΘt = at[ sf(Θt) + Ξ̃t] , Ξ̃t := f(Θt,ξt)− sf(Θt)

The proof of the first part of Thm. 2.1 follows directly from the next three lemmas.

Lemma B.12. Under (QSA5), the apparent noise Ξ̃t can be expressed as

Ξ̃t = − d
dt f̂(Θt,Φt)− atΥ(Θt,Φt) (51)

Proof. Applying (31) with h = f̂ ,
d
dt f̂(Θt,Φt) = ∂θf̂(Θt,Φt)

d
dtΘt − [f(Θt,ξt)− sf(Θt)]

This gives
Ξ̃t = − d

dt f̂(Θt,Φt) + at∂θf̂(Θt,Φt)f(Θt,ξt)

Finally, (51) follows from (18). ut
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Lemma B.13. Suppose that (QSA1) and (QSA5) hold. If at = (1 + t)−ρ, with ρ ∈ (0, 1) ,

d
dt f̂(Θt,Φt) = −rtat[Df ˆ̂f ](Θt,Φt) + at

d
dt [Df ˆ̂f ](Θt,Φt)− d2

dt2
ˆ̂f(Θt,Φt) (52)

where rt = ρ/(t+ 1).

Proof. Similarly to Lemma B.12, applying (31) with h = ˆ̂f gives

d
dt

ˆ̂f(Θt,Φt) = at[Df ˆ̂f ](Θt,Φt)− f̂(Θt,Φt)

Differentiating both sides with respect to t yields

d2

dt2
ˆ̂f(Θt,Φt) = d

dt{at[Df ˆ̂f ](Θt,Φt)} − d
dt f̂(Θt,Φt)

= −rtat[Df ˆ̂f ](Θt,Φt) + at
d
dt [Df ˆ̂f ](Θt,Φt)− d

dt f̂(Θt,Φt)

where the last equality follows from the product rule. The result in (52) is then achieved upon
rearranging terms. ut
Lemma B.14. Under (QSA5),

Υ(Θt,Φt) = sΥ(Θt) + at[Df Υ̂](Θt,Φt)− d
dt Υ̂(Θt,Φt) (53)

Proof. Again, applying (31) with h = Υ̂,

d
dt Υ̂(Θt,Φt) = at[Df Υ̂](Θt,Φt)− [Υ(Θt,Φt)− sΥ(Θt)]

which gives (53) after rearranging terms. ut

We conclude this subsection with the remainder of the proof of Thm. 2.1 (i). Proofs of the remaining
parts are given after the theorem statement: Thm. 2.1 (ii) follows from Corollary B.6 and the
representation Υi(θ,Φ) = −∑d

j=1 Âi,j(θ,Φ)fj(θ,ξ), and (iii) follows from [30, Prop. 4.33 and
4.34].

Proof of part (i) in Thm. 2.1. This part contains the details of the p-mean flow representation (19). It
is obtained upon substitution of (52) and (53) into (51). ut

B.4 Acceleration

We turn next to analysis of PR and FB techniques.

Tighter bounds for PR averaging As explained in Section 2.1, convergence of the QSA ODE is
established by the coupling of {Θt} and {sΘt} for t ≥ t0, for some t0 that depends on the stability
properties of ẋ = sf(x). This coupling is used to establish boundedness of the scaled error,

Zt :=
Θt − sΘt
at

, t ≥ t0 (54)

Convergence of {sΘt} to θ∗ is typically very fast when at = (1 + t)−ρ and ρ < 1:
Lemma B.15. Suppose (QSA1) – (QSA4) hold. If at = (1 + t)−ρ, with 0 < ρ < 1, then

Zt =
Θt − θ∗
at

+ ε
sΘ
t

with ε sΘ
t = [θ∗ − sΘt]/at vanishing faster than O(T−N ) for any N ≥ 1. ut

This lemma is part of [30, Prop. 4.26]. Combined with (21a) it gives

Zt = Ȳ
∗ − f̂∗t +O(at), t ≥ t0 (55)

The next result is of [30, Thm. 4.25]. It is a primitive version of the p-mean flow representation that
will serve as a foundation for the proof of Thm. 2.2:
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Theorem B.16. Suppose the assumptions of Thm. 2.2 hold, then

ΘPR
T = θ∗ + aT c(ρ, κ)Ȳ

∗
+ BT /T (56)

where {BT } is bounded in T and c(ρ, κ) is defined in Thm. 2.2 . ut

The key step in the proof of Thm. 2.2 is to bound the process {BT } in (56). It is expressed in [30,
Thm. 4.25] as

BT = [A∗]−1{εYT − εZT + εΥT + εaT } (57)

where for Yt := Zt + f̂(Θt,Φt) (recall (32e)), rt = ρ/(1 + t) and Υ̃∗t = Υ∗t − sΥ∗ (recall (17) and
(18)),

εYT = YT−YT0, εZT =

∫ T

T0

rtZt dt, εΥT =

∫ T

T0

atΥ̃
∗
t dt, εaT =

∫ T

T0

atO(‖Θt−θ∗‖) dt

We proceed to bound each term.

Lemma B.17. Under the assumptions of Thm. 2.2, εYT = O(aT ).

Proof. By substitution of (55) into the definition of Yt,

Yt = Ȳ
∗ − f̂∗t + f̂(Θt,Φt) +O(at)

= Ȳ
∗

+O(‖Θt − θ∗‖) +O(at) = Ȳ
∗

+O(at)

where the last equalities follow from Lipschitz continuity of f̂ t(Θt,Φt) together with the fact that
‖Θt − θ∗‖ = O(at) from Thm. 2.2. Now, aT0

= O(aT ) since T0 = (1− 1/κ)T and hence

εYT = YT − YT0 = O(aT )

ut

Lemma B.18. Under the assumptions of Thm. 2.2,

εZT = εZ∞ +O(aT ), εZ∞ = Ȳ
∗

log(κ/(κ− 1))ρ

Proof. For rt as defined below (57) and at, T0 as defined by Thm. 2.2, we have the following:
∫ T

T0

rt dt = ρ log(κ/(κ− 1)),

∫ T

T0

rtO(at) dt = O(aT )

The above identities along with the representation of Zt in (55) imply

εZT =

∫ T

T0

rt[Ȳ
∗ − f̂∗t +O(at)] dt = Ȳ

∗
log(κ/(κ− 1))ρ+

∫ T

T0

rtf̂
∗
t dt+O(aT ) (58)

It remains to bound the last integral in the right side of (58). By integration by parts,
∫ T

T0

rtf̂
∗
t dt =

∫ T

T0

rt d
ˆ̂f∗t = rT

ˆ̂f∗T − rT0

ˆ̂f∗T0
+

1

ρ

∫ T

T0

r2
t

ˆ̂f∗t dt

Here, ˆ̂f∗t is bounded by assumption in (QSA5) so we have the bound
∫ T

T0

r2
t

ˆ̂f∗t dt ≤ sup
t
‖ ˆ̂f∗t ‖

∫ T

T0

r2
t dt = O(rT )

Thus,
∫ T
T0
rtf̂
∗
t dt = O(rT ). The result then follows from substitution of this bound into (58). ut

Lemma B.19. Under the assumptions of Thm. 2.2, ‖εΥT ‖ = O(aT ).
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Proof. Again applying integration by parts,

εΥT = −
∫ T

T0

at dΥ̂
∗
t = aT Υ̂

∗
T − aT0Υ̂

∗
T0

+

∫ T

T0

rtatΥ̂
∗
t dt (59)

where Υ̂∗t is as defined by (32i). We have that Υ̂∗t is bounded by assumption in (QSA5) and we have
the bound ∫ T

T0

rtatΥ̂
∗
t dt ≤ sup

t
‖Υ̂∗t ‖

∫ T

T0

rtat dt = O(aT )

Then, we obtain the desired conclusion by substitution of the above bound into (59). ut

Lemma B.20. Under the assumptions of Thm. 2.2, εaT = O(T 1−2ρ).

Proof. From Thm. 2.2, ‖Θt − θ∗‖ = O(at). Thus,

εaT =

∫ T

T0

atO(‖Θt − θ∗‖) dt =

∫ T

T0

O(a2
t ) dt = O(T 1−2ρ)

ut

Proof of Thm. 2.2. The proof of (21a) can be found in [30, Thm. 4.24].

Combining Lemmas B.17 to B.20:

BT = −[A∗]−1Ȳ
∗

log(κ/(κ− 1))ρ+O(T 1−2ρ)

Then, (21b) follows from substitution of the above representation into (56). ut

Forward-backward filtering We refer to ξt as the forward probing signal, and ξ−t as backward
probing. Similarly to ξ−t , we introduce the signal Φ−t := Φ−t. The first step in establishing the
identity Ȳ ∗− = −Ȳ ∗ is to show that the solutions to Poisson’s equation (32f) for the two QSA ODEs
differ by a negative sign.

Lemma B.21. Suppose that (QSA5) holds, and let Â∗ and Â∗− denote the solutions to Poisson’s
equation satisfying:

Â∗(Φt0) =

∫ t1

t0

Ã(θ∗,ξt) dt+ Â∗(Φt1)

Â∗−(Φ−t0) =

∫ t1

t0

Ã(θ∗,ξ−t ) dt+ Â∗−(Φ−t1) , any 0 ≤ t0 ≤ t1,

normalized so that 〈Â∗〉 = 〈Â∗−〉 = 0, as in (32g). We then have Â∗(z) = −Â∗−(z) for z ∈ Ω.

Proof. Through a change of variables when t0 = 0, t1 = t,

Â−(Φ−t ) =

∫ −t

0

−Ã(θ∗,ξτ ) dτ + Â∗−(Φ−0 )

Differentiating each side gives

d
dt Â
∗−(Φ−t ) = Ã(θ∗,ξ−t ) = − d

dt Â
∗(Φ−t )

That is, Â∗(z) = −Â∗−(z) + M◦ for a constant matrix M◦ ∈ Rd×d. The conclusion M◦ = 0

follows from the assumed normalization on the means of Â∗ and Â∗−. ut
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Recall from (20) that sΥ∗ and its analogous quantity sΥ∗− for the QSA ODE with backward probing
(22) can be expressed

sΥ∗ = − lim
T→∞

1

T

∫ T

0

Â∗(Φt)f(θ∗,ξt) dt (60a)

sΥ∗− = − lim
T→∞

1

T

∫ T

0

Â∗−(Φ−t )f(θ∗,ξ−t ) dt (60b)

where Â∗ and Â∗− are as defined by Lemma B.21. We now show that the application of Lemma B.21
and Prop. B.2 to (60a) and (60b) leads to the proof of Thm. 2.3.

Proof of Thm. 2.3. From Thm. 2.2, the following holds for ρ ∈ (1/2, 1):

ΘFB
T = 1

2 [ΘPR
T +ΘPR−

T ]

= θ∗ + 1
2aT c(κ, ρ)(Ȳ

∗
+ Ȳ

∗−
) + 1

2 (BT + B−T )/T (61)

An application of the backwards in time LLN in Prop. B.2 with h(ξt) = −Â∗(Φt)f(θ∗,ξt) along
with (60a) yields

sΥ∗ = − lim
T→∞

1

T

∫ T

0

Â∗(Φ−t )f(θ∗,ξ−t ) dt

Then, by Lemma B.21, we get that Â∗(Φ−t )f(θ∗,ξ−t ) = −Â∗−(Φ−t )f(θ∗,ξ−t ). Together with (60b)
we obtain

sΥ∗− = − lim
T→∞

1

T

∫ T

0

Â∗−(Φ−t )f(θ∗,ξ−t ) dt = lim
T→∞

1

T

∫ T

0

Â∗(Φ−t )f(θ∗,ξ−t ) dt = −sΥ∗

which implies Ȳ ∗− = −Ȳ ∗ via (20). Combining this result with (61) completes the proof. ut

B.5 QSA applied to Gradient-Free Optimization

Recall that Γ : Rd → R is strongly convex if there exists a constant δ0 > 0 such that:

δ0‖θ − θ0‖2 ≤ (∇Γ(θ)−∇Γ(θ0)) · (θ − θ0) , ∀ θ, θ0 ∈ Rd (62)

The bias bound in Section 3.1 is a corollary of the fact that 1qSGD and 2qSGD have identical average
vector fields under mild assumptions on ξ. This follows from Lemma B.22 and Prop. 3.1.

Lemma B.22. Suppose ξ is defined using (10), with {ωi} distinct. Then, for any constant matrix
M ∈ Rd×d,

〈ξξᵀMξ〉 = 0

Proof. We apply Prop. B.2. The arcsine law used in the proposition is odd, meaning that ξ and −ξ
have the same steady-state distribution, giving 〈ξξᵀMξ〉 = −〈ξξᵀMξ〉 = 0. ut

Proof of Prop. 3.1. Following the proof of Lemma B.22, ξ and −ξ have the same steady-state
distribution by Prop. B.2, which gives

〈f1Q(θ,ξ)〉 = −1

ε
〈ξΓ(θ + εξ)〉 =

1

ε
〈ξΓ(θ − εξ)〉 = 〈f1Q(θ,−ξ)〉

This implies equality of the average vector fields for f1Q and f2Q:

sf(θ) = 〈f2Q(θ,ξ)〉 = − 1

2ε
〈ξΓ(θ + εξ)〉+

1

2ε
〈ξΓ(θ − εξ)〉

= − 2

2ε
〈ξΓ(θ + εξ)〉 = 〈f1Q(θ,ξ)〉
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Now, by a second order Taylor series expansion of f1Q(θ,ξt) around θ,

f1Q(θ,ξt) = −1

ε
ξtΓ(θ)− ξtξᵀt∇Γ(θ)− ε

2
ξtξ

ᵀ
t∇2Γ(θ)ξt +O(ε2)

Taking the mean of each side yields

sf(θ) = −Σξ∇Γ(θ)− ε

2
〈ξξᵀ∇2Γ(θ)ξ〉+O(ε2)

We have 〈ξξᵀ∇2Γ(θ)ξ〉 = 0 by Lemma B.22, which gives (25). ut

The proof of Corollary 3.2 then follows from applying the results of Prop. 3.1 to (62).

Proof of Corollary 3.2. Since Γ satisfies (62) and∇Γ(θopt) = 0, we achieve the following for δ > 0:

δ‖θ∗ − θopt‖2 ≤ (∇Γ(θ∗)−∇Γ(θopt)) · (θ∗ − θopt)

δ‖θ∗ − θopt‖2 ≤ ‖∇Γ(θ∗)‖ ‖θ∗ − θopt‖

We have that sf(θ∗) = 0 by (QSA3), which implies∇Γ(θ∗) = O(ε2) from (25) under the assumption
that Σξ > 0. Thus,

‖θ∗ − θopt‖ ≤ O(ε2)

ut
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Figure 9: Comparison of Monte Carlo and quasi-Monte Carlo with Polyak-Ruppert averaging.

C Numerical Experiments

This final section is divided into two parts: a numerical experiment illustrating O(T−2+δ) conver-
gence rate for QMC and details of the experiments surveyed in Section 3.2 of the main text.

C.1 Quasi-Monte Carlo

Results from a simple experiment are provided here to illustrate that we can design algorithms to
achieve convergence rates far faster than O(log(n)K/n) in applications to QMC.

Suppose that ξ is m-dimensional, with components equal to triangle waves: ξit = 4(ωit+ φi) for
each i and t, with4 the unit sawtooth wave with unit period and range ±1:

4(t) = 1− 4| 12 − frac{t+ 1
4}|

We present results from a simple experiment as illustration: Our goal is to estimate the mean of g(Y )
with g : R2 → R and Y uniformly distributed on the rectangle [−1, 1]2. The probing signal is chosen
to be two-dimensional, so that a QSA algorithm to estimate h is obtained with f(θ,ξ) = −θ + h(ξ)
for which sf(θ) = −θ + h:

d
dtΘt = at[−Θt + h(ξt)] (63)

Based on the formula (20) we have Ȳ ∗ = 0.

Consider the function h(x1, x2) = exp(γx1) sin(2π(x2 − x1)), for which h = 0 for any value γ.
The frequencies {ω1, ω2} = {log(6), log(2)} ≈ {1.8, 0.69} were chosen, along with several values
of ρ, and κ = 5 in application of PR averaging. The ODEs were approximated using an Euler
approximation with sampling time Ts = 0.1 sec., which is roughly 1/5 of the shortest period 1/ω1.

The data displayed in Fig. 9 is based on four experiments, differentiated by two values γ = 1, 4, and
choice of probing signal. The first column uses the triangle wave described above, while the second
is based on {ξtn : n ≥ 0} i.i.d. and uniform on [−1, 1]2, where {tn} are the sampling times used in
the Euler approximation for QSA. It is known that Polyak-Ruppert averaging shares the same CLT
(asymptotic) variance as the usual sample path average when the probing signal is i.i.d. [35, 36]. The
empirical variance using PR averaging was found to be similar to what was obtained using standard
Monte Carlo.

Each histogram was created based on a runlength of T = 104 (corresponding to 105 samples, given
Ts = 0.1), and 500 independent runs in which the phases were sampled uniformly and independently
on [0, 1], and the initial condition θ0 was sampled uniformly and independently on [−25, 25]. The
value ρ = 0.7 was chosen, resulting in T 2ρ ≈ 4× 105. The MSE is roughly four orders of magnitude
larger for the stochastic algorithm as compared to QSA.

The remaining experiments surveyed here are based on γ = 1.
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Fig. 3 shows histograms of the scaled estimation error for quasi-Monte Carlo with averaging for two
cases: ρ = 0.7 (β = 1.4) and ρ = 0.8 (β = 1.6). The scaled error exhibits more variability as ρ is
increased. In this experiment, the histogram obtained with ρ = 0.8 is roughly two times wider than
for ρ = 0.7. In other words, the rate of convergence is bounded by a constant Bρ times T−2ρ, and in
these experiments we observe that the best constant Bρ is an increasing function of ρ.

Fig. 10 shows sample paths of estimates for standard Monte Carlo and the stochastic PR algorithm,
with {ξtn : n ≥ 0} i.i.d. and uniform.

n103102 104 105

Standard Monte Carlo: θn =
1

n

n

k=1

h(ζk)

θPR
n − θ∗

θn − θ∗

ρ = 0.7Polyak-Ruppert averaging,

I.I.D.  Uniform Probing

Figure 10: Slow convergence of Monte Carlo and Monte Carlo with Polyak-Ruppert qveraging.

The next set of experiments illustrate that the rate of convergence observed in Fig. 10 is far slower
than observed in any of the deterministic algorithms.

Each row of Fig. 11 contains four plots: |ΘT | obtained with (63) using the indicated value of ρ, |ΘPR
T |

obtained using PR averaging, and T−ρ, T−2ρ as these are the convergence rate bounds for each case.
The plots illustrate that the O(T−2ρ) bound on the convergence rate using PR averaging is achieved
for smaller values of ρ > 1/2. With ρ = 0.9 the results are not so clearly compatible with theory;
recall that the theory requires ρ < 1, so we expect numerical challenges when ρ is close to 1.
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Figure 11: Quasi-Monte Carlo with Polyak-Ruppert averaging.
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C.2 Numerical experiments in Section 3.2

Here we provide full details regarding the numerical experiments in Section 3.2, whose objective
functions were selected from [47].1 For a rectangular region B0 ⊆ Rd, we will frequently use the
expression “projection of sample-paths onto B0”. This means we project the trajectories {Θt} to
B0 component-wise in any approximation of the QSA ODE. For the one-dimensional setting with
B0 = [−1, 1], the projection is defined by max{−1,min{1, θn}} where θn is an approximation of
Θtn at sampling time tn.

Projection is often necessary because Lipschitz continuity of f is assumed in (QSA2). This requires
Γ to be Lipschitz continuous when employing 1qSGD (23) and∇Γ when using 2qSGD (24) [9, 30].
Restricting {Θt} to a closed and bounded set is a way to relax these requirements.

Each experiment contained the following common features:

(i) Only 1qSGD was considered.

(ii) The gain process was at = min{a0, (t+ 1)−ρ} with 1/2 ≤ ρ ≤ 1, and a0 > 0.

(iii) The QSA parameters a0 and ε were problem specific and chosen by trial and error.

(iv) The ODE (23) was approximated by an Euler scheme with sampling time equal to 1 sec. This
crude approximation is justified via (ii) by choosing a0 > 0 sufficiently small.

(v) Averaging was performed with κ = 5 (final 20% of samples).

(vi) A rectangular constraint region B0 ⊆ Rd was fixed. The selection of B0 was based on
conventions of the particular objective given in [47].

(vii) For each objective and algorithm, the frequencies were held fixed in M independent experi-
ments: {ωi : 1 ≤ i ≤ d} were uniformly sampled from [0.05, 0.5]d. The initial conditions and
phases were not held constant: For {1 ≤ m ≤M},
(a) The phases {φmi : 1 ≤ i ≤ d} were sampled uniformly on [−π/2, π/2]d. That is, the

probing signal respected (10), and in the mth experiment the probing signal took the
form

ξmt = 2[sin(ω1t+ φm1 ) , · · · , sin(ωdt+ φmd )]ᵀ

giving Σξ = 2I .
(b) The initial condition Θm0 were selected uniformly at random from B0.

(viii) The outputs were the sample covariance (26), the sample paths {Θmt : t ≥ 0} and/or
{Γ(Θmt ) : t ≥ 0}.

Rastrigin We return to a discussion regarding the experiments supporting Figs. 5 and 6. For this
objective, d = 2, and experiments used T = 8× 104, M = 200 and a0 = 0.5. The projection region
was B0 = [−5.12, 5.12]d, following [47]. Finally, the noise for the stochastic algorithm was a scaled
and shifted Bernoulli with p = 1/2 and support chosen so that its covariance matrix Σ satisfied
Σ = Σξ.

We see in Fig. 5 that apart from achieving near quartic convergence rates, the estimates of θopt

resulting from the deterministic algorithm had less variability than their stochastic counterpart. This
reduction of variability was roughly two orders of magnitude. In both cases, the histograms show that
the algorithms consistently overestimate θopt. This is most likely due to the bias that is inherent in
these algorithms (recall Section 3.1).

The plots in Fig. 12 show a comparison of both Γ(ΘT ) and Γ(ΘPR
T ) for three distinct initial conditions

Θ0. This plot illustrates the benefits of PR averaging as Γ(ΘPR
T ) approaches Γ(θ∗) = 0 much quicker

than Γ(ΘT ) for each initial condition.

The experiment leading to the results in Fig. 6 used the same parameters described above but the run
length chosen was T = 4× 104 for better visualization of the sample paths {ΘT } and {ΘPR

T }.

1Publicly available code obtained under GNU General Public License v2.0.
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Figure 12: Evolution of Γ(ΘT ) (left) and Γ(ΘPR
T ) (right) as functions of T .

Ackley We performed M = 50 independent experiments of run length T = 8× 104 to minimize the
Ackley objective with projection region equal to B0 = [−32.768, 32.768]d [47]. Experiments were
performed for two sets of parameters:

(i) ρ = 0.85, a0 = 0.02 and ε = 0.01.
(ii) ρ = 0.7, a0 = 0.07 and ε = 0.1.

For each set of parameters, the root mean square error T 2ρ
√

tr(ΣT ) was obtained for d = 2 and
d = 30. Results for case (i) are pictured in Fig. 7 and repeated in Fig. 13 along with results for case
(ii).

As mentioned in Section 3.2, the run length used was not sufficiently large for ρ = 0.85 with d = 30,
but it was for ρ = 0.7. Simulations indicate that the variance is bounded by O(a4

T ), but it is possible
that their value grows with dimension. Better performance might be obtained by using different
probing signals.

104T
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Figure 13: Comparison of scaled empirical covariances for Ackley objective.

Three-Hump Camel M = 50 independent experiments with run length T = 8×104 were performed
for this objective for ρ = 0.85 and ρ = 0.7. For both cases the QSA parameters used were a0 = 0.01
and ε = 0.5. Here, d = 2 and B0 = [−5, 5]d [47]. The average loss across initial conditions was
obtained via

Γ̄T =
1

M

M∑

m=1

Γ(ΘmT )

The average loss and the root mean square error T 2ρ
√

tr(ΣT ) were obtained in each case and are
shown by Fig. 8 and Fig. 14, respectively. The results for this experiment agree with the previous
observations: near quartic rates are achieved. The variance appears to grow with ρ.
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Figure 14: Scaled empirical covariances for ρ = 0.7 (left) and ρ = 0.85 (right) for three-hump camel objective.
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