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ABSTRACT

The advent of Vision-Language-Action (VLA) models represents a significant
leap for embodied intelligence, yet their immense computational demands crit-
ically hinder deployment on resource-constrained robotic platforms. Intuitively,
low-bit quantization is a prevalent and preferred technique for large-scale model
compression. However, we find that a systematic analysis of VLA model’s quan-
tization is fundamentally lacking. We argue that naively applying uniform-bit
quantization from Large Language Models (LLMs) to robotics is flawed, as these
methods prioritize passive data fidelity while ignoring how minor action devia-
tions compound into catastrophic task failures. To bridge this gap, we introduce
AutoQVLA, the first action-centric quantization framework specifically designed
for embodied control. In a sharp departure from the rigid, uniform-bit quantiza-
tion of LLM-based methods, AutoQVLA introduces a highly granular, channel-
wise bit allocation strategy. Its core mechanism is to directly measure the final
action-space sensitivity when quantizing each individual channel to various bit-
widths. This process yields a precise, per-channel importance metric that guides
a global optimization, which elegantly unifies quantization and pruning (0-bit)
into a single, cohesive framework. Extensive evaluations on different baselines
demonstrate the superiority of our approach. In the LIBERO, the quantization
version of OpenVLA-OFT with our method requires only 29.2% of the original
model’s VRAM while maintaining 98.9% of its original performance and achiev-
ing a 1.49× speedup. This translates to a 22.6% performance improvement over
the LLM-derived method SmoothQuant. Our work establishes a new, principled
foundation for compressing VLA models in robotics, paving the way for deploy-
ing powerful, large-scale models on real-world hardware. Code will be released.

1 INTRODUCTION

The rapid evolution of foundation models (Touvron et al., 2023a;b) has significantly advanced
embodied intelligence, empowering Vision-Language-Action (VLA) models like OpenVLA (Kim
et al., 2024) to synthesize complex, executable actions from visual inputs and linguistic directives.
These models enhance cross-task generalization and semantic reasoning, elevating the efficacy of
robotic manipulation. However, their immense computational and memory demands, which often
exceed 14 GB in standard half-precision for a 7B model, present a critical barrier to deployment.
For instance, running such a model on a widely-used robotic platform like the NVIDIA Jetson AGX
Orin can result in inference latencies of several hundred milliseconds per action, far too slow for
the fluid, real-time control required in dynamic environments. This performance gap necessitates
aggressive compression methodologies, such as pruning and quantization, to achieve practical infer-
ence speeds while sustaining precise control (Yang et al., 2025; Song et al., 2025b; Wen et al., 2024;
Song et al., 2025a). Surprisingly, while low-bit quantization is a well-established technique exten-
sively studied in Large Language Models (LLMs), we find there has been no systematic analysis of
its unique impacts and trade-offs when applied specifically to VLA methods.

This gap is not merely an academic oversight but a critical barrier, as naively applying existing
quantization techniques ignores the fundamental distinctions between VLA models and their LLMs
or Multimodal Large Language Models (MLLMs) counterparts. Indeed, as aforementioned, the

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

development of quantization techniques has been predominantly driven by the requirements of
LLMs (Frantar et al., 2022; Li et al., 2021; Nagel et al., 2020) and general-purpose MLLMs (Wang
et al., 2024). These approaches are optimized to preserve text perplexity or visual feature fidelity,
often using proxy loss functions. In stark contrast, the output of a VLA model is not passive text or
a label, but a sequence of continuous action values that directly interface with the physical world.
In this closed-loop setting, even subtle quantization-induced errors in action outputs, that may be
imperceptible in standard benchmarks, can be amplified by physical dynamics and contact forces.
Over a long-horizon task, these errors accumulate autoregressively, leading to catastrophic failures
such as unstable grasps or significant trajectory deviations (as illustrated in Fig. 3). Consequently,
directly porting quantization frameworks designed for passive data processing is fundamentally ill-
suited for the demands of active, embodied control, as it often undermines the requisite stability
and precision. This naturally raises the question that How should one design a quantization method
specifically tailored to the unique demands of VLA models?

Before answering this question, we first revisit the predominant paradigms in model quantization.
Recent scholarly efforts, exemplified by representative works such as SmoothQuant (Xiao et al.,
2022), have primarily focused on outlier management. These methods employ techniques like ro-
tations, permutations, or saliency-based protections to mitigate the dominance of extreme values
in quantization step sizes, thereby enhancing low-bit performance. However, this outlier-centric
paradigm proves insufficient for VLA models, where cross-modal alignment and action decoding
interfaces (e.g., projectors and action heads) exhibit acute sensitivity to perturbations, while long-
horizon tasks amplify even minor initial errors (see analysis in Sec. 3.2 and again Fig. 3). Concur-
rently, in industrial practice, module-level mixed precision has emerged as a compromise, such as
quantizing vision encoders to 4-bit while preserving language backbones at 8-bit. Yet, this coarse-
grained approach lacks the necessary precision. Our analysis, as detailed in Sec. 3.2, reveals signif-
icant intra-layer channel heterogeneity. Specifically, individual channels contribute variably to the
final VLA outputs, which is a critical distinction that conventional methodologies fail to address.

Building upon this foundational analysis, we present AutoQVLA, an advanced, action-centric
framework for channel-wise quantization. To our knowledge, this marks the first systematic ex-
ploration of quantization specifically tailored for VLA architectures. Our method directly anchors
the quantization objective within the action space, rather than the internal representation. More-
over, our approach naturally unifies quantization and pruning (0-bit) into a single process, enabling
fine-grained, per-channel bit allocation. These advancements are achieved in two key steps: (1)
Action-space sensitivity estimation that measures how much quantizing each channel affects the
final action output with the proposed sensitivity metrics. For efficiency, we use a fast first-order
proxy based on Taylor-series approximation to identify the most sensitive channels. (2) Optimal
bit allocation that assigns the final bit-widths in {0, 2, 4, 8, 16} to each channel with the proposed
global greedy demotion algorithm, starting from full precision and progressively lowering the bit-
width of the least sensitive ones until the budget is met. Experiments on OpenVLA (Kim et al., 2024)
and OpenVLA-OFT (Kim et al.) baselines validate the efficacy of AutoQVLA. In the LIBERO en-
vironment, our method on the OpenVLA-OFT requires only 29.2% of the original model’s VRAM
while maintaining 98.9% of its original performance and achieving a 1.49× speedup.

Our contributions include: ♠ We conduct the first systematic analysis of quantization challenges
unique to VLA models. Our findings reveal why existing paradigms fail and establish that aligning
quantization with the action space is a foundational principle for effective compression in embodied
AI. ♠ We propose AutoQVLA, a novel channel-wise framework that uniquely uses action-space
sensitivity to guide bit allocation, cohesively unifying weight quantization and pruning (0-bit). ♠
Through extensive evaluations on OpenVLA and OpenVLA-OFT baselines, we demonstrate that
AutoQVLA significantly outperforms methods adapted from LLMs and MLLMs. At equivalent
average bit-widths, our framework achieves substantially lower action errors and higher task success
rates, validating its efficacy for robotics in resource-constrained environments.

2 RELATED WORK

Vision-Language-Action models. Vision-Language-Action (VLA) models represent a dominant
paradigm for generalist robotic control, learning direct policies that map high-dimensional visual
observations and language instructions to low-level motor commands. Methodologies for VLA de-
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velopment have largely bifurcated based on the action decoding strategy. The first, exemplified by
models like RT-2 (Zitkovich et al., 2023), OpenVLA (Kim et al., 2024), and UniVLA (Bu et al.,
2025), discretizes the continuous action space, casting control as a sequence-to-sequence problem.
Conversely, a second line of work prioritizes temporal fidelity and high-frequency control by model-
ing actions in the continuous domain. This is typically achieved with powerful generative decoders,
such as the diffusion policies in Octo (Octo Model Team et al., 2024) and RDT-1B (Liu et al.,
2024b) or the flow-matching network in π0 (Black et al., 2024). Despite their distinct advantages,
both approaches are encumbered by a substantial computational footprint (Shukor et al., 2025; Yang
et al., 2025), rendering their large-scale architectures prohibitive for real-time execution on resource-
constrained robotics hardware. While architectural compression, TinyVLA (Wen et al., 2024), offers
a partial solution, a more fundamental optimization strategy from the broader deep learning field,
i.e., low-bit quantization, remains conspicuously under-explored within embodied AI. This work
aims to fill this critical gap, positing that quantization is not merely an incremental optimization but
a foundational component required to unlock the practical deployment of generalist VLA models.

Quantization methods. Model quantization is a cornerstone technique for efficient deep learning
deployment, reducing memory footprint and computational latency by representing weights and acti-
vations with low-bit integers. The central challenge lies in minimizing the ensuing accuracy degrada-
tion. Two primary methodologies dominate the field, i.e., Post-Training Quantization (PTQ) (Frantar
et al., 2022; Li et al., 2021; Nagel et al., 2020) and Quantization-Aware Training (QAT) (Jacob et al.,
2018; Esser et al., 2020). PTQ offers a low-cost solution by quantizing a pretrained model with a
small calibration set and no retraining. In contrast, QAT simulates the effects of quantization during
training, allowing the model to adapt its parameters to mitigate precision loss. Recent advances have
focused on mitigating the challenges of quantizing large models, particularly the presence of out-
liers and activation-induced quantization difficulties. Methods like SmoothQuant (Xiao et al., 2022)
re-scale weights and activations to create a more favorable quantization landscape, while AWQ (Lin
et al., 2023) preserves salient weights and OmniQuant (Shao et al., 2024) smooths weight and acti-
vation outliers. To handle pernicious outliers in weights and activations, another research thrust em-
ploys learned rotations or permutations to redistribute value distributions, exemplified by methods
like QuaRot (Ashkboos et al., 2024) and SpinQuant (Liu et al., 2024c), enabling robust 4-bit quanti-
zation. However, a common limitation across these methods is the assumption of uniform precision,
where a single bit-width is applied globally or, at best, per layer (e.g., HAWQ (Dong et al., 2019;
2020)). This coarse-grained approach is fundamentally misaligned with the requirements of embod-
ied policies. VLA models exhibit heterogeneous sensitivity across their architecture. For instance,
subtle shifts in action-generation layers can lead to catastrophic failures in control, a fragility not
typically observed in standard perception or language tasks. Motivated by this critical shortcoming,
we propose a fine-grained, action-guided, channel-wise quantization framework.

3 METHOD

3.1 PRELIMINARIES

Vision-Language-Action (VLA) models. A VLA model governs the behavior of an embodied
agent by defining a policy, denoted as Π, that maps high-dimensional sensory inputs and a lan-
guage directive to a sequence of actions. The model operates within a sequential decision-making
framework. Formally, at each discrete timestep t, the agent perceives its environment through visual
observations Vt (e.g., RGB images) and receives a time-invariant language instruction (prompt) p.
The policy’s role is to predict an action sequence At (e.g., end-effector poses or joint velocities),

Πθ(At|Vt, p). (1)
The parameter set θ typically comprises: ♠ vision encoders θvis that processes the high-dimensional
visual inputs Vt into compact feature representations; ♠ a projection layer θproj that maps these
visual features into the multimodal embedding space shared with the language modality; ♠ a Large
Language Model (LLM) decoder θllm, which serves as the core reasoning engine, contextualizing
the visual percepts with the task prompt p; and♠ an action decoder θact that translates the final latent
representation from the LLM into an executable action sequence At. The learnable parameters θ =
{θvis, θproj , θllm, θact} of this policy are the subject of our investigation into model compression
via quantization. A central challenge, which the VLA quantization method is designed to address,
is the pronounced sensitivity of the policy’s action output, At, to perturbations in its parameters θ.
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(a) Quantization Results Across Modules (b) Quantization Results Across Channels

Global channel index (aggregated)

A
ct

io
n

 e
rr

o
r

Vision Encoder Language ModuleProjector Action Head

A
ct

io
n

 e
rr

o
r

Figure 1: Quantitative analysis of quantization sensitivity in VLA models. (a) Per-module analysis
shows that the projector and action head are significantly more sensitive to quantization. (b) Per-
channel analysis demonstrates highly heterogeneous sensitivity within modules. These findings
collectively motivate our adaptive precision, channel-level quantization approach.

Model quantization. Quantization is the process of mapping the continuous, full-precision param-
eter set θ to a discrete, low-precision set θ̂ by a quantization function θ̂ = Q(θ). The fundamental
objective of quantization is to find an optimal mapping Q* that minimizes the performance degra-
dation caused by the reduced precision. In our VLA context, this is equivalent to minimizing the
divergence between the action distributions of the original policy Πθ and the quantized policy Πθ̂,

Q* = argmin
Q

E(Vt,p,Ht)∼D
[
DKL

(
Πθ(at|Vt, p,Ht) ∥ ΠQ(θ)(At|Vt, p,Ht)

)]
, (2)

where D is the data distribution and DKL denotes the Kullback-Leibler divergence. Conventional
quantization approaches usually apply a uniform bit-width across all parameters. In such a scheme,
for a given weight tensor W from a linear transformation Y = XW + b, the quantization process
involves computing a scaling factor αW for the entire tensor and then mapping the full-precision
values to a single kw-bit integers, using nearest rounding and a clamping function,

Wq = clamp
(⌊

W

αW

⌉
,−2kw−1, 2kw−1 − 1

)
. (3)

The de-quantized weights Ŵ = Wq · αW are then used to approximate the original computation,
i.e., Y ≈ X̂Ŵ+b, where X̂ is the similarly quantized activation tensor. While simple to implement,
this uniform strategy does not account for the heterogeneous sensitivity of different parameters to
quantization noise. Therefore, our work is to find a more effective approximation of Q* beyond the
uniform bit-width that preserves the crucial behavioral characteristics of the agent.

3.2 SENSITIVITY ANALYSIS

Not all modules are equal. As previously delineated, VLA models possess a modular architecture.
A naive application of uniform bit-width quantization across these diverse modules yields subop-
timal results. Our empirical investigation, summarized in Fig. 1(a), systematically illustrates this
disparity by isolating the quantization of each module and measuring the resultant impact on task
performance. More concretely, the vision encoder (θv) demonstrates considerable robustness than
other components. This resilience likely stems from the high-dimensional and often redundant na-
ture of visual input, where feature representations are more tolerant to perturbations. In contrast,
the language module (θl) proves to be more vulnerable, as has also been noted in prior work (Jiang
et al., 2025; Park et al., 2024). Quantizing this component to the same bit-width leads to a more
pronounced performance degradation. Most critically, the cross-modal interfaces, i.e., the projector
(θp) and the action head (θa), exhibit the most acute sensitivity. Aggressive quantization in these
modules precipitates a severe, often catastrophic, decline in performance. This is because these
components serve as the final nexus for translating multimodal understanding into physical action.
Any perturbations introduced here propagate directly and without mitigation to the output action
distribution, leading to significant and often erroneous deviations in the agent’s behavior. These
findings underscore that an adaptive quantization strategy is not merely beneficial but essential for
preserving the functional integrity of VLA models at low bit-widths.

Not all channels are equal. Motivated by this module-level disparity, we extend our analysis to
a finer granularity, revealing a pronounced heterogeneity even among channels within the same
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layer. Here, a “channel” refers to an output channel in a convolutional layer or a row in the weight
matrix of a linear layer. As illustrated in Fig. 1(b), the impact of quantization on action errors
is not uniformly distributed across channels. This observation highlights the inherent limitations of
uniform bit allocation schemes (whether global or per-layer) and strongly motivates a more nuanced,
per-channel mixed-precision strategy, which could include pruning (i.e., 0-bit quantization) for the
least sensitive channels to optimize the computational budget.

To effectively identify these salient channels, we propose a novel sensitivity metric grounded directly
in the action space rather than the intermediate feature space. More specifically, for a given layer
l and a specific channel c within it, we isolate its impact by quantizing only that channel to a bit-
width b ∈ {0, 2, 4, 8, 16}, while all other parameters remain in full precision. We then define the
single-step action sensitivity as the expected squared L2 norm of the resulting action deviation,

s
(b)
l,c = Ex∼D

[∥∥∥Ã(b)
l,c (V, l)−A

∗(V, l)
∥∥∥2
2

]
, (4)

where Ã(b)
l,c (x) is the perturbed action generated with the quantized channel, and A∗(x) is the ref-

erence action from the full-precision model. However, single-step error metrics like s
(b)
l,c may not

fully capture the error accumulation that occurs in long-horizon, autoregressive tasks. A small, ini-
tial error can compound over a sequence of actions. To account for this, we introduce a cumulative
sensitivity metric, which measures the total deviation over an entire episode:

S
(b)
l,c = E

[
T∑

t=1

∥∥∥Ã(b)
l,c (Vt, l)−A

∗(Vt, l)
∥∥∥
2

]
. (5)

This cumulative metric, S(b)
l,c , naturally exhibits a stronger correlation with ultimate task success.

3.3 THE PROPOSED AUTOQVLA

Building upon the insights from our multi-granularity sensitivity analysis, we introduce AutoQVLA,
a quantization framework specifically designed to address the acute sensitivity of VLA outputs and
ensure robust action generation. Departing from conventional LLMs and MLLMs quantization ap-
proaches that focus on reconstructing internal feature representations, the proposed AutoQVLA
framework emphasizes the preservation of action fidelity, aligning quantization directly with the
functional objectives of VLA models. To facilitate a hardware-friendly implementation, we adopt
uniform-bit activations across the model, a pragmatic choice that avoids the runtime branching and
kernel fragmentation that can degrade computational performance. In contrast, weights receive a
more fine-grained, per-output-channel integer quantization. To enable this, all operators are first
standardized as linear maps of the form Y = XW + b, where convolutions are treated as their
equivalent linear operators. Each output channel can then be assigned a unique bit-width from
{0, 2, 4, 8, 16}, a formulation that elegantly unifies quantization with structural pruning by treating
a 0-bit assignment as a channel to be pruned. Finally, performance is evaluated directly within the
action space to measure true task-level impact. More specifically, single-step accuracy is quantified
using Action-MSE under a teacher-forcing paradigm, while temporal robustness is assessed through
short-horizon rollouts by measuring cumulative action and end-effector deviations alongside final
task success rates. Fig. 2 shows our overall framework.

3.3.1 ESTIMATION OF ACTION-SPACE SENSITIVITY

Our bit allocation strategy is guided by the action-space sensitivity metric defined in Eq. 4 and 5.
For each channel (l, c), we compute a set of sensitivity scores, s(b)l,c , by evaluating its impact at
different bit-widths b ∈ {0, 2, 4, 8, 16} on a calibration set D. A crucial property of these scores is
their inherent comparability across all network components (modules, layers, and channels), which
enables them to serve as the primary signal for our global bit allocation algorithm. To ensure this
single-step metric is also a valid proxy for performance in dynamic control tasks, we introduce a
cumulative variant, S(b)

l,c , designed to capture short-horizon error accumulation. In practice, we find

that the rankings of channel sensitivities produced by s
(b)
l,c and S

(b)
l,c are highly consistent. This crucial

finding allows us to leverage the computationally cheaper single-step metric s
(b)
l,c for guiding the bit
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Figure 2: The pipeline of our AutoQVLA framework consists of two steps: (i) In Step 1, we conduct
a fine-grained action sensitivity analysis by systematically measuring and ranking the error induced
by quantizing each channel to various bit-widths. (ii) In Step 2, an optimal bit-width is assigned to
each channel using a greedy demotion algorithm, which iteratively prunes or lowers the precision of
the least sensitive channels until the target bit budget is met.

allocation process, while using the more comprehensive cumulative metric S
(b)
l,c to validate that our

approach successfully extrapolates to long-horizon performance.

While the sensitivity metric s
(b)
l,c provides a robust signal for bit allocation, exhaustively comput-

ing it for every channel and bit-width is computationally prohibitive. To overcome this challenge,
we introduce an efficient two-stage strategy that combines a rapid, approximate screening with a
targeted, precise evaluation. First, we derive a first-order approximation to serve as a proxy for sen-
sitivity. The core idea is to model the local relationship between a channel’s output, Xl,c, and the
final action, A, using a linear approximation based on the Taylor expansion. A small perturbation
∆Xl,c at the channel output will induce a deviation in the action, ∆A, which can be approximated
as ∆A ≈ JA,Xl,c

∆Xl,c. To quantify the magnitude of this effect, we consider the vector norms,

∥∆A∥ ≈ ∥JA,Xl,c
∥ · ∥∆Xl,c∥, (6)

where JA,Xzul,c
is the Jacobian of the action with respect to the channel output. In this formula-

tion, the matrix norm ∥JA,Xl,c
∥ serves as a local sensitivity gain, a scalar value that quantifies how

much a perturbation’s magnitude is amplified as it propagates to the action space. The perturbation
induced by quantization is modeled as the quantization error, ∆Xl,c ≈ (Q(Wl) −Wl)Xl. This
allows us to compute a rapid importance score, i.e., the product of the Jacobian gain and the esti-
mated quantization noise, to create a global ranking of all channels. Then, based on this ranking, we
perform a limited number of full forward passes, selectively targeting the most important channels
to precisely calibrate their true sensitivity scores. This hybrid approach allows us to focus computa-
tional effort on preserving sensitive interfaces, such as the projector and action head, while enabling
aggressive compression of less critical channels.

3.3.2 OPTIMAL BIT ALLOCATION UNDER CONSTRAINED BUDGET

With the sensitivity scores for each potential bit-width established, we can now formulate the overall
bit allocation task as a constrained optimization problem. Specifically, we aim to assign a bit-width
bl,c ∈ {0, 2, 4, 8, 16} to each channel to minimize the action error, subject to an average budget B̄:

min
{bl,c}

∑
l,c

s
(bl,c)
l,c s.t.

1

N

∑
l,c

bl,c ≤ B̄, (7)

where N is the total number of channels and 0-bit signifies pruning. To solve this NP-hard problem
efficiently, we propose a greedy demotion algorithm. The procedure begins by initializing all chan-
nels to the highest precision, 16-bit. It then proceeds in a series of demotion stages (16→ 8, 8→ 4,
4→ 2, and 2→ 0) until the average bit budget B̄ is met. Within each stage, from a higher bit-width
bhi to a lower one blo, we evaluate the cost-effectiveness of demoting each candidate channel using
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Table 1: Performances under various weight-activation quantization settings. W4A4/W8A8
refers to the quantization of weights (W) and activations (A) to 4 and 8 bits, respectively. Note that
since our method assigns bits adaptively on a per-channel basis, we report the average bit-width.

Model Setting Method Spatial Object Goal Long Avg ↑ ∆ Mem. (GB) ↓ Speedup ↑

OpenVLA

FP Model - 84.7% 88.4% 79.2% 53.7% 76.5% - 15.2 1×

W8A8
SmoothQuant 84.2% 87.8% 77.8% 53.2% 75.8% -0.7% 7.4 1.40×
OmniQuant 82.6% 86.2% 74.8% 51.7% 73.8% -2.7% 7.8 1.26×
AutoQVLA 85.2% 88.0% 77.6% 54.2% 76.3% -0.2% 7.1 1.42×

W4A4
SmoothQuant 69.2% 73.2% 69.6% 40.9% 63.2% -13.3% 4.7 1.52×
OmniQuant 82.2% 85.4% 75.4% 50.3% 73.3% -3.2% 5.4 1.43×
AutoQVLA 84.4% 87.6% 78.8% 53.0% 76.0% -0.5% 4.3 1.47×

OpenVLA
-OFT

FP Model - 97.6% 98.4% 97.9% 94.5% 97.1% - 15.4 1×

W8A8
SmoothQuant 96.4% 97.8% 95.4% 94.3% 96.0% -1.1% 7.7 1.41×
OmniQuant 95.4% 96.2% 93.0% 92.6% 94.3% -2.8% 8.0 1.30×
AutoQVLA 97.2% 98.2% 95.8% 94.3% 96.4% -0.7% 7.2 1.36×

W4A4
SmoothQuant 77.2% 70.0% 77.8% 68.6% 73.4% -23.7% 4.9 1.53×
OmniQuant 95.0% 94.4% 94.0% 92.0% 93.9% -3.2% 5.7 1.37×
AutoQVLA 96.2% 97.6% 96.4% 93.8% 96.0% -1.1% 4.5 1.49×

the sensitivity-to-bit ratio ρl,c:

ρl,c =
s
(blo)
l,c − s

(bhi)
l,c

bhi − blo
. (8)

This ratio represents the marginal increase in error for each bit saved. To make the most efficient bit
reductions, we prioritize demoting channels that are least sensitive to quantization, i.e., those with
the lowest ρl,c values. Specifically, in the 16→ 8 stage, we sort all channels by their corresponding
ρl,c in ascending order and sequentially demote them to 8-bit. After each demotion, we check the
total bit budget. If the budget B̄ is met, the process stops. Otherwise, the algorithm proceeds to the
8 → 4 stage, repeating the sort-and-demote process for all channels currently at 8-bit, and so on
for the remaining stages. To further refine the final bit assignment, we introduce several heuristics.
To mitigate over-pruning, the final 2 → 0 demotion stage is regularized using dual-threshold and
L0-style constraints. The computational complexity of this method is dominated by sorting, scaling
as O(C logC), where C is the total number of channels.

Activations are assigned a uniform bit-width (e.g., 8-bit) using distribution-aware calibration, which
ensures a branch-free execution path and stable latency. Weights are stored on a per-row basis,
each with its own scale and zero-point, and are dequantized upon access. This approach avoids
per-channel runtime branching. The scheme applies to all linear and convolutional layers in both the
vision and language backbones. See Appendix for more detailed pseudocode.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETTINGS AND DETAILS

To evaluate our method, we adopt the widely used LIBERO benchmark (Liu et al., 2024a), compris-
ing four distinct task suites for robot manipulation. Our floating-point (FP) baseline employs models
with weights in the BF16 format, and all experiments were conducted on NVIDIA RTX 4090 GPUs.
In our quantization strategy, we selectively apply channel-wise weight quantization with gated bit
allocation to the vision backbone and language module. The projector and action head remain in
full BF16 precision to preserve control stability. The core of our method is an action-centric sensi-
tivity analysis, which requires a calibration set sampled from LIBERO training demonstrations and
augmented with a small instruction-only subset. Using this set, we measure the sensitivity score
(Eq. 4) for each channel in the target modules by simulating its quantization to various bit-widths
b ∈ {0, 2, 4, 8, 16}. To confirm the validity of this metric, the resulting sensitivity rankings are
further cross-validated with short environmental rollouts. While our diagnostic analysis spans all
modules, the final average-bit budget and the effects of pruning (0-bit quantization) are computed
exclusively over the layers designated for quantization, ensuring a fair comparison.
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Table 2: Performances under various weight-only quantization settings. Weight-only quantiza-
tion primarily targets the reduction of memory, typically offering a marginal improvement in latency.

Model Setting Method Spatial Object Goal Long Avg. ↑ ∆ Mem. (GB) ↓

OpenVLA

FP Model – 84.7% 88.4% 79.2% 53.7% 76.5% – 15.2

W8A16 AWQ 82.3% 87.2% 74.6% 50.7% 73.7% -1.8% 7.6
AutoQVLA 86.2% 88.4% 79.4% 53.1% 76.8% +0.3% 7.2

W4A16 AWQ 80.0% 81.2% 74.6% 47.2% 70.8% -4.7% 5.0
AutoQVLA 86.0% 88.6% 78.4% 52.8% 76.5% +0.0% 4.3

OpenVLA-OFT

FP Model – 97.6% 98.4% 97.9% 94.5% 97.1% – 15.4

W8A16 AWQ 95.2% 96.8% 95.4% 93.1% 95.1% -2.0% 8.0
AutoQVLA 97.4% 98.6% 97.2% 94.6% 97.0% -0.1% 7.4

W4A16 AWQ 93.0% 92.4% 93.8% 90.7% 92.5% -4.5% 5.2
AutoQVLA 97.0% 98.4% 96.8% 94.4% 96.7% -0.4% 4.5

Table 3: Comparison of layer-wise and channel-wise quantization
methods on various tasks. The baseline is OpenVLA.

Weight Type
Method

Spatial Object Goal Long Avg. ↑
Layer Channel

FP Model – – 84.7% 88.4% 79.2% 53.7% 76.5%

INT4 ✓ 84.2% 86.8% 77.0% 51.2% 74.8%
✓ 86.0% 88.6% 78.4% 52.8% 76.5%

INT8 ✓ 84.0% 87.2% 77.8% 50.6% 74.9%
✓ 86.2% 88.4% 79.4% 53.1% 76.8%

Timestep

C
u

m
u

la
ti

v
e 

M
S

E

Reduced bit-width

increases

accumulated error

Figure 3: Quantification of
temporal error accumulation.

4.2 COMPARISON WITH STATE-OF-THE-ARTS

Results on weight-activation quantization. Tab. 1 compares the performance of our AutoQVLA
with SmoothQuant Xiao et al. (2022) and OmniQuant Shao et al. (2024), two methods initially
designed for LLMs/MLLMs, under weight-activation quantization. The results demonstrate that
AutoQVLA achieves a superior trade-off between high task success rates, low memory footprint,
and fast inference speed. For instance, under the W4A4 quantization setting for the OpenVLA
model, AutoQVLA retains 99.3% of the full-precision performance, incurring a minimal accuracy
drop of only 0.5%. This is substantially smaller than the 13.3% drop from SmoothQuant and the
3.2% from OmniQuant. This comprehensive advantage is achieved while requiring only 28.2% of
the original model’s memory and delivering a 1.47× inference speedup. These results validate the
effectiveness of our action-centric quantization strategy, establishing AutoQVLA as a compelling
choice for balancing performance and efficiency in resource-constrained environments.

Results on weight-only quantization. The performance comparison under weight-only quantiza-
tion, presented in Tab. 2, reveals the consistent superiority of our AutoQVLA. This advantage is par-
ticularly pronounced in the most challenging W4A16 setting. Specifically, on the OpenVLA model,
AutoQVLA incurred zero performance loss, whereas AWQ’s Lin et al. (2023) average success rate
dropped by 4.7%. Similarly, for the OpenVLA-OFT model, AutoQVLA’s performance degradation
was minimal at just 0.1% and 0.4%, markedly lower than the 2.0% and 4.5% losses observed with
AWQ. Collectively, these results robustly demonstrate our AutoQVLA’s superior ability to preserve
model accuracy under aggressive compression.

4.3 FURTHER ANALYSIS

The superiority of channel-wise quantization. We conducted an ablation study with Open-
VLA Kim et al. (2024) to validate our choice of channel-wise quantization over the conventional
layer-wise method for the VLA model. As detailed in Tab. 3, our approach demonstrates a dis-
tinct advantage when benchmarked against the 76.5% success rate of the full-precision baseline
on LIBERO. At INT4 precision, the channel-wise method perfectly preserves the baseline perfor-
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Table 4: The influence of pruning (0-bit quantization) and uniform-bit quantization under an
overall INT8 budget. The row ③ with “prune” and without “uniform-bit” indicates our proposed
quantization method with the {0, 2, 4, 8, 16} as candidates during assigning bit to each channel.

# Weight Type
Quantization Method

Spatial Object Goal Long Avg. ↑ Memory (GB)
Prune Uniform Bit

① FP Model – – 84.7% 88.4% 79.2% 53.7% 76.5% 15.2

②

INT8

86.4% 88.0% 79.0% 53.4% 76.7% 7.5
③ ✓ 83.6% 87.0% 77.4% 50.2% 74.6% 7.6
④ ✓ 86.2% 88.4% 79.4% 53.1% 76.8% 7.0
⑤ ✓ ✓ 84.0% 87.2% 77.0% 50.4% 74.7% 7.1

mance (76.5%), whereas its layer-wise counterpart suffers a notable decline to 74.8%. This superi-
ority is even more pronounced at INT8 precision, where our method not only matches but surpasses
the baseline at 76.8%. In stark contrast, the layer-wise approach again degrades performance, falling
to 74.9%. This study provides compelling evidence that channel-wise quantization is the superior
strategy for compressing our VLA model.

Mitigating temporal error accumulation. Fig. 3 illustrates the temporal accumulation of action
errors. As expected, cumulative error increases over time for all quantization methods, with 4-bit
quantization showing a significantly faster rate of error growth than 8-bit methods. Crucially, our
proposed 8-bit method consistently maintains a lower cumulative error than the uniform 8-bit base-
line. This performance gap widens progressively over the time horizon, highlighting our method’s
superior ability to mitigate long-horizon error propagation. This sustained reduction in error demon-
strates the enhanced stability and long-horizon robustness conferred by our approach, an advantage
that becomes particularly pronounced as dynamic effects accumulate over longer episodes.

The impact of prune and uniform bit. As shown in Tab. 4, channel-wise gating with {2, 4, 8, 16}
bits as candidates for each channel’s quantization already matches the full-precision (FP) baseline
performance (② 76.7% vs. ① 76.5%), confirming the effectiveness of concentrating bits on critical
channels. When combined with pruning (from ②{2, 4, 8, 16} to ④{0, 2, 4, 8, 16}), this method fur-
ther reduces memory to 7.0 GB while also slightly boosting the average success rate to 76.8%. In
contrast, enforcing a uniform bit-width (③ only 8-bit) causes a substantial drop in performance to
74.6%. Subsequent pruning (⑤{0, 8}) is unable to recover this loss, yielding only 74.7%. This indi-
cates that a uniform quantization strategy is fundamentally ill-suited for the VLA model. Therefore,
under an overall INT8 budget, the combination of channel-wise gating with pruning (0-bit) proves
to be the superior strategy, achieving the highest accuracy while minimizing the memory footprint.

5 CONCLUSION

This paper presents the first systematic analysis of quantization challenges in VLA models. We
demonstrate that naively migrating quantization strategies from other domains, such as the uniform-
bit methods common for LLMs/MLLMs, is ill-suited for these action-driven models and leads to
significant performance degradation. This failure stems from the VLA’s unique sensitivity to noise,
a critical barrier to their deployment on resource-constrained robots. To address this gap, we propose
AutoQVLA, an adaptive quantization framework specifically designed for VLAs. Our action-centric
approach reframes the problem by anchoring optimization objectives directly in the action space. It
unifies quantization and pruning via a per-channel sensitivity metric and a global greedy algorithm.
Extensive evaluations on OpenVLA and OpenVLA-OFT baselines confirm that AutoQVLA consis-
tently outperforms conventional methods, reducing action errors and enhancing task success rates
to a level that can even surpass the full-precision baseline. Looking ahead, we are going to adapt
AutoQVLA to a broader spectrum of VLA architectures. This will further validate our framework’s
generalizability and solidify its role as a key enabler for deploying capable foundation models on
real-world robotic systems.
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6 ETHICS STATEMENT

All studies use publicly available baselines (i.e., OpenVLA / OpenVLA-OFT), standard simula-
tion suites (e.g., LIBERO), and released checkpoints. No human subjects, sensitive personal data,
or privacy-related information are involved. We follow community ethical guidelines emphasizing
transparency, fairness, and academic integrity. The authors report no conflicts of interest or com-
mercial sponsorship that could bias the results.

7 REPRODUCIBILITY STATEMENT

We have made extensive efforts to ensure the reproducibility of our results. The experimental setup,
including baselines (OpenVLA and OpenVLA-OFT), environments/datasets (e.g., the LIBERO task
suite and the standard OpenVLA evaluation protocols), quantization settings, calibration set, eval-
uation metrics, and hardware environment (NVIDIA RTX 4090D, 24GB VRAM), are clearly de-
scribed in the main text. Comparative baselines (full-precision, AWQ, SmoothQuant, OmniQuant)
and detailed ablation studies are reported to validate our claims. All authors have reviewed the final
manuscript and take full responsibility for its content. We are committed to the full reproducibility
of our research. Upon acceptance, we will release all code and related resources through a public
code repository on GitHub.
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A THE USE OF LARGE LANGUAGE MODELS (LLMS)

The authors utilized LLMs such as Google’s Gemini to refine the language and enhance the read-
ability of this paper. It is important to state that these models were not used for generating ideas or
the conceptual framework.

B ALGORITHM

Algorithm 1 AutoQVLA: Greedy Bit Allocation under an Average Bit Budget

Input: Calibration set D; per-channel action-space sensitivities s
(b)
l,c for b ∈ {16, 8, 4, 2, 0}; target

average bit-width B̄
Output: Assigned bit-widths bl,c ∈ {16, 8, 4, 2, 0} for all output channels (l, c)

1 Init: For all (l, c), set bl,c ← 16; let N ← number of channels; Sinit ← 16 ·N ; Starget ← B̄ ·N ;
∆S ← Sinit − Starget. Create a min-heap H keyed by ρ.

2 Push first-step (16→8): foreach channel (l, c) do
3 push

(
(l, c), (16→8)

)
into H with key ρl,c(16→8)

4 while ∆S > 0 and H not empty do
5

(
(l, c), (h→l)

)
← pop min(H) ; // smallest loss per saved bit

6 if bl,c = h then
7 bl,c ← l; ∆S ← ∆S− save(h→l) // enqueue the next adjacent step if

any: 16→8 then 8→4, etc.
8 if (l→l′) ∈ {8→4, 4→2, 2→0} then
9 push

(
(l, c), (l→l′)

)
with key ρl,c(l→l′) into H

10 return {bl,c}
11 Remarks: Adjacent-only demotions (16→8→4→2→0). 0-bit means pruning.

C IMPACT OF THE GATES RATIO

Impact of the gates ratio. The gate ratio on model performance while maintaining an overall
INT8 budget. The results, summarized in Tab. 5, reveal a clear trend that optimal performance
(76.3% success rate) is achieved when a high proportion of parameters are quantized to 8-bit. Con-
versely, performance systematically degrades as this ratio is reduced. In future work, we will develop
an automated algorithm to dynamically determine the optimal gate ratio for any given budget, thus
eliminating the need for heuristic tuning.

Table 5: Performance results of OpenVLA with different gates ratios under the INT8 budget.
We compare the performance across various gate ratios based on their success rates.

Budget Gates Ratio LIBERO-Spatial LIBERO-Object LIBERO-Goal LIBERO-Long Average(0bit:2bit:4bit:8bit:16bit)

INT8

1% : 5% : 22% : 56% : 16% 84.6% 88.2% 79.0% 53.2% 76.3%
5% : 8% : 27% : 35.5% : 24.5% 84.0% 87.4% 78.0% 53.0% 75.6%

8% : 10% : 32% : 18.5% : 31.5% 83.2% 85.8% 77.4% 52.0% 74.6%
10% : 12% : 22% : 25% : 31% 82.7% 85.2% 76.0% 52.4% 74.1%
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