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GENERALIZATION IN DATA-DRIVEN MODELS OF PRI-
MARY VISUAL CORTEX (APPENDIX)

1 TWO PHOTON SCANS

The following table lists details about the datasets used. A session marks a continuous experimental
session that can comprise several scans and in which the mouse does not leave the scanner. A scan is
a single continuous recording of neural activity. Spike inference from the two photon fluorescence
signal is performed on the scan level.

The column matched indicates whether neurons were anatomically matched between scans. The
four scans from mouse 22564 had 4625 matched neurons.

animal_id session scan_idx neurons images matched in sets
20457 5 9 5335 5993 no Evaluation
20505 6 1 8367 5996 no 1-S
22564 2 12 8115 5933 yes 4-S, 11-S
22564 2 13 8199 5955 yes 4-S, 11-S
22564 3 8 7916 5986 yes 4-S, 11-S
22564 3 12 8182 5967 yes 4-S, 11-S
22846 2 19 7700 5998 no 11-S
22846 2 21 8044 5947 no 11-S
22846 10 16 7344 5993 no 11-S
23343 5 17 7334 5927 no 11-S
23555 4 20 6848 5957 no 11-S
23555 5 12 6559 5994 no 11-S
23656 14 22 8107 5950 no 11-S
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2 GENERALIZATION ACROSS ANIMALS (EXTENSION)

We showed in Fig 4 in the main paper that the Gaussian readout outperforms the factorized readout in
transfer-learning, especially in the low data regime. Consequently we conducted the main transfer
experiment, the generalization across animals (Fig 5 in the main paper), with the Gaussian readout.
For completeness, we here show the same experiment with the factorized readout for the relevant
transfer cores 11-S, 1-S and VGG16 (Fig. 1, left). The exact numeric values for this experiment with
full data (5335 neurons, 4472 images) for both readouts can be found in Fig. 1 on the right. Consistent
with the previous experiments, the Gaussian readout outperforms the factorized readout for direct
training as well as transfer learning with data-driven cores. Interestingly however, the factorized
readout scores higher than the Gaussian readout when compared on the task driven transfer core
(VGG16), levelling its performance with the transfer core from one dataset (1-S). We hypothesize
that this is caused by the factorized readout’s less constrained spatial mask which can pool over more
than one pixel in the final tensor and might thus enable it to compensate for the potentially suboptimal
features in the VGG16 core.
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1-S 0.696 0 0.656 0.002
11-S 0.838 0.001 0.808 0.003
11-S: no cortex 0.831 0.002 - -
4-S: diff animals 0.813 0.001 - -
4-S: matched 0.824 0.001 - -
VGG16 0.632 0.002 0.656 0.002
direct 0.749 0.013 0.696 0.012
random VGG16 0.584 0.001 - -
random core 128 0.44 0.003 - -
random core 64 0.383 0.005 - -

Figure 1: Generalization across animals (compare Fig 5 in the main paper). Left: Key experiments
of Fig 5, conducted with the factorized readout. Right: Overview over the performances of the
Gaussian and factorized readout models in the transfer-task across animals for full data (5335 neurons,
4472 images).
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3 CONSISTENCY ACROSS OTHER PERFORMANCE MEASURES

Neural responses to (visual) stimuli suffer from trial-to-trial variability, even when keeping the input
stimulus fixed. In order to get an unbiased estimate of the performance of a model that predicts
such responses, the measure of performance needs to account for this statistical noise. Here we use
the fraction oracle (Walker et al., 2019), see Evaluation in Section 2.2 Networks and Training in
the main paper. However, there exists a variety of measures that attempt to tackle this issue and
no standard measure has been established yet. Ideally, new findings should hold independently of
the measure of performance and should be comparable across such measures. For this purpose we
show the consistency of our main results (Fig. 5 in the paper), by comparing the fraction oracle to
another measure, the fraction of variance of the expected response (r2ER) (Pospisil & Bair, 2020).
The calculation of the r2ER assumes that the variance over image repeats across unique images is
constant. Note that this is not strictly true for our data, but to be able to compare the same model on
equal ground, we chose to ignore the assumption for the sake of this comparison. Furthermore, the
authors recommend that the signal-to-noise ratio of the data must be above a certain threshold (0.1
for data with 100 images and 10 repeats each, as in our case; see Fig. 14 in Pospisil & Bair (2020)).
Our data meets this criterion (see Fig. 3). Figure 2 shows that both measures qualitatively yield the
same results (same order of the curves).
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Figure 2: Consistency across performance measures (compare Fig 5 in the main paper). Left:
fraction oracle. Right: fraction of variance of the expected response. Both measures qualitative show
the same results.
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Figure 3: Signal to noise ratio (SNR). The SNR distribution across neurons of the evaluation dataset
(blue dataset in Fig. 1 in the paper) both with (orange) and without (blue) variance stabilizing
transform (Anscombe). The neurons do not fall below the threshold of 0.1 (black), justifying the use
of the performance statistic r2ER for our dataset (see Fig. 14 in Pospisil & Bair (2020)).
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4 INFLUENCE OF SEEDS

The performance scores reported in our study are subject to three different sources of statistical
uncertainty: The random initialization of the model weights, the specific set of images used to train
the model and the specific set of neurons that we wanted to predict. In order to get an estimate of how
much each of these factors contribute to the variance in the performance of our models, we trained a
total of 90 models, 30 for each source of uncertainty, and varied the respective seeds. While the seed
of one source was altered, the seeds of the remaining two sources were kept fixed. Since the impact
of the neuron and image seed naturally increases with decreasing amounts of data, we conducted this
experiment on a medium range data regime of 1000 images and 1000 neurons. The results can be
seen in Fig. 4. While the main contributions to the variance in model performance seem to stem from
the model initialization and the random subset of neurons, the image seed did not seem to have a
major influence. We thus only used a single value for it in most experiments in the paper. Since we
do not consider the variance caused by the random initialization of the model weights as relevant
for the underlying scientific problem, we decided to pick the models which performed best on the
validation set across 5 model initialization seeds. Finally, we computed 95% confidence intervals
across 5 seeds of random neuron subsets. In the cases where all available neurons were used in an
experiment, the statistics were computed across 5 image seeds instead (see section Data in the paper).
The total number of trained models per data point was thus always 25.

Figure 4: Variation of model performance across seeds. Several models (with Gaussian readout)
were trained on 1000 neurons and 1000 images each, while varying the initialization of the model
(blue), the specific set of 1000 neurons (yellow) and the specific set of 1000 images (green). Since
the image seed did not have a major influence on model performance, we decided to only use a single
seed value, select the best performing models across 5 model seeds and compute statistics across 5
neuron seeds throughout most of our experiments. In the cases where all available neurons were used
in an experiment, the statistics were computed across 5 image seeds instead (see Chapter Data in the
paper).
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5 INFLUENCE OF CORTICAL DATA AND FEATURE SHARING ON THE GAUSSIAN
READOUT

The models with Gaussian readout outperformed the ones with factorized readout, both in direct and
transfer learning (see Fig. 3 and 4 in the paper). Here, we investigate which of its components this can
be attributed to. To this end we trained models with Gaussian readout directly on the four matched
datasets with 3625 neurons and varying number of images (Fig. 5, compare also Fig. 3 in the paper).
We did this with and without using the components feature sharing and cortex-data: In the feature
sharing condition, each neuron shared the same feature weight vector with its anatomical matches
across the four datasets. The models with the cortex-data condition predicted the receptive field
positions from anatomical cortical data via an affine transform. Both, feature sharing and cortex-data
were switched on throughout the paper, and contributed to the good performance of the Gaussian
readout. The better performance of the Gaussian readout compared to the factorized readout in Fig.
3 in the paper seems to be mainly due to feature sharing. The usage of cortical data to learn the
receptive field positions is primarily advantageous for mid-range number of images.
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Figure 5: Gaussian readout with and without feature sharing and position learning from
anatomical data. The training procedure is the same as in Fig. 3 in the paper. The feature
sharing seems to be the main contributor to the better performance of the Gaussian readout compared
to the factorized readout in Fig. 3 in the paper. The usage of cortical data to learn the receptive field
positions seems to be primarily advantageous for low and mid range number of images.
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6 MOST EXCITING INPUTS FOR MODELED NEURONS

One important application of general system identification models is the analysis of neural tuning, the
relation that connects a neuron’s response to the stimulus. Describing neural response properties by
the stimuli that drive them best has a long tradition in neuroscience (such as Gabor filters and gratings
in early visual cortex, or face-selective cells in higher layers). Walker et al. (2019) and Bashivan
et al. (2019) introduced a method to obtain such most exciting inputs (MEIs) which we analogously
generated for our model with the 11-S transfer core (Fig. 5 in the paper, orange line). Like Walker
et al. (2019) we use an ensemble of networks to generate the MEI. In our case, we used an ensemble
of five 11-S transfer cores from five seed initializations for which we each trained a readout with
the evaluation dataset on top. In Fig. 6 we show these MEIs for the 50 neurons with the best test
performance. Walker et al. (2019) have shown that many MEIs differ quit strongly from Gabor-like
stimuli, which would be expected to be the best drivers for V1 neurons based on previous work in
monkeys and cats. Our MEIs exhibit very similar characteristics to those presented by Walker et al.
(2019), which were obtained from a directly trained network and experimentally verified, highlighting
the generality of our transfer core.
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Figure 6: Most exciting inputs (MEIs). The image inputs that best drive the 50 best predicted
neurons from the evaluation dataset, predicted with the best transfer core (Fig. 5 in the paper, orange
line).
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