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ABSTRACT

Designing mechanically efficient geometry for architectural structures like shells,
towers, and bridges, is an expensive iterative process. Existing techniques for solv-
ing such inverse problems rely on traditional optimization methods, which are slow
and computationally expensive, limiting iteration speed and design exploration.
Neural networks would seem to offer a solution via data-driven amortized optimiza-
tion, but they often require extensive fine-tuning and cannot ensure that important
design criteria, such as mechanical integrity, are met. In this work, we combine
neural networks with a differentiable mechanics simulator to develop a model
that accelerates the solution of shape approximation problems for architectural
structures represented as bar systems. This model explicitly guarantees compliance
with mechanical constraints while generating designs that closely match target
geometries. We validate our approach in two tasks, the design of masonry shells
and cable-net towers. Our model achieves better accuracy and generalization than
fully neural alternatives, and comparable accuracy to direct optimization but in
real time, enabling fast and reliable design exploration. We further demonstrate its
advantages by integrating it into 3D modeling software and fabricating a physical
prototype. Our work opens up new opportunities for accelerated mechanical design
enhanced by neural networks for the built environment.

1 INTRODUCTION

Mechanical efficiency is required for architectural structures to span hundreds of meters under
extreme loads safely with low material volume. An efficient structure sustains loads with small
physical element sizes compared to its span, such as thin bars or slender plates, thus minimizing
its material footprint. Additionally, shells, towers, and bridges—examples of such systems—must
comply with geometric constraints arising from architecture and fabrication requirements to become
feasible structures in the built environment. Designing shapes for such long-span structures, which
must fulfill mechanical efficiency and geometric constraints, is a complex task requiring substantial
domain expertise and human effort. Our goal is to use machine learning to accelerate this challenging
task without compromising safety-critical aspects of the design.

One way to approach this problem is to start from the mechanical standpoint, employing a special-
ized mechanical model that directly computes efficient geometry for structures modeled as a bar
systems (Bletzinger and Ramm, 2001; Bletzinger et al., 2005). Unlike standard, finite element-based
mechanical analysis, where one first defines the structure’s geometry and then obtains its internal
forces, these specialized models—known as form-finding methods in structural engineering (Veenen-
daal and Block, 2012; Adriaenssens et al., 2014)—reverse the relationship between geometry and
force to produce mechanically efficient shapes in a single forward solve (Shin et al., 2016). As a result,
these methods have been successfully applied to design landmark structures with thickness-to-span
ratios up to 1:70 (less than that of an eggshell), across a wide palette of materials, including stainless
steel (Schlaich, 2018), reinforced concrete (Isler, 1994), and stone (Block et al., 2017).
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Figure 1: Architecture of our model to amortize the generation of mechanically efficient geometry. A
neural network first maps a target shape X̂ sampled from a family of shapes X̂ to a stiffness space
q. The stiffnesses, in tandem with the boundary conditions b, are then decoded by a mechanical
simulator into a physics-constrained shape X that approximates the target. The predicted shape can
be used as the base geometry to design efficient structures like gridshells or masonry shells.

While utilizing a specialized model can lead to efficient designs, it is difficult to guide solutions toward
particular geometries as the designer only has explicit control of the mechanical behavior and not the
shape. To solve this inverse problem, form-finding is complemented with optimization algorithms to
find internal force states that satisfy geometric goals (Panozzo et al., 2013; Maia Avelino et al., 2021).
For a designer, however, it is cumbersome to perform a time-consuming and computationally intensive
optimization when exploring shapes. Practical design requires the evaluation of several target shapes
to align with geometric desiderata, multiplying computational effort as each shape requires its own
optimization. Therefore, using specialized mechanical models and optimization together is effective
but inefficient in practice, where shape variety and real-time feedback are essential.

Neural networks (NNs) can accelerate the mechanical design of architectural structures with data-
driven surrogate models that amortize inverse problems, enabling more responsive design tools.
Recent applications include the design of tall buildings (Chang and Cheng, 2020), truss lattices (Bastek
et al., 2022), and reticulated shells (Tam, 2023). Nevertheless, these purely data-driven examples
require learning representations of the inverse problem and the underlying physics at the same
time. Even with physics-informed neural networks (PINNs) (Raissi et al., 2019b; Karniadakis
et al., 2021; Lu et al., 2021; Bastek and Kochmann, 2023) trained with sophisticated loss balancing
schemes (Bischof and Kraus, 2021; Wang et al., 2022), there is no guarantee of mechanical integrity
in their predictions. Here, we define integrity as the accuracy in predicting the mechanical response
of a structure by respecting physics laws. Assurance of mechanical integrity is a foundational tenet
in structural engineering, where poor predictions might lead to catastrophic collapse and the loss
of human lives. In contrast, mechanical simulators in structural engineering have been developed
for decades and offer a principled and interpretable way to represent the physics of long-span
structures. A hybrid solution would seem ideal, in which neural network amortization is integrated
with differentiable physics models (Belbute-Peres et al., 2020; Um et al., 2021; Thuerey et al., 2022;
Oktay et al., 2023) to construct a class of machine learning models that shift the current paradigm
from a physics-informed to a physics-in-the-loop approach for safety-critical applications.

In this paper, we develop a neural surrogate model that couples a neural network with a differentiable
mechanics simulator to enable the solution of shape approximation problems for architectural
structures in real time (Figure 1). The coupled model offers advantages over direct gradient-based
optimization and current fully neural alternatives for interactive mechanical design. We evaluate
our method in two design tasks of increasing complexity: masonry shells and cable-net towers. Our
contributions are threefold. First, we demonstrate that our model generates mechanically sound
predictions at higher accuracy than NNs and PINNs of similar architecture. Our model exhibits
better generalization performance than an equivalent PINN in the masonry shells task. Second, we
show that our model reaches comparable accuracy to optimization, but it is up to four orders of
magnitude faster. In the cable-nets task, our model provides robust initialization for direct optimization,
outperforming the designs generated by optimization initialized with human domain expertise. Third,
we showcase the application of a maturing machine learning technique (i.e., coupling learnable and
analytical components in the same architecture) to a new, high-impact domain for physical design
(i.e., architectural structures). To illustrate its practical impact, we deploy our trained model in a 3D
modeling program to design a shell and then fabricate a physical prototype of the predicted geometry.
Source code is available at https://github.com/princetonlips/neural_fdm.
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2 PHYSICS-CONSTRAINED NEURAL FORM DISCOVERY

Figure 2: A bar system. In the callout,
the stiffness component [K(q)]ij is in-
dicated at a bar connecting nodes with
positions xi and xj . A load pi is ap-
plied at xi. In this system, the nodes on
the perimeter are fixed.

Our goal is to generate mechanically efficient shapes for archi-
tectural structures that approximate target geometries in real
time while maintaining mechanical integrity. The challenge is
that, because mechanical efficiency is important in architectural
structures, it is necessary to reason about designs from the point
of view of force balance; but the resulting geometries are a
nontrivial function of their mechanical behavior. Thus we seek
to use machine learning to efficiently invert this function to
generate target designs without compromising their integrity.

2.1 COMPUTING EFFICIENT GEOMETRY

We focus on structures modeled as pin-jointed bar systems of N
nodes connected by M bars (Figure 2). Each node experiences
an external load vector (e.g., self-weight or wind load) and
some nodes are constrained to fixed positions (e.g., terrain and
anchors). These are the structure’s boundary conditions b ∈ RL.
After picking bar stiffnesses q ∈ RM , the goal of form-finding
is to identify the positions of the nodes X = (x1, . . . ,xN ) ∈
RN×3 such that there is no net residual force on the structure.

An efficient structure is one whose loaded configuration is bending- and torsion-free, therefore
reducing the material volume required to resist external loads. This configuration minimizes the
structure’s strain energy by reducing the contribution of such components, letting a structure sustain
loads mainly under tensile and compressive axial forces. We can satisfy this property if the shape of a
structure modeled as a bar system is in equilibrium. To arrive at equilibrium, the residual force vector
ri ∈ R3 at a free node with position xi must be zero. The function ri(X;q) quantifies the difference
between the load pi ∈ R3 applied to a node and the internal forces from the bars connected to it, for
given positions, stiffness values, and boundary conditions:

ri(X;q) =
∑

j∈N (i)

[K(q)]ij(xj − xi)− pi(xi) (1)

where N (i) are the node neighbors, and K(q) ∈ RN×N is the stiffness matrix as a function
of q. The restriction that there is no residual force can be framed as a constraint in which all of
the ri(X;q) = 0 at the free nodes. Although this constraint can be solved with mechanical simulators
like form-finding methods (Adriaenssens et al., 2014), the resulting map from stiffness to geometry,
which we denote X(q), is implicit and nonlinear, and difficult to reason about directly.

2.2 DIRECT OPTIMIZATION FOR TARGET SHAPES

Even though form-finding methods have the appealing property of promoting mechanical efficiency,
they do not allow a designer to directly target particular geometries. Moreover, not all arbitrary
geometries are even compatible with mechanical efficiency. If a designer has a target shape X̂, they
wish to solve the following optimization problem with respect to q to approximate X̂ with X:

q⋆ = argmin
q∈RM

Lshape(q) where Lshape(q) =

N∑
i=1

3∑
d=1

∥[X(q)]i,d − [X̂]i,d∥p (2)

and p > 0. We call Lshape the shape loss. This objective, which we refer to as direct optimization,
identifies bar stiffness values q that generate shapes close to the designer’s intent in an ℓp sense while
maintaining net zero force balance. Note that the optimization setup does not contain any information
about the set of physically valid forms and it is simply driven by the minimization of the pointwise
difference between shapes. Conventionally, this nonlinear optimization problem is solved numerically
in the inner loop of a design process, but that is slow and computationally costly (Figure 3).
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Figure 3: Shape matching. To generate a mechanically efficient shape X(q) that approximates an
arbitrary target X̂, traditional methods like direct optimization find bar stiffnesses q that minimize
the shape loss Lshape, but only after several iterations t. Our model amortizes this computationally
taxing process during inference while guaranteeing physics, enabling real-time and sound design.

2.3 AMORTIZED SHAPE MATCHING

Rather than performing many costly optimizations within a design loop, we use a machine learning
model to amortize the solution over a family of target shapes X̂ . A neural network takes as input the
designer’s intent X̂, and outputs the stiffness values q such that X(q) ≈ X̂. Our model architecture
resembles an autoencoder (Figure 1). First, a neural encoder Eϕ maps the target shape X̂ into q. Then,
a mechanical simulator decodes the associated shape X(q), subject to the boundary conditions b.
The key property of this construction is that the resulting shape is mechanically sound even if the
neural network is inaccurate; the failure mode is not a lack of mechanical integrity, but a shape that
does not match the target very well.

Neural encoder The encoder is a neural network with learnable parameters ϕ that ingests the targets
and projects them into a stiffness space, Eϕ : RN×3 → RM . For simplicity, we cast our problem as a
point-wise matching task and use a multilayer perceptron (MLP) as the encoder, although we are
not restricted to that. Regardless of the neural network specification, the output representation must
be strictly positive. This is necessary for compatibility with our mechanical simulator to avoid null
stiffness values that bear limited physical meaning in our representation of an architectural structure.
We satisfy this requirement by applying a strictly positive nonlinearity to the last layer of the encoder.

One of the advantages of our mechanical simulator is that it enables us to prescribe tensile or
compressive bar forces a priori. As a result, rather than making these force directions a learnable
feature, we build this bias into the encoder architecture by scaling the strictly positive embedding
of the last layer by a force direction vector s ∈ RM . The scaling factors s ∈ {−1, 1} indicate the
direction of the internal axial force of every bar: a negative factor s prescribes a compressive force,
and a positive factor, a tensile force. Our encoder thus calculates the bar stiffness values q as:

q = s⊙ (σ(h) + τ) (3)
where σ is the strictly positive nonlinearity, h is the encoder’s last layer embedding, τ ≥ 0 is a fixed
scalar shift that specifies a minimum stiffness value for the entries of q (akin to a box constraint in
numerical optimization), and ⊙ indicates the element-wise product. Setting a lower bound on the
stiffness values with τ guides the learning process towards particular solutions since the map from q
to X is not unique (Van Mele et al., 2012), and provides numerical stability when amortizing over
structures with complex force distributions (Section 4.2).

Mechanical decoder The decoder gives the latent space of our model a physical meaning since it
represents the inputs of a mechanical simulator. To fulfill equilibrium in a pin-jointed bar system,
the relationship between the stiffness values q, the shape X, and the loads P ∈ RN×3 must
satisfy K(q)X − P(X) = 0. Solving this equation for a bar system using finite element-based
simulators (Xue et al., 2023; Wu, 2023) is possible, but requires second-order methods. Controlling
the force signs adds numerical complexity, but it is a desirable property to design structures built from
tailored materials that are strong only in tension or compression (e.g., masonry blocks or steel cables).
Here, we utilize the force density method as our simulator (Pastrana et al., 2023b). Appendix A offers
an extended description, but at a high level, the simulator is a form-finding method that linearizes
the equilibrium constraint by assuming independence between stiffness, geometry, and loads. This
reduces the computation of X(q) : RM → RN×3 with target force signs to a linear solve:

X(q) = K(q)−1P (4)
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(a) Train curves for Lshape and Lphysics
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Figure 4: Loss curves of the shell design task. (a) Our model learns a meaningful representation that
minimizes the shape loss Lshape while fully satisfying the mechanics of compression-only shells, as
Lphysics is zero within numerical precision throughout training. (b) Shape loss of our model and the
PINN baseline on test data interpolated between doubly-symmetric (δ = 0) and asymmetric (δ = 1)
geometries. Our model’s accuracy decays at a lower rate than the PINN’s accuracy.

Training To amortize the shape-matching problem, we look for model parameters ϕ⋆ that minimize
the expected value of the shape loss:

ϕ⋆ = argmin
ϕ

EX̂∼X̂

[
N∑
i=1

3∑
d=1

∥[X(Eϕ(X̂))]i,d − [X̂]i,d∥p
]

(5)

We train our model via first-order stochastic gradient descent, averaging the loss values over batches
of size B at each training step. Appendix B provides training specifications. We generate training
data by sampling batches of target shapes X̂ from a task-specific family of shapes X̂ parametrized by
a probability distribution (Section 4). Our model can be trained end-to-end because the encoder and
decoder are both implemented in a differentiable programming environment (Bradbury et al., 2018).
As a result, reverse-mode automatic differentiation can seamlessly backpropagate the physics-based
gradients that tune the neural network parameters.

3 EVALUATION

We evaluate model performance by measuring the shape loss Lshape and the inference wall time
on a test dataset of target shapes. We compare the performance of our model to that of three other
baselines: a fully neural model (NN), a fully neural model augmented with a physics-informed loss
(PINN), and direct optimization.

The fully neural approaches replace the differentiable simulator in our model with a learnable decoder
mirroring the encoder’s architecture, with the addition of the boundary conditions b as inputs. The
first baseline is trained to minimize the shape loss Lshape alone, highlighting that an information
bottleneck is insufficient to generate physically plausible designs. The second baseline extends the
first baseline by adding an explicit physics loss term:

Lphysics = EX̂∼X̂

[
∥R(X(Eϕ(X̂)))∥F

]
(6)

The physics loss measures the Frobenius norm of the residual forces R ∈ RNu×3 at the Nu free
nodes of a structure (see Appendix A). For a shape to be physically valid in our setup, Lphysics must be
zero within numerical precision (e.g., 1×10−12). We reason that the additional term should provide a
training signal to the encoder and decoder of the PINN so that they learn to solve the shape-matching
task and the physics concurrently. The third baseline takes advantage of the differentiable mechanical
simulator and optimizes q directly to minimize the shape loss via deterministic gradient-based
optimization on a per-shape basis.

5



Published as a conference paper at ICLR 2025

(a) NN

Lshape = 1.3
Lphysics = 159.2

(b) PINN

Lshape = 3.7
Lphysics = 0.7

(c) Optimization

Lshape = 1.1
Lphysics = 0.0

(d) Ours

Lshape = 3.5
Lphysics = 0.0

Lshape = 1.0
Lphysics = 44.1

Lshape = 1.9
Lphysics = 0.5

Lshape = 0.5
Lphysics = 0.0

Lshape = 1.0
Lphysics = 0.0

qmax

qmin

q

qmax

qmin

Figure 5: Shape matching for shell design. While the NN and PINN models approximate the targets,
they cannot suppress the residual forces (pink arrows). The stiffnesses q and the shapes predicted by
our model are similar to direct optimization’s, indicating our model learns a good task representation.

Table 1: Model evaluation on the shell design task. We report the mean loss values and standard
deviation on a test dataset of 100 target shapes, in addition to the inference wall time.

NN PINN Optimization Ours

Lshape ↓ 1.5 ± 0.4 3.1 ± 1.2 0.8 ± 1.2 3.0 ± 2.0

Lphysics ↓ 104.3 ± 48.6 0.6 ± 0.3 0.0 ± 0.0 0.0 ± 0.0

Time [ms] ↓ 0.3 ± 0.1 0.3 ± 0.1 5570.4 ± 1688.6 0.6 ± 0.1

4 EXPERIMENTS

We assess our model’s ability to amortize shape approximation tasks for masonry shells and cable-net
towers. These tasks represent a broad class of design problems in structural engineering.

4.1 MASONRY SHELLS

Our first experiment determines suitable stiffness values for unreinforced masonry shells. Masonry
shells sustain external loads with span-to-thickness ratios as low as 1:50 despite being built from
materials that are strong in compression and weak in other loading conditions (Block et al., 2017).
Shapes that maximize internal compressive axial forces enable this efficient behavior.

An expressive family of shells can be constructed with surfaces parameterized by a Bezier patch.
The shape of the patch is in turn described by the positions of a grid with C control points (see
Appendix C.1). For this task, we restrict the space of target shapes to a square grid of width w = 10 and
C = 16 control points. In particular, we consider doubly symmetric shapes with N = 100 and M =
180. We employ limit state analysis to model masonry shells as pin-jointed bar systems (Maia Avelino
et al., 2021), and apply a constant area load of 0.5 per unit area, representing the self-weight of the
shell. The nodes on the perimeter of the structures are fixed.

To solve this task, we are interested in finding bar stiffness values that yield shapes that fit the target
geometries, and whose internal forces are compressive (q < 0). We satisfy the compression-only
requirement in the last layer of our encoder by setting s = −1. We use τ = 0 and p = 1. Figure 4a
illustrates the stochastic loss curves during training for our model and the two neural baselines (NN
and PINN). The neural baselines achieve a low shape loss but are unable to converge w.r.t. the physics
loss, unlike our model where this requirement is satisfied by construction.
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Figure 6: (a) Our model accurately predicts asymmetric shapes despite being trained exclusively on
doubly symmetric geometries. (b) We build a predicted shape as a tabletop prototype of a masonry
shell. The bricks stand in equilibrium due to the appropriate shape; they are not mechanically attached
as shown by the snapshots of the collapse sequence caused by an external perturbation.

The trends observed during training are consistent during inference (Table 1). Direct optimization
achieves the lowest shape loss, but all the neural amortization models are faster than optimization.
While the NN and the PINN generate close matches, their predictions are mechanically unfeasible
because the residual forces do not vanish. The magnitude of the physics loss indicates that the
structure is missing balancing forces to achieve equilibrium. For example, if we prescribe values for a
masonry shell with a surface area of 10m2, thickness of 0.025 m, and material density of 2000 kg/m3,
then a residual force of 1 kN, representative of a unit value of Lphysics in Table 1, would destabilize
the structure with an acceleration of 2 m/s2. Consequently, the NN and the PINN predictions are
unstable, and constructing masonry shells guided by them can lead to cracks, joint separations, and
ultimately to collapse. In contrast, our model and direct optimization fulfill the physics constraint
from the outset. Although the loss of direct optimization is lower, our model still generates accurate
predictions up to four orders of magnitude faster, and provides a similar speedup for predictions
that incur an equivalent shape loss (see Appendix D.1). Figure 5 shows two representative targets
alongside the shapes, stiffness values, and residuals predicted by our model and the baselines.

Next, we investigate the out-of-distribution generalization of our model and the PINN, an important
property for building robust surrogates for physical design. To this end, we first generate a test dataset
of 100 asymmetric Bezier surfaces and create target geometries by linearly interpolating between the
existing doubly symmetric dataset and the new asymmetric dataset (Appendix C). We then evaluate
the shape loss at increasing interpolation factors δ, where δ = 0 and δ = 1 correspond to the doubly
symmetric and asymmetric datasets, respectively. Note that both models have been trained solely
on targets with double symmetry. A similar analysis for Lphysics is provided in Appendix D.2. Our
model exhibits superior out-of-distribution performance. As shown in Figure 4b, the shape loss of
our model increases at half the rate of the PINN and with a lower variance. At δ = 1, our model’s
shape loss is 2.5 times lower than that of the PINN. This performance gap is further illustrated in
Figure 13 in Appendix D.2, where the PINN’s prediction deviates from the asymmetric target by
an order of magnitude more than in the doubly symmetric case, with a physics loss two orders of
magnitude higher. In contrast, our model’s shape loss increases by only one order of magnitude, while
the physics loss remains at zero, evidencing that physics-in-the-loop models like ours offer enhanced
generalization compared to physics-informed approaches.

To demonstrate the practical applicability of our model, Figure 14 in Appendix D.3 shows its
integration into a 3D modeling environment, where it assists a designer in exploring various shell
geometries. We further validate our model’s generalization and transfer to physical applications
by fabricating a tabletop masonry shell based on one of our model’s predictions (Figure 6a). The
asymmetric shell features a thickness-to-span ratio of 1:50 along its longest span. After tessellating the
predicted shape, we manufacture and assemble the resulting bricks. The prototype remains stable and
resists its weight without glue or fasteners, proving that the structure primarily resists gravity through
internal compressive forces as required for masonry shells (Figure 6b). Moreover, in Appendix D.4,
we solve this task at various discretizations and demonstrate that our model remains effective for
real-time design at finer resolutions, all while maintaining prediction accuracy. These experiments
confirm the feasibility of our model under real-world constraints.
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Figure 7: Predictions on cable-net structures. (a) Schematic depicting the design space. (b) - (d)
Reconstructions of target shapes, showing internal tensile (red) and compressive (blue) forces f . The
PINN fails to match the target ellipse or ensure a net zero force balance, whereas our method closely
approximates the target shape, similar to the solution obtained through direct optimization.

4.2 CABLE-NET TOWERS

Guided by the success of our initial experiment, we turn to a more complex problem: the design of
cable-net towers. Such structures are lightweight, with low structural mass-to-volume ratios, and
are often materialized as cooling or observation towers (Schober et al., 2014). To explore the design
space of these towers, this task focuses on approximating the shape and orientation of a horizontal
compression ring connected to two vertically spanning, tensile cable-nets.

Figure 7a gives an overview of the task setup. Every tower comprises D = 21 rings with 16 points
each, spaced at equal h/D intervals over a height of h = 10. The discretization of the structure is
N = 335 and M = 656. We parametrize the geometry of the bottom, middle, and top rings with
ellipses of radii α1r and α2r, with r = h/5, and in-plane rotation angle β (Appendix E.1). The nodes
on the top and bottom rings are fixed. Besides matching the shape of the compression ring, we look
for geometries where the tension rings are planar. The shape loss incorporates these requirements,
measuring the squared ℓ2 norm (i.e., p = 2) between predictions and targets. We set the entries of s
to −1 and 1 to impose the force sign of the compression ring and the tension cables, respectively.
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Figure 8: Training loss curve on the tow-
ers task, with and without clipping.

The mechanical behavior of cable-net towers poses model-
ing challenges because their structural members are either
in tension or compression. This interplay results in an ill-
conditioned problem, where interactions between elements
of opposing force signs can lead to singular systems and
instabilities near zero force levels (Cai et al., 2018). While
ill-conditioning can be managed in the forward pass, it can
hinder learning in the backward pass by producing poorly
scaled gradients (Figure 8). To mitigate these numerical
instabilities, we clip the global gradient norm to 0.01 and
shift the outputs of our last layer, enforcing a lower bound
of τ = 1 in the stiffness space. Additionally, we incorporate
a regularization term Lreg into the training loss to encourage
our model to learn balanced stiffness distributions:

Lreg = Var (qpos) + Var (qneg) (7)

This regularizer measures the variance, Var(q), of the bar stiffness values, for tensile qpos and
compressive qneg components, over all the B samples in a batch. We scale Lreg by a constant factor λ.
We employ λ = 10 to train our model and the baselines.
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Table 2: Model evaluation on the cable-net towers task. We report mean loss values and the standard
deviation on a test dataset of 100 target shapes, in addition to the inference wall time.

NN PINN Optimization Ours

Randomized Expert with Ours

Lshape ↓ 7.5 ± 3.4 7.4 ± 3.4 16.2 ± 28.2 0.3 ± 0.3 0.2 ± 0.3 0.6 ± 0.7

Lphysics ↓ 45.8 ± 0.4 1.2 ± 0.1 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

Time [ms] ↓ 0.5 ± 0.1 0.5 ± 0.1 1690.4 ± 1169.9 1685.8 ± 663.9 1460.5 ± 823.4 4.6 ± 0.1

Figures 7b-7d show an example of the predicted cable-net tower shapes. In Appendix E.2, we show
that our model predictions cover the task space satisfactorily, generating accurate and mechanically
valid cable-net shapes whose compression ring radii change in size between r/2 and 3r/2, and whose
in-plane rotation vary within an angle range of π/6. Table 2 demonstrates that our model generates
shapes that match the targets with a tighter fit than the NN and the PINN. These purely data-driven
baselines make faster predictions because they do not run a physics simulator, but they are unable to
learn the physics of this task because Lphysics is nonzero, as we also identified in the shells task.

Furthermore, we compare the two approaches that guarantee physics: ours and direct optimization.
The convergence of direct optimization depends on selecting appropriate initial stiffness values q.
In Figure 9, we therefore analyze the convergence rate of direct optimization with four different
initializations. Random initial guesses of q converge to poor local optima as the shape loss is the
highest among our experiments, underscoring the relevance of careful initialization to optimize
structures with complex mechanical behavior. If q is handpicked by a human expert, optimization is
more accurate than our model and the other baselines. Optimization with expert initialization achieves
a shape loss equivalent to that of our model in a fifth of the convergence wall time reported in Table 2.
Nevertheless, our trained model matches optimization in only one inference step that is three orders
of magnitude faster and free of potentially expensive human intervention. These attributes make our
model a more suitable approach to power automatic and interactive design tools.
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Figure 9: Convergence curves of direct opti-
mization with four distinct initializations.

Lastly, we investigate the effect of using the values
of q predicted by our model and the PINN as inputs
to direct optimization to refine the cable-net tower
designs. This combination results in the most ac-
curate matches, converging faster and consistently
achieving a lower shape loss than direct optimiza-
tion with expert initialized parameters (Figure 9).
The PINN initialization converges more slowly and
only matches the performance of our initialization
towards the end of the convergence curve. In both
cases, a neural model provides better initialization
for optimization than the human expert, highlighting
the potential of utilizing neural networks and stan-
dard optimization techniques in tandem to enhance
mechanical design performance.

5 RELATED WORKS

Differentiable mechanical simulators Machine learning and automatic differentiation have suc-
cessfully been applied to obtain derivatives of complex forward mechanical models by either learning
a differentiable surrogate with a neural network, or by implementing the analytical physics model
in a differentiable programming environment. For neural surrogates, Xue et al. (2020) trained an
autoencoder to simulate planar metamaterials, Zheng et al. (2020) developed a model to solve graphic
statics problems on shells, and the work of Mai et al. (2024) focused on learning to simulate cable-nets
under various boundary conditions. Differentiable mechanical simulators include the finite element
method for solids (Xue et al., 2023) and isogeometric analysis of membranes (Oberbichler et al.,
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2021). Specifically for form-finding, differentiable simulators exist for matrix structural analysis (Wu,
2023; Lee et al., 2024), and for combinatorial equilibrium modeling (Pastrana et al., 2023a). Our work
leverages one such simulator and integrates it with a neural network to amortize inverse problems.

Amortization models for mechanical design Neural surrogates that amortize inverse problems
have garnered attention for their ability to approximate nonlinear relationships in mechanical systems
between target properties and input parameters. At the centimeter scale, Bastek et al. (2022) addressed
the inversion of the structure-property map in truss metamaterials, enabling the discovery of optimal
configurations. Sun et al. (2021) synthesized path trajectories that compensate for fiber deformation
during additive manufacturing. Oktay et al. (2023) utilized amortized models to generate actuation
policies to deform cellular metamaterials to several target configurations. Focusing on architectural
structures at the meter scale, Hoyer et al. (2019) proposed a neural basis for computing material
distributions that minimize compliance for buildings in 2D, while Chang and Cheng (2020) amortized
the design of the cross sections of the beams and columns of buildings in 3D for multiple load
cases. Favilli et al. (2024) applied geometric deep learning and a differentiable simulator to gridshell
structures for low strain energy shapes. Unlike their work, which trained a neural network for a single
problem, we amortize over multiple inverse problems. Tam (2023) has amortized shape-matching
problems with form-finding, similar to our work, but their approach relies entirely on neural networks,
which must learn both the physics and the matching task simultaneously.

6 CONCLUSION

We present a physics-in-the-loop surrogate model that expedites the solution of shape-matching
problems to design mechanically efficient geometry for architectural structures. By embedding prior
physics knowledge into a neural network and training it end-to-end, our model learns representations
that solve a family of inverse problems with precision while enforcing mechanical constraints by
construction, which is where purely data-driven approaches fall short. While we expect that PINNs
could eventually push the physics loss closer to zero in the limit of hyperparameter tuning and
network scaling, the physics guarantees and superior generalization performance of our model make
it a more robust approach to support design. Our model predicts mechanically sound geometries in
milliseconds, with accuracy comparable to gradient-based optimization. The speed and reliability of
our model enable real-time design exploration of long-span structures modeled as pin-jointed bar
systems, such as masonry shells and cable-net towers.

6.1 LIMITATIONS AND FUTURE WORK

Although not a cure-all for mechanical design problems, our work evidences that domain expertise in
structural engineering and machine learning is necessary to address numerical pathologies caused by
incorporating physics into neural networks (Wang et al., 2021; 2022; Metz et al., 2022). In our case,
the simulator can yield an ill-conditioned system that affects training in the presence of structures
with complex force distributions. Overcoming these instabilities requires knowledge of the physics
of the problem being modeled and the application of gradient stabilization techniques common in
machine learning, such as gradient clipping.

Like past methods at this intersection, our model requires devising task-specific parameter spaces
for learning (Allen et al., 2022). Consequently, a model trained for one task may not generalize to
other tasks. Another limitation is that our model is currently restricted to one topology and has to
be retrained when the discretization of a structure changes. In the future, we expect that applying
methods such as graph networks (Battaglia et al., 2018) to our encoder will enable us to move beyond
a single bar connectivity. We additionally note that the choice of bar stiffnesses for a given structure
is not unique and it is potentially appealing to present to the designer a diversity of possible solutions
by reformulating our model in a variational setting (Kingma and Welling, 2014; Salamanca et al.,
2023). That is another exciting avenue for future research.
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A MECHANICAL SIMULATOR

We employ the force density method (FDM) (Schek, 1974) as our mechanical simulator. The FDM is
a form-finding method that computes torsion- and bending-free shapes on pin-jointed bar systems
with N nodes and M bars, by mapping bar stiffness values q ∈ RM to node positions X ∈ RN×3;
subject to boundary conditions b ∈ RL. The stiffness qm or force density of a bar sets the ratio
between its internal force fm and its length lm in the equilibrium configuration:

qm =
fm
lm

(8)

Since lengths are strictly positive, a negative qm indicates an internal compression force in the
bar, and a positive qm denotes a tension force. In the FDM, a portion of nodes of size Ns is fixed
(i.e., anchors), and another of size Nu is free to displace. The size of the partitions is arbitrary as long
as N = Ns +Nu, but generally Nu >> Ns. For the geometry of a bar system to be in equilibrium,
the residual force vector ri at each free node i must be zero. To satisfy this constraint, the FDM
calculates the free node positions Xu ∈ RNu×3 by solving a linear system:

Xu(q) = K(q)−1
u [Pu −K(q)s Xs] (9)

where the submatrices K(q)u ∈ RNu×Nu and K(q)s ∈ RNu×Ns are created by the rows and the
columns of the geometric stiffness matrix K(q) ∈ RN×N that correspond to the free and the fixed
nodes in the structure, respectively. We solve this equation system with a direct, dense linear solver.

The FDM assembles K(q) based on the connectivity between bars and nodes (Vassart and Motro,
1999). The value of the ij-th entry in the stiffness matrix is defined as:

[K(q)]ij =


∑

m∈M(i) qm if i = j

−qm if nodes i and j are connected by bar m
0 otherwise

(10)

where M(i) denotes the bars connected to node i. The loads applied to the nodes P ∈ RN×3 and
the positions of the node anchors Xs ∈ RNs×3 are the boundary conditions of the problem, so they
are inputs to the simulator. To create the boundary conditions vector b, we concatenate P and Xs,
and then flatten the resulting matrix into a vector. Once we know Xu, we concatenate it with Xs to
obtain all the node positions X that characterize a bar structure in equilibrium.

B IMPLEMENTATION DETAILS

We implement our work in JAX (Bradbury et al., 2018) and Equinox (Kidger and Garcia, 2021). We
use JAX FDM (Pastrana et al., 2023b) as our differentiable simulator and Optax (DeepMind et al.,
2020) for derivatives processing. For our model and the neural baselines (NN and PINN), we train a
separate model instance per task to minimize the loss expectation over a batch of shapes of size B.
For optimization, we directly minimize the loss for every shape in the batch, one shape at a time.

Training and inference for all models are executed on a CPU, on a Macbook Pro laptop with an M2
chip. This choice of hardware is motivated by the type of devices structural engineers have access
to and also reveals the potential for enhanced model performance on more powerful hardware, like
GPUs, in the future. We train the three models using Adam (Kingma and Ba, 2017) with default
parameters, except for the learning rate, for 10,000 steps. The training hyperparameters per model are
tuned to maximize predictive performance on the test dataset via a random search over three seeds.

We employ SLSQP (Kraft, 1994) and L-BFGS-B (Zhu et al., 1997), two deterministic gradient-based
optimizers, as the direct optimization baselines. We use their implementations in JAXOPT (Blondel
et al., 2022) with default settings. To make a fair comparison, we also perform all the direct optimiza-
tion experiments on the same laptop and CPU. We run these gradient-based optimizers for at most
5,000 steps and with a convergence tolerance of 1× 10−6.

In direct optimization, we impose box constraints on the bar stiffness values q (the optimization
variables) to prescribe an explicit lower bound on the force signs and magnitudes. This mimics the
effect of the last layer of our encoder via τ (see Section 2.3). We use the same values of τ that we
report in Section 4 as the lower box constraints. Additionally, we set an upper box constraint on each
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Table 3: Neural architectures. We show the composition of the two types of autoencoders we use
in Section 4: a fully neural model employed for the NN and PINN models, and ours with the
differentiable simulator as an analytical decoder. In this table, Linear(in_size, out_size) denotes a
linear layer with learnable weights and biases followed by a nonlinearity; whereas Concat(in_size,
out_size) denotes the concatenation of two vectors.

Task Model Encoder Decoder # Parameters ↓ Train time (s) ↓

Shells

NN, PINN

[Linear(3N,H); [Linear(M + L,H);
535,412 852× Linear(H,H); 2× Linear(H,H);

Linear(H,M)] Linear(H, 3Nu);
Concat(3Nu + 3Ns, 3N)]

Ours
[Linear(3N,H);

Simulator(M + L, 3N) 254,900 1402×Linear(H,H);
Linear(H,M)]

Towers

NN, PINN

[Linear(3R,H); [Linear(M + L,H);

1,245,216 1364× Linear(H,H); 4× Linear(H,H);
Linear(H,M)] Linear(H, 3Nu);

Concat(3Nu + 3Ns, 3N)]

Ours
[Linear(3R,H);

Simulator(M + L, 3N) 468,880 8104×Linear(H,H);
Linear(H,M)]

bar stiffness q so that |q| ≤ 20, where | · | denotes the absolute value. Note that we do not enforce an
upper bound on q in any of the neural models during training or inference.

Table 3 summarizes the configuration of the neural models studied herein. We utilize MLPs for the
learnable components of the three models. The MLPs are a sequence of linear layers followed by
a nonlinear activation function. The weights and biases per layer are initialized at random from a
uniform distribution in the interval [−1/

√
ρ, 1/

√
ρ), where ρ is equal to the layer’s input size. We

use an ELU (Clevert et al., 2016) as the activation function in every MLP layer except in the last layer.
The MLP encoders utilize Softplus as the last nonlinearity to satisfy the strictly positive requirement
of our simulator (Section 2.3), and the MLP decoders use the identity function. Our model is more
compact than the neural baselines because it has fewer than half the number of trainable parameters.
However, our model takes longer to train due to the computational cost of the mechanical simulator.

The MLP decoders in the NN and PINN baselines take as input the stiffness values q predicted by
the encoder, in addition to a vector with the boundary conditions b so that the learnable decoder
sees as much of the information the mechanical simulator has access to. This is different from, for
example, conventional PINN approaches where the boundary conditions should be learned from a
loss function, in addition to the problem physics (Raissi et al., 2019a; Haghighat et al., 2021); but
akin to the approach proposed in other recent works where boundary conditions are treated as either
hard optimization constraints or imposed as network inputs (Lu et al., 2021; Bastek and Kochmann,
2023; Mai et al., 2024). Here, we simplify the decoder’s goal by imposing the boundary conditions
by construction, like in the latter case. This is why the boundaries of the shape targets are matched
exactly in all of our examples. For simplicity, b only comprises the positions of the Ns fixed nodes
and the vertical component of the loads applied to the N nodes (i.e., the horizontal components are
zero) per target shape. Therefore, b has size L = 3Ns +N for all the neural decoders.

The last layer in the MLP decoders outputs a vector of size 3Nu, representing the position of the
free nodes, Xu. This choice is motivated by the fact that the mechanical simulator solves the form-
finding problem exclusively at the free nodes of the bar system with Equation 9, and subsequently
concatenates the known positions of the support nodes, Xs, to assemble the full shape matrix X. We
replicate this process in the MLP decoder, ensuring that it predicts the same amount of information
as the simulator. We describe task-specific implementation details next.
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B.1 MASONRY SHELLS

For the shells task, we train MLPs with 2 hidden layers with H = 256 units each. The size of the
input and output layers varies as per Table 3. The batch size is B = 64. The learning rate is 3× 10−5

for the fully neural baselines (NN and PINN), and 5 × 10−5 for our model. Our model takes 2
minutes and 20 seconds to train. The fully neural alternatives, in contrast, take 1 minute and 25
seconds. We utilize SLSQP (Kraft, 1994) as the direct optimization baseline, sampling random values
of q from a uniform distribution bounded by the box constraints as initial guesses.

We train the PINN baseline to minimize a weighted combination of the shape loss Lshape (Equation 2)
and the physics loss Lphysics (Equation 6):

L = Lshape + κLphysics (11)

Different values of κ impact predictive performance on this bipartite task at inference time (i.e., si-
multaneously matching target shapes and reducing the residual forces). To strengthen the PINN
baseline, we tune κ in five increments, from κ = 10−2 to κ = 102, and train a separate instance
of the model for each. We then pick the PINN that achieves the lowest unweighted loss on the test
dataset (i.e., we set κ = 100 during inference to evaluate performance). Table 4 shows our results.
We find that employing κ = 101 during training produces the best-performing PINN baseline, and
we use this PINN for comparison with our model and the other baselines in Section 4.

Table 4: PINN evaluation on the masonry shells task for five different coefficients κ applied to Lphysics
during training. The table reports the unweighted loss values generated by the trained PINN model
predictions at inference time on the test dataset.

κ 10−2 10−1 100 101 102

Lshape ↓ 1.9 ± 0.4 1.5 ± 0.3 1.4 ± 0.3 3.1 ± 1.2 92.0 ± 40.5

Lphysics ↓ 35.3 ± 16.7 6.3 ± 2.8 2.3 ± 1.0 0.6 ± 0.3 0.3 ± 0.1

B.2 CABLE-NET TOWERS

In the cable-net towers task, we train MLPs with 4 hidden layers of size H = 256. In all the models,
we set the batch size to B = 16, and reduce the size of the encoder input from 3N to 3R, where N is
the total number of nodes in the structure, and R = 48 corresponds to the number of nodes on the
three rings (bottom, middle, and top) that parametrize this task. This choice reduces the total number
of trainable parameters in the encoders and makes them less computationally intensive.

The shape approximation task for the towers is underspecified because it only prescribes target height
values for the tension rings of the cable-nets, rather than specific target 3D coordinates. Therefore,
we mask (i.e., multiply by zero) the predicted x and y coordinates of the nodes of the tension rings
before evaluating the shape loss.

In this task, we train our model in two stages, reducing the optimizer’s learning rate from one stage
to the next. In the first stage, we optimize for 5,000 steps with a learning rate of 1× 10−3. In the
second stage, we fine-tune our model for another 5,000 steps with a lower learning rate of 1× 10−4.
The total training time is 13.5 minutes. We train the MLPs of the NN and the PINN with a learning
rate of 1× 10−3 over 10,000 steps. The training time of both models is 2 minutes and 16 seconds.
The global gradient clip value is 0.01 for all the neural models.

The loss function we utilize to train the PINN baseline contemplates the shape and the physics losses,
in addition to the regularization term (Equation 7) scaled by λ = 10:

L = Lshape + κLphysics + λLreg (12)

Like in the shells task, we vary the value of the weight coefficient κ between κ = 10−2 and κ = 102.
As shown in Table 5, training the PINN with κ = 100 yields the best performance on the test dataset.
We use this PINN variant for comparison with our model and the other baselines.

We employ L-BFGS-B (Zhu et al., 1997), a quasi-Newton optimizer, as the direct optimization
baseline in this task. We initialize q for direct optimization with four different approaches: randomized,
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Table 5: PINN model evaluation on the cable-net tower task for different coefficients κ applied to
Lphysics during training. The table reports unweighted loss values generated by the trained PINN
predictions on the test dataset at inference time.

κ 10−2 10−1 100 101 102

Lshape ↓ 42.8 ± 17.8 9.5 ± 5.5 7.4 ± 3.4 4.2 ± 2.6 5.1 ± 3.5

Lphysics ↓ 1.1 ± 0.1 2.1 ± 0.0 1.2 ± 0.1 3.8 ± 0.7 4.3 ± 0.6

expert, with the trained PINN, and with our trained model. The randomized initialization samples
q from a uniform distribution bounded by the box constraints. The expert initialization sets q = 1.
Both initialization approaches set the sign of the bar forces as specified by the task: negative signs for
compression and positive signs for tension.

C DATA GENERATION ON BEZIER SURFACES

A Bezier patch B maps a matrix C ∈ RC×3 of control points to a smooth surface in R3, B : RC×3 →
S(u, v), parameterized by local coordinates u, v ∈ [0, 1]. This parametrization offers clear control
over architectural design intent as it enables the exploration of a wide array of smooth geometries by
simply changing the positions of a coarse control grid.

C.1 DATA GENERATION FOR SHELLS

A summary of the data generation process is given in Figure 10. To generate a family of shapes for
the shells task in Section 4, we focus on doubly symmetric shapes produced by a square grid w = 10
units wide centered on the origin. The grid contains C = 16 control points arranged in a 4× 4 layout.

We then follow three main steps. First, we vary the 3D coordinates of the control points c1 to c3 on a
quarter of the control grid. The position of c4 is static. This construction ensures double symmetry in
the generated data. To vary the position of every movable control point, we first sample a translation
vector t at random from a uniform distribution in the interval [tmin, tmax); and then we add it to its
reference position cr, such that c = cr + t. We detail the reference positions and the translation
intervals for each control point in Table 6.

Next, we mirror the four control points on the xz and the yz Cartesian planes to obtain the position of
the remaining twelve control points on the grid (see the callout in Figure 10). The bounding box of
the resulting design space has dimensions 2w × 2w × w. In the third and last step, we evaluate N

Figure 10: The data generation process of doubly symmetric shapes for the shells task consists of,
first, creating variations of the positions of the points c1 to c3 in a corner of the control grid of a
Bezier surface, and, then, mirroring twice. We create target points x̂i by evaluating the Bezier at N
different locations on the surface.
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Table 6: Generation parameters to sample random variations of the 3D coordinates of the control
points c1 to c4 on a quarter of the control grid of a Bezier surface.

Control point Reference position, cr Lower bound, tmin Upper bound, tmax

c1 [w/6, w/6, 0] [0, 0, w/10] [0, 0, w]
c2 [w/2, w/6, 0] [−w/2, 0, 0] [w/2, 0, w/2]
c3 [w/6, w/2, 0] [0,−w/2, 0] [0, w/2, 0]
c4 [w/2, w/2, 0] − −

coordinate values u and v, equally spaced in a
√
N ×

√
N grid, to generate an equal number of points

on the surface. The evaluated points represent the position X̂ ∈ RN×3 of the nodes of the structure
we employ as targets to train our model and the baselines. The coordinates of a point x̂ ∈ R3 on the
Bezier surface are a function of a (u, v) coordinates pair:

x̂(u, v) =

4∑
e=1

4∑
g=1

γe(u) γg(v) ceg (13)

where γ denotes a Bernstein polynomial of degree 3, and ceg indicates the position of the Bezier’s
control points, indexed on the 4× 4 grid.

C.2 INTERPOLATION OF BEZIER SURFACES

We utilize linear interpolation to blend between doubly symmetric and asymmetric Bezier surfaces.
Since the targets X̂ are a function of the control points matrix C, we directly interpolate between the
control points matrix Csym of a doubly symmetric surface and that of an asymmetric surface Casym to
create one design:

Cinterp = (1− δ)Csym + δCasym (14)
where δ ∈ [0, 1] is a scalar interpolation factor and Cinterp is the interpolated control points matrix.
We vary all the control points in Casym by sampling random translation vectors t from a uniform
distribution with the same bounds as in the doubly symmetric case (Table 6). We finally generate
X̂ from Cinterp with Equation 13. Figure 13a provides an example of the shapes resulting from
interpolating two surfaces.

D ADDITIONAL STUDIES FOR SHELL DESIGN

D.1 COMPARISON WITH DIRECT OPTIMIZATION
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Figure 11: Shape loss evolution of
direct optimization for shell design.

Both our model and direct optimization satisfy the physical
constraints a priori, but they generate predictions at drastically
different speeds. Since optimization is an iterative approach, we
compare the evolution of the shape loss over time to that of our
method, which predicts the bar stiffness values of a structure in
one step. Optimization reaches the best predictive performance
among the baselines, but only after convergence, which takes
over 5000 milliseconds, as shown in Figure 11. Even though
optimization matches the shape loss of our model in 2000 mil-
liseconds (35% of the convergence wall time in Table 1), our
approach offers a substantial speedup as it generates designs of
equivalent accuracy in a millisecond.
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D.2 GENERALIZATION ON THE PHYSICS LOSS

Figure 12: Physics loss changes as the
shapes vary between δ = 0 and δ = 1.

In Section 4.1, we discussed the generalization capacity of
our model and a PINN—the approaches that are aware of the
inverse problem physics—by observing the rate of change
of the shape loss Lshape as we morph the targets between
doubly symmetric (δ = 0) and asymmetric (δ = 1) datasets.

We now quantify the impact of perturbing the test data dis-
tribution on the models’ capacity to preserve the problem’s
physics. Figure 12 depicts the evolution of the physics loss
Lphysics in logarithmic scale. The performance of the PINN
deteriorates rapidly as the distribution shifts from the doubly
symmetric to the asymmetric dataset, with the loss increas-
ing by an order of magnitude.

This finding underscores that the in-distribution performance w.r.t. physics of the PINN does not
necessarily lead to out-of-distribution generalization. In contrast, our model enforces the physics
by design, so Lphysics remains constant and effectively zero because of our mechanical decoder,
regardless of the geometry of the targets. Figure 13 illustrates this trend with an example.

δ = 0 δ = 1/3 δ = 2/3 δ = 1

(a) Target shapes

Lshape = 2.1
Lphysics = 0.6

Lshape = 26.8
Lphysics = 5.2

Lshape = 54.1
Lphysics = 10.4

Lshape = 81.2
Lphysics = 15.8

(b) PINN

Lshape = 3.6
Lphysics = 0.0

Lshape = 10.4
Lphysics = 0.0

Lshape = 19.2
Lphysics = 0.0

Lshape = 27.8
Lphysics = 0.0

(c) Ours

Figure 13: Top view of predicted shapes for shell design. (a) The targets are interpolated with different
interpolation factors δ. (b) The accuracy of the PINN decays quickly w.r.t. Lshape and Lphysics as δ
increases. (c) Our model’s shape accuracy deteriorates, but at a lower rate, and the problem’s physics
are fulfilled by construction since Lphysics = 0 within numerical precision.
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D.3 REAL-TIME DESIGN IN CAD SOFTWARE

We deploy our trained model in the 3D modeling software Rhino3D (Robert McNeel & Associates,
2024) as illustrated in Figure 14. Rhino3D supports traditional computer-aided design (CAD) work-
flows and Grasshopper (Figure 14, top left), its visual programming extension, allows the creation of
new software features via custom Python scripts. We load our model as a Grasshopper plugin via
Python and test it to support the real-time exploration of shapes for shell structures.

We describe a design exploration session next. A designer draws a Bezier surface in Rhino3D and
imports it into Grasshopper. Then, as the designer moves the control points of the Bezier, the geometry
updates automatically. Our model generates new compression-only shapes in response to the changes
(see the bar systems rendered in Figure 14). Note that as we detail in Section 4, we trained our model
on doubly symmetric shapes, but the adequate generalization it exhibits to asymmetric geometries
makes it possible to support the designer during their exploratory session.

Figure 14: A demonstration of our trained model providing predictions of compression-only shapes
in real time. The first screenshot shows the environment running our custom code. The screenshot
in the second column and first row shows the initial input Bezier surface with control points. Every
subsequent screenshot shows the designer moving Bezier control points and our model reacting to
the designer’s intent by approximating the shape with one that is compression-only.

D.4 TRAINING COST AMORTIZATION

We measure trade-offs between our model and direct optimization in terms of training versus test
inference time in problems where N > 500 and M > 1000. N and M are the numbers of nodes
and bars in a structure, respectively. These experiments also reflect the overhead of the mechanical
simulator during training, as increasing the problem size also enlarges K, the bottleneck in Equation 4.
We keep the architecture of our MLP encoder, except for the input dimension of the first layer, and
the output dimension in the last layer, matching the new values of N and M . The settings for training
and direct optimization repeat the configurations described in Appendix B. The size of the test dataset
is B = 100, except in optimization for M = 1012 where B = 10 due to hardware limitations.

Table 7 demonstrates that our model remains a feasible approach to amortize inverse problems
on denser structures. While training and inference times increase with problem size, the expected
inference time at the finest discretization is just ten milliseconds, making it still suitable for real-time
design exploration. Remarkably, the shape loss Lshape normalized by N changes marginally as the
problem size grows, revealing the ability of our model to generate adequate fits to the target shapes
across several discretizations despite the minimal changes in the encoder architecture (Figure 15).
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Lshape/N = 4.7% Lshape/N = 0.6% Lshape/N = 2.8% Lshape/N = 2.5%

Lshape/N = 5.4% Lshape/N = 0.9% Lshape/N = 2.5% Lshape/N = 2.6%

qmax

qmin

q

qmax

qmin

Figure 15: Our model makes accurate predictions across multiple discretizations. Top row: N = 100.
Bottom row: N = 529. The predictions satisfy the problem physics and are made in milliseconds.

Table 7: Comparison between our model and direct optimization for varying problem sizes in the
shells task. We report the mean loss values and standard deviations normalized by N on a test dataset,
and the inference wall time. The column # Opt lists the number of optimization problems required to
match or exceed the training time of our model, which corresponds to the number of inference calls
needed to justify our model’s training cost.

N M Optimization Ours

Lshape/N [%] ↓ Time [s] ↓ Lshape/N [%] ↓ Test time [ms] ↓ Train time [s] ↓ # Opt ↓
100 180 0.8 ± 1.2 5.6 ± 1.7 3.0 ± 2.0 0.6 ± 0.1 140 25

256 480 1.0 ± 1.5 287.7 ± 115.8 3.6 ± 2.3 3.5 ± 0.1 1928 7

529 1012 0.8 ± 0.9 5483.1 ± 1946.0 3.5 ± 2.4 10.2 ± 0.3 6405 2

The amortization cost of training our model decreases relative to direct optimization as the problem
size goes up (Table 7). Compared to the reference case in Section 4.1, the time needed to match one
shape with optimization grows by two orders of magnitude for two times more bars, and by three
orders of magnitude for five times as many bars. As a result, the number of shape matches needed to
justify training our model is lowered by a factor of three every time the number of bars doubles.

E SHAPE EXPLORATION FOR CABLE-NET TOWER DESIGN

E.1 DATA GENERATION

To generate data for the cable-net tower task described in Section 4.2, we parametrize the geometry of
the bottom, middle, and top rings with ellipses of radii α1r and α2r, and rotation angle β on the plane.
Once we set the reference radius r to h/5, we create the training and testing datasets by sampling
the scale factors αi ∈ [1/2, 3/2) and the angles β ∈ [−π/12, π/12) from a uniform probability
distribution. See Figure 7a for a graphical description.

E.2 SHAPE EXPLORATION

We carry out two experiments that modify the size and the rotation of the middle compression ring in a
cable-net tower in order to illustrate the range of our trained model’s predictions. In both experiments,
we fix α1 = α2 = 3/4 at the top and bottom rings to form circular anchors. In the first experiment,
shown in Figure 16, we modify the value of α1 and α2 of the middle compressive ring from α1 = 1/2

23



Published as a conference paper at ICLR 2025

to α1 = 3/2, and from α2 = 1/2 to α2 = 3/2, in five steps. In the second experiment, shown in
Figure 17, the compression ring is elliptical from the start (α1 = 1/2, α2 = 3/2) and we rotate it on
the horizontal plane by an angle β between −π/12 and π/12, also in five steps. The predictions in
both experiments match the target geometry. Note that the distribution of the bar forces f changes per
prediction to maintain force equilibrium while matching the target shape of the compression ring.

α = 1/2 α = 3/4 α = 1 α = 5/4 α = 3/2

fpos

fneg

f

Figure 16: Our model predictions for the cable-net tower design task, where we gradually increase
the radius scale factor α of the target circle of the compression ring from α = 1/2 to α = 3/2.

β = −π/12 β = −π/24 β = 0 β = π/24 β = π/12

fpos

fneg

f

Figure 17: Our model produces physically valid predictions for the design of a cable-net tower with
an elliptical compression ring, as we rotate the ring by an angle β between −π/12 and π/12.
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