
A Additional details of ReSPack

A.1 Steiner tree generation

We use two different tree-building algorithms, Algorithm 2 and Algorithm 3 in ReSPack generator.
The former is applied to create medium and large RSTPP instances, and the latter is implemented
for extra large RSTPP instances. SteinerTreeHeuristic is a Steiner Tree heuristic algorithm
which indicates both 2-approximation [27] and router that is similar to Prim’s algorithm [49] unless
otherwise specified.

Algorithm 2: BuildSteinerTree: 2-approximation method
Data: Graph G, candidate nodes W ⇢ V for terminals, number of terminals k, a random

sampler ⇠, a bound for distances between each terminals [rmin, rmax] given a distance
metric d over the nodes in the graph G, and a function SteinerTreeHeuristic(G, T)
that outputs an approximate Steiner tree solution S via 2-approximation method given a
graph G and a set of terminals T .

Result: A set of terminals T , and a feasible Steiner tree S spanning T .
1 v ⇠W ;
2 initialize T {v} ; /* initial terminal */
3 while i  k � 1 do
4 v ⇠W \ T ;
5 if rmin  d(v, T)  rmax then
6 T T [{v};
7 i i+ 1;
8 end
9 end

10 S SteinerTreeHeuristic(G, T)

Algorithm 3: BuildSteinerTree: incremental tree expansion
Data: Graph G, candidate nodes W ⇢ V for terminals, number of terminals k, maximum

number of iterations N , a random sampler ⇠, and a bound for distances between each
terminals [rmin, rmax] given a distance metric d over the nodes in the graph G.

Result: A set of terminals T , and a feasible Steiner tree S spanning T

1 v ⇠W ;
2 initialize T {v} and S {v} ; /* initial terminal and tree */
3 while i  k � 1 do
4 v ⇠W \ T ;
5 if d(v, T)  rmax ^ d(v, S) � rmin then
6 P {ShortestPath(u, v) : u 2 S};
7 if P 6= ; then
8 S S [argmin⇡2P |⇡|;
9 T T [{v};

10 i i+ 1;
11 end
12 end
13 end

The function SteinerTreeHeuristic runs in O(|V |(|E|+ |V |) log |V |), and hence Algorithm 2
has time complexity O(|V |(|E|+ |V |) log |V |), assuming O(1) for each random sampling operation.
This can be significantly reduced to O(k · |V ||E|) in Algorithm 3 where its computation bottleneck
O(|V ||E|) arises from ShortestPath. If line 6 is replaced with solving a path existence problem
(instead of finding a shortest path) the time complexity of Algorithm 3 can be reduced up to O(k·|V |2).
Note that finding LargestConnectedComponent in Algorithm 1 runs in O(|V |+ |E|), and hence
the overall time complexity of Algorithm 1 is at best O(k ·K(|V |+ |E|)|V |2). Table 3 reports clock
time in the generation process for each size of instance.

1

Table 3: An average generation time per sample for ReSPack datasets.

Type Grid Size Time / Sample

Medium
8⇥ 8 0.04 ± 0.01 s
16⇥ 16 0.12 ± 0.01 s
32⇥ 32 0.80 ± 0.07 s

Large
64⇥ 64 0.11 ± 0.01 m

128⇥ 128 1.17 ± 0.12 m
256⇥ 256 14.12 ± 1.07 m

Extra Large 512⇥ 512 2.30 ± 0.48 h
1024⇥ 1024 32.35 ± 9.79 h

Large-scale instance generation. Due to the heavily time-consuming process for large-scale dataset
generation, we adapted the evolutionary generation process for the extra large benchmark datasets
to reduce computational time. It starts from an initially given instance and keeps rebuilding a small
fraction of the existing Steiner trees, iteratively. In each step, the modified instances are added as new
instances for RSTPP. To obtain diverse instances, it utilizes multiple initial instances and runs them
in parallel using multiprocessors. The extra large-scale datasets in the benchmark are generated from
10 initial instances.

A.2 Measurement results for Steiner tree entanglement

Although an RSTPP instance consists of a tremendous number of Steiner trees, if nets are distributed
sparsely on a grid, then it can be solved easily as intersections between nets are negligible. Thus,
to quantify the entanglements between the trees in the RSTPP instance, we define a measure of
entanglement as the difference between the total cost of the feasible solution and the sum of total
costs of individual Steiner tree problems solved by the 2-approximation algorithm [27]. The problem
with the large value of the entanglement where the trees are tightly entangled can be considered
difficult compared to the small value because the solver should carefully consider congestion between
the nets. In Figure 4, we report the distribution of entanglement for each dataset and assess the effects
on the entanglement by adding constraints. For medium datasets, the constraints rarely affect the
entanglement. On the other hand, large datasets are prone to increasing the entanglement as constraints
are considered. Extra large datasets are excluded from the results because their computational time is
too long to get the solution by the heuristic algorithms.

2

(a) Medium dataset: 8⇥ 8 (b) Medium dataset: 16⇥ 16 (c) Medium dataset: 32⇥ 32

(d) Large dataset: 64⇥ 64 (e) Large dataset: 128⇥ 128 (f) Large dataset: 256⇥ 256

Figure 4: Histogram of entanglement measure for each dataset.

A.3 Instance format

An instance in our benchmark consists of a pair of problem and solution, and they are given as txt
format file. There are 4 properties in the problem file: INFO, GRAPH EDGES, TERMINAL NODES,
CONSTRAINTS.

INFO gives a general description about the instance such as size, number of trees(nets), number
of terminals for each tree. ‘gird size’ consists of [layer, width, height]. GRAPH EDGES gives all
edges in a grid graph of the instance. Each edge is represented as a pair of nodes, and each node
is represented as the xyz coordinate (z-axis is a layer). TERMINAL NODES gives positions of
terminal nodes. CONSTRAINTS gives additional information about constrains of each tree. ‘margin’
represents line spacing constraint and ‘radius’ represents wire length constraint.

Below is an example of 2-layer 8⇥8 instance.

3

Problem (2-layer 8 ⇥ 8)

[INFO BEGIN]
grid size: [2, 8, 8]
number of trees: 2
number of terminals in each tree: [2, 4]
[INFO END]

[GRAPH EDGES BEGIN]
(0, 0, 0) - (1, 0, 0)
(0, 0, 0) - (0, 1, 0)
(0, 0, 0) - (0, 0, 1)
(1, 0, 0) - (2, 0, 0)
...
(7, 6, 0) - (7, 6, 1)
(7, 6, 1) - (7, 7, 1)
(7, 7, 0) - (7, 7, 1)
[GRAPH EDGES END]

[TERMINAL NODES BEGIN]
[TERMINAL NODES of TREE 1 BEGIN]
(1, 2, 1)
(6, 3, 0)
[TERMINAL NODES of TREE 1 END]
[TERMINAL NODES of TREE 2 BEGIN]
(1, 0, 1)
(0, 3, 0)
(1, 6, 0)
(6, 7, 0)
[TERMINAL NODES of TREE 2 END]
[TERMINAL NODES END]

[CONSTRAINTS BEGIN]
[STEINER TREE 1 CONSTRAINTS BEGIN]
margin: 1
radius: 7
[STEINER TREE 1 CONSTRAINTS END]
[STEINER TREE 2 CONSTRAINTS BEGIN]
margin: 1
radius: 25
[STEINER TREE 2 CONSTRAINTS END]
[CONSTRAINTS END]
[EOF]

4

Solution (2-layer 8 ⇥ 8)

[STEINER TREE 1 BEGIN]
(1, 2, 1) - (1, 3, 1)
(1, 3, 1) - (1, 4, 1)
(1, 4, 1) - (1, 5, 1)
(1, 5, 1) - (1, 6, 1)
(1, 6, 1) - (2, 6, 1)
(2, 6, 1) - (3, 6, 1)
(3, 6, 1) - (3, 7, 1)
[STEINER TREE 1 END]

[STEINER TREE 2 BEGIN]
(1, 5, 0) - (1, 6, 0)
...
(7, 4, 0) - (7, 5, 0)
[STEINER TREE 2 END]

[STEINER TREE 3 BEGIN]
(0, 0, 0) - (0, 1, 0)
...
(0, 4, 0) - (0, 5, 0)
[STEINER TREE 3 END]

[STEINER TREE 4 BEGIN]
(0, 1, 1) - (1, 1, 1)
...
(6, 3, 0) - (6, 3, 1)
[STEINER TREE 4 END]
[EOF]

A.4 Instance example

We provide examples of ReSPack instances in the below. Due to visibility, we only visualize instances
with a size of 128 ⇥ 128 or less.

5

Figure 5: An instance in UC with 2-layer 16⇥ 16

Figure 6: An instance in NWA with 2-layer 16⇥ 16

Figure 7: An instance in NWA+LS+WL with 2-layer 16⇥ 16

6

Figure 8: An instance in UC with 2-layer 32⇥ 32

Figure 9: An instance in NWA with 2-layer 32⇥ 32

Figure 10: An instance in NWA+LS+WL with 2-layer 32⇥ 32

7

Figure 11: An instance in UC with 2-layer 64⇥ 64

Figure 12: An instance in NWA with 2-layer 64⇥ 64

Figure 13: An instance in NWA+LS+WL with 2-layer 64⇥ 64

8

Figure 14: An instance in UC with 2-layer 128⇥ 128

Figure 15: An instance in NWA with 2-layer 128⇥ 128

Figure 16: An instance in NWA+LS+WL with 2-layer 128⇥ 128

9

B Experimental details

B.1 Baseline algorithms

SCIP. We compute Steiner tree packing based on the multicommodity flow formulation [2] as follows:

min
X

a2A

X

(i,j)2E

c
a
ij x̄

a
ij ,

X

(i,j)2��j

y
t
ij �

X

(j,k)2�+j

y
t
jk =

8
<

:

1, if j = t

�1, if j = r�(t)

0, otherwise
for all j 2 V, t 2 T \R,

0  y
t
ij  x̄

�(t)
ij for all (i, j) 2 E, t 2 T \R,

X

a2A
(x̄a

ij + x̄
a
ji)  1 for all (i, j) 2 E,

x̄
a
ij 2 {0, 1} for all a 2 A, (i, j) 2 E,

X

a2A

X

(i,j)2��j

x̄
a
ij 

⇢
0, if j 2 R

1, otherwise
for all j 2 V,

where graph G = (V,E, c), the union of all terminals T =
S

a2A Ta for A = {1, . . . ,K}, a set
of roots R = {ra|ra 2 Ta, a 2 A}, edge cost caij for a-th nets and edge (i, j) (in our experiments,
c
a
ij = 1), outgoing edges �

+
i = {(i, j) 2 E|j 2 V }, incoming edges �

�
i = {(j, i) 2 E|j 2 V },

�(t) = a for t 2 Ta, a 2 A. Since we assume undirected graph in this paper, outgoing and incoming
edges are equivalent, binary variables x̄a

ij = 1 if and only if edge (i, j) is contained in a-th Steiner
tree.

Sequential. It is a straightforward method of routing nets sequentially, avoiding previously routed
area, after determining the order of nets to be routed. The detailed algorithm is demonstrated in
Algorithm 4. This method is highly dependent on net ordering, because pre-routed regions block
available nodes for subsequent nets. If all terminals cannot be connected without congestion, it
reorders the nets and repeats the above process. Early work by Abel [3] concluded that there is no
single net ordering technique that consistently performs better than any other ordering method, so we
randomly change an order in our experiments (Line 4 in Algorithm 4).

Algorithm 4: Sequential
Data: Graph G, candidate Steiner tree Si for i-th nets, iterations iteration, cost of node n cn,

history of node n hn, and a function NetOrdering(K) that outputs a list of net orders.
Result: Steiner trees S which is a set of Si spanning Ti for i = 1, · · · ,K.

1 initialize iteration 0
2 while not exit condition do
3 iteration iteration+ 1;
4 N NetOrdering(K) ; /* change a net order in every iteration */
5 for i in N do
6 Si SteinerTreeHeuristic(G, Ti, c);
7 if Si = ; or Si violate constraints then
8 S ;
9 break;

10 end
11 for n in V (Si) do
12 cn 1 ; /* can not pass previously routed path */
13 end
14 end
15 end

10

(a) PathFinder (1st iter.) (b) PathFinder (3rd iter.) (c) PathFinder (9th iter.)

Figure 17: Routing results of PathFinder. Each net differs in color, black cross denotes congested
nodes, and dots indicate terminal points on 1st (blue) and 2nd layer (yellow).

PathFinder. Another sequential routing algorithm, PathFinder [39], is a negotiation congestion
algorithm that routes each net and then rips up and reroutes each net several times in sequence.
During the sequential iterations, cost updates of routing nodes can migrate routes from congested
areas to sparsely populated areas. Figure 17 shows how PathFinder finds routes sequentially. First, as
shown in Figure 17(a), PathFinder connects terminals of each net ignoring other nets. If congestion
occurs, node cost is updated as follows:

cn = (bn + hn) · pn, (1)

where cn is a cost of node n, bn is the base cost of using node n, hn is related to the history of
congestion on node n, and pn is related to the number of nets presently using n. In our experiment,
we convert node cost into edge cost by averaging costs of connected nodes (i.e.C(eij) =

ci+cj
2). We

add 0.8 · #iterations to pn when node n is used, and define a tunable parameter �(k) as 0.1. Figure
17(b) and 17(c) show that node cost allows router to find a path through other nodes and PathFinder
finally finds a feasible solution. The detailed algorithm is demonstrated in Algorithm 5.

Algorithm 5: PathFinder
Data: Graph G, Steiner tree Si for i-th nets, iterations iteration, cost of node n cn, history of

node n hn, and a function NetOrdering(K) that outputs a list of net ordering.
Result: Steiner trees S which is a set of Si spanning Ti for i = 1, · · · ,K.

1 initialize iteration 0 and Si ;
2 N NetOrdering(K) ; /* route in a pre-defined order */
3 while not exit condition do
4 iteration iteration+ 1;
5 for i in N do
6 Rip up Si;
7 Si SteinerTreeHeuristic(G, Ti, c);
8 for n in V (Si) do
9 update cn

10 end
11 if congestion occurs in V (Si) then
12 for n in V (Si) do
13 hn hn + �(k)
14 end
15 end
16 end
17 end
18 if congestion occurs or violate constraints then
19 S ;
20 end

11

RankingCost-MT. The original RankingCost [21] assumes that every net has only two terminals and
sequentially routes each two-terminal net searching a path between them based on A* algorithm. The
net ordering is determined by descending order of trainable ranking parameter, for example, ranking
parameter [0.1, 0.8, 0.3] for three nets implies the corresponding order of nets is [3, 1, 2] (Line 10 in
Algorithm 6). For trainable A* router, it utilizes an additional term parameterized by trainable cost
map in priority function as follows:

sj(v) = gj(v) + hj(v) +
KX

i=j+1

C(i, v), (2)

where sj(v) is the priority function for a node v in j-th ordered net, gj(v) is total length from
start node, hj(v) is future heuristic cost from v to end node (e.g., Euclidean distance), and C(i, v)
is additional trainable cost map for i-th net. In order to consider multiple terminals per net, we
decompose the multiple terminals into multiple two-terminal pairs by computing a minimum spanning
tree (MST) of the complete graph of the terminals as in [27]. Then, when we route one net, we
exclude terminals in other nets from search space. Following OpenAI-ES [47], each worker run this
procedure in parallel taking its own perturbed parameters from global parameters, and then the global
parameters are updated by the collection of normalized rewards from arbitrary reward function that
evaluates the given solution. We named this extension of RankingCost as RankingCost-MT and the
detailed algorithm is demonstrated in Algorithm 6. For RankingCost-MT, we used the default setting
of original RankingCost except for several hyperparameters due to modification for dealing with
multiple terminals; learning rate 0.01, population size 30.

12

Algorithm 6: RankingCost-MT
Data: Graph G, sets of terminals N = {T1, · · · , TK}, a random sampler ⇠, net ranking

parameter ✓r 2 RK , cost map parameter ✓c 2 RK⇥|V |, learning rate ↵, noise standard
deviation �, population size �, function A ⇤ (G, (v1, v2), ✓c) that outputs a path between
v1, v2 on G given cost map ✓c, and reward function f .

Result: Steiner trees S which is a set of Si spanning Ti for i = 1, · · · ,K.
1 initialize iteration 0;
2 while not exit condition do
3 iteration iteration+ 1;
4 for p = 1, . . . ,� do
5 ✏p ⇠ N(0, I);
6 ✓̂r ✓r + �✏p;
7 ✓̂c ✓c + �✏p;
8 G

0 G;
9 for j = 1, . . . ,K do

10 t rank(j) induced by ✓̂r;
11 P all edges of MST induced by complete graph of Tt;
12 St ;;
13 for l = 1, . . . , |Tt| do
14 G

00 subgraph of G0 which excludes
S

t0 6=t Tt0 ;
15 ⌧ A

⇤(G00
, Pl, ✓̂c);

16 St St [⌧ ;
17 if ⌧ = ; or violate constraints then
18 St ;;
19 break;
20 end
21 end
22 G

0 subgraph of G0 which excludes V (St);
23 if St = ; then
24 break;
25 end
26 end
27 rp f(S);
28 end
29 r̄ (r � rmean)/rstd ; /* parameter update with normalized reward */
30 ✓r ✓r + ↵

1
��

P�
j=1 r̄j✏j ;

31 ✓c ✓c + ↵
1
��

P�
j=1 r̄j✏j ;

32 end
33 S solution given the best ✓r, ✓c;

13

Table 4: The result on ReSPack of large size. Note that underlined metric, SR, indicates that higher is
better, otherwise, Gap and Time, lower is better. Gap and Time are measured on solved instances.
We denote ‘FAIL’ to reaching exit condition on every instance and ‘N/A’ to no experiment.

2-layer 64⇥ 64 2-layer 128⇥ 128 2-layer 256⇥ 256

SR(%) Gap(%) Time SR(%) Gap(%) Time SR(%) Gap(%) Time

UC

SCIP —FAIL— —FAIL— —FAIL—
Sequential-1 6.8±1.33 +0.4±0.59 47s —FAIL— —FAIL—
Sequential-2 7.6±2.42 +0.4±0.46 3m —FAIL— —FAIL—
PathFinder-1 100.0±0.00 �0.3±0.12 10s 100.0±0.00 �0.1±0.07 2m 100.0±0.00 �0.8±0.08 21m
PathFinder-2 100.0±0.00 �1.4±0.04 35s 100.0±0.00 �1.6±0.03 6m 100.0±0.00 �2.6±0.02 53m
RankingCost-MT 100.0±0.00 +2.0±0.06 1m 100.0±0.00 +2.1±0.05 8m 100.0±0.00 +0.6±0.00 1h

NW
A

SCIP —FAIL— —FAIL— —FAIL—
Sequential-1 0.6±0.80 +2.1±0.76 29s —FAIL— —FAIL—
Sequential-2 1.8±1.33 �0.2±1.06 2m —FAIL— —FAIL—
PathFinder-1 100.0±0.00 �2.1±0.07 10s 100.0±0.00 �1.1±0.06 2m 100.0±0.00 �0.4±0.07 26m
PathFinder-2 100.0±0.00 �3.7±0.03 28s 100.0±0.00 �3.1±0.02 6m 100.0±0.00 �2.2±0.01 58m
RankingCost-MT 100.0±0.00 +1.9±0.13 1m 100.0±0.00 +2.0±0.07 8m 100.0±0.00 +1.3±0.00 1h

NW
A+

LS
+W

L

SCIP N/A N/A N/A
Sequential-1 —FAIL— —FAIL— —FAIL—
Sequential-2 —FAIL— —FAIL— —FAIL—
PathFinder-1 —FAIL— —FAIL— —FAIL—
PathFinder-2 —FAIL— —FAIL— —FAIL—
RankingCost-MT —FAIL— —FAIL— —FAIL—

B.2 Experimental results on ReSPack of large size

14

C Real-world PCB examples

Figure 18 shows examples of RSTPP instances converted from real PCBs. We collected the real
PCB data designed for commercial products by PCB artwork designers, and the original PCB data
was converted into the RSTPP format of ReSPack defined above. A total of 208 collected PCB data
contains wiring results by human experts as solutions, of which 167 belong to Large and 41 belong to
Extra Large. Therefore, we believe that ReSPack can cover real-world wire routing problems well
enough. Unfortunately, making all of these data publicly available is difficult, but we have attached
some of the converted instances.

15

(a) Large instance (Layer-1) (b) Large instance (Layer-2)

(c) Extra Large instance #1 (Layer-1) (d) Extra Large instance #1 (Layer-2)

(e) Extra Large instance #2 (Layer-1) (f) Extra Large instance #2 (Layer-2)

Figure 18: RSTPP instances converted from real PCBs. The two figures in the first row represent
the first and second layers of a real PCB included in Large scale. The figures in the second and
third rows represent the first and second layers of two real PCBs included in Extra Large scale. For
confidentiality, all images are deliberately cropped to conceal some information.

16

D Motivation

This dataset is created to tackle RSTPP, which is one of popular CO problems and relevant to
real-world wire routing problem. Especially, we provide RSTPP with various scales and constraints
so that we make the dataset more realistic and challenging. We expect the dataset encourages ML
community to find effective approaches for constrained RSTPP solver. One of promising direction is
to build the RL environment using this dataset and problem generator, and train an agent with better
performance in cost and time or generalization. A feasible solution provided by the generator can be
a baseline for the evaluation or a starting point to imitate, and so on. Still, it is not the only way and
we hope that more creative approaches to conquer this problem will be suggested.

E Related Work

We briefly review heuristic and machine learning based approaches for wire routing, and public
benchmarks in those studies.

E.1 Routing algorithms

The routing problems are usually solved in two-stage where global routing is followed by detailed
routing. During global routing stage, the wire segments are temporarily assigned to coarse circuit
blocks called G-cells, which is used as guidance for detailed routing. Detailed routing routes on a
more fine-grained grid. During detailed routing stage, actual path of the wires are determined while
considering complicated design rules, such as minimum wire length and spacing, and global routing
segments as guidance.

There are concurrent and sequential approaches in global routing. The global routing approaches
can be divided into two types concurrent and sequential. Concurrent approaches [10, 11, 53, 54]
route numerous nets simultaneously, and thus they are computationally expensive to be applied
on large circuits. Sequential approaches [30, 12, 24, 41, 9, 43, 13, 7, 35], which are known to be
effective in practice and computationally cheaper than the concurrent approaches, route nets one by
one in a specific order. The main drawback of these approaches is that the quality of the solution
highly relies on the order of the nets. Recently, learning based approaches has also been proposed.
[33] models the routing problem as a sequential decision making problem, and solve it through
deep reinforcement learning algorithm. On the other hand, [50] models the routing problem as an
image-to-image processing problem where the routing in done in a single step manner with a deep
generative model.

For detailed routing, [46] proposes the first maze routing based approach by applying the breadth-first
search method, and [16] proposes the Minimum Detour algorithm by applying A

⇤ heuristic search.
[19] and [20] apply the line-search algorithms and improve Lee’s and A

⇤ algorithm respectively in
terms of time and space efficiency. Recently, [23] proposes TritonRoute, which divides each layer
into parallel panels and routes each pannel through integer linear programming. [8] proposes Dr.
CU that adopts minimum-area-captured path search algorithm, and shows the state-of-the-art result.
There also has been learning based approaches in detail routing, which mainly focuses on finding
a best net order. [32] and [34] utilize attention-based REINFORCE method and an asynchronous
actor-critic framework respectively to optimize routing ordering.

As [48] pointed out, global routing and detailed routing do not harmonize well especially for complex
routing problems, and therefore there has been another line of work called area routing [22], where
routes are done in a one-stage instead of two-stage. [18] also models the problem as a sequential
decision making problem, and presents Monte-Carlo tree search with deep neural network guided
rollout for wire routing. [21] proposes a method that combines search-based methods and learning
based methods, where A

⇤ algorithm is utilized to route each net, and the net ordering and the cost
maps for A⇤ algorithm are learned through evolution strategy. Those works show the promise of area
routing, but are restricted to small-scaled grid graphs with only 2 pins per net, and they test their
algorithms on the dataset generated by themselves due to lack of an open benchmark.

17

E.2 Datasets

There are some public datasets for a single Steiner tree problem (STP) in CO community. SteinLib
[25] is a dataset library which covers diverse STP such as randomly generated instances, collected
samples from application areas such as VLSI design and telecommunication. Instances are represented
in graph with nonnegative costs on edges. Vienna [31] is a collection of large, sparse STP graphs
arise from real-world fiber optic telecommunication networks. Its terminals and edges represent the
position of building and the construction cost, respectively. However, there is no public dataset for
Seinter tree packing problems.

International Symposium on Physical Design (ISPD) has held annual contest with various circuit-
design-related topics such as a placement, and it announced benchmarks of global routing in both
ISPD 20074 and ISPD 20085, and initial detailed routing in both ISPD 20186 and ISPD 20197. These
routing benchmarks are less than 20 real-world samples for each task which are represented in multi-
layered routing plane. The domain characteristics are well reflected in data, which is represented in
the preferred routing direction for each layer (i.e., vertical, horizontal), physical design rules (e.g.,
line spacing) for detailed routing, etc [40, 38, 36]. It considers various design rules like ReSPack, but
it has limitations that benchmark datasets are available only for two-stage based routing methods and
have fewer samples than ReSPack, so that it may not be suitable for ML research where a lot of data
is required

F Open Problems and Discussion

Utilizing sub-optimal solutions. ReSPack provides a sub-optimal solution for each instance, which
can be utilized to find the optimal solution more efficiently. We foresee future researches that can
bootstrap upon the sub-optimal solution such as via local search [1] or reducing the search space [29].

Scalable algorithm. Latest advancements in real-world inspired large-scale models for TSP, VRP,
etc. are actively supported by thriving large-scaled benchmark datasets [15]. We hope that ReSPack
serves as a starting point to the research in large-scale circuit routing problems.

Embedding heuristic solver into a neural network. Some recent studies show the potential that the
traditional CO solver can be a composable building block of neural network architectures [42]. We
believe we can apply the same intuition to improve the performance.

Constrained CO for real-world problem. Real-world wire routing problems have lots of constraints
so that it needs to add more design rules in wire routing into consideration. Unfortunately, different
types of circuits have different requirements (or design rules). It becomes more challenging to
efficiently generate the problem instances with guaranteed feasible solution as we incorporate more
design rules; hence, not scalable. Instead, a more scalable approach is to implement the design rule
as a soft constraint, or penalty, rather than a hard constraint. RL framework provides an interface
to model such soft constraint as a form of negative reward. Indeed, the deep RL has emerged as a
promising way to build a scalable solution to tackle CO problems [5, 26]. However, while RL has
been applied to many popular CO problems, application to Steiner tree (packing) problem has been
limited. Our dataset and benchmark provides a basic building blocks (e.g., feasibility checker and
imperfect solution) to build the RL environment, but we leave building the environment with complex
design rules as a future work.

4http://www.sigda.org/ispd2007/contest.html
5http://www.ispd.cc/contests/ispd08rc.html
6http://www.ispd.cc/contests/18/index.htm
7http://www.ispd.cc/contests/19/index.htm

18

http://www.sigda.org/ispd2007/contest.html
http://www.ispd.cc/contests/ispd08rc.html
http://www.ispd.cc/contests/18/index.htm
http://www.ispd.cc/contests/19/index.htm
http://www.sigda.org/ispd2007/contest.html
http://www.ispd.cc/contests/ispd08rc.html
http://www.ispd.cc/contests/18/index.htm
http://www.ispd.cc/contests/19/index.htm

	Introduction
	Background and Problem Statement
	Rectilinear Steiner tree packing problem (RSTPP)
	An industrial example of RSTPP: Wire routing problem

	ReSPack: A Large-Scale Synthetic RSTPP Data Generator and Benchmark
	Constrained RSTPP
	Instance generation process
	Benchmark dataset summary

	Experiments
	Benchmarking baselines
	Experimental setup
	Results

	Conclusion
	Additional details of ReSPack
	Steiner tree generation
	Measurement results for Steiner tree entanglement
	Instance format
	Instance example

	Experimental details
	Baseline algorithms
	Experimental results on ReSPack of large size

	Real-world PCB examples
	Motivation
	Related Work
	Routing algorithms
	Datasets

	Open Problems and Discussion

