A Technical Proofs

Proposition 1. *The distributionally robust tree structured prediction problem based on moment divergence in Eq.* (1) *can be rewritten as*

$$\min_{\boldsymbol{\theta}} \mathbb{E}_{\mathbb{P}_{\boldsymbol{X},\boldsymbol{Y}}^{emp}} \underbrace{\min_{\mathbb{P}} \max_{\mathbb{Q}} \mathbb{E}_{\mathbb{P}_{\hat{\boldsymbol{Y}}|\boldsymbol{X}},\mathbb{Q}_{\hat{\boldsymbol{Y}}|\boldsymbol{X}}} \ell(\hat{\boldsymbol{Y}}, \check{\boldsymbol{Y}}) + \boldsymbol{\theta}^{\mathsf{T}}(\boldsymbol{\phi}(\boldsymbol{X}, \check{\boldsymbol{Y}}) - \boldsymbol{\phi}(\boldsymbol{X}, \boldsymbol{Y})) + \varepsilon \|\boldsymbol{\theta}\|_{*}}_{\ell_{adv}(\boldsymbol{\theta}, (\boldsymbol{X}, \boldsymbol{Y}))}},$$

where $\theta \in \mathbb{R}^d$ is the vector of Lagrangian multipliers and $\|\cdot\|_*$ is the dual norm of $\|\cdot\|_*$.

Proof. Recall the primal problem

$$\min_{\mathbb{P}} \max_{\mathbb{Q} \in \mathcal{B}(\mathbb{P}^{emp})} \mathbb{E}_{\mathbb{Q}_{\boldsymbol{X},\check{\boldsymbol{Y}}} \mathbb{P}_{\hat{\boldsymbol{Y}}|\boldsymbol{X}}} \ell(\hat{\boldsymbol{Y}},\check{\boldsymbol{Y}}),$$

where $\mathcal{B}(\mathbb{P}^{emp}) := \{\mathbb{Q} : \mathbb{Q}_{X} = \mathbb{P}_{X}^{emp} \land \|\mathbb{E}_{\mathbb{P}^{emp}} \phi(\cdot) - \mathbb{E}_{\mathbb{Q}} \phi(\cdot)\| \le \varepsilon\}$ with $\varepsilon \ge 0$.

Note the feature function $\phi(\cdot)$ is fixed and given. Since $\mathbb{P}_{\hat{Y}|X} \in \Delta$ and $\mathbb{Q}_{X,\check{Y}} \in \Delta \cap \mathcal{B}(\mathbb{P}^{emp})$ where Δ is the probability simplex with dimension omitted, the constraint sets are convex. The objective function is convex in \mathbb{P} and concave in \mathbb{Q} because it is affine in both. Therefore strong duality holds:

$$\max_{\mathbb{Q}\in\mathcal{B}(\mathbb{P}^{emp})}\min_{\mathbb{P}}\mathbb{E}_{\mathbb{Q}_{\boldsymbol{X},\check{\boldsymbol{Y}}}\mathbb{P}_{\hat{\boldsymbol{Y}}|\boldsymbol{X}}}\ell(\boldsymbol{Y},\boldsymbol{Y})$$

Let $C := \{ u : \|u - \mathbb{E}_{\mathbb{P}^{emp}} \phi(\cdot)\| \le \varepsilon \}$. Rewrite the problem with this constraint:

$$\begin{split} \sup_{\mathbb{Q},\boldsymbol{u}} \min_{\mathbb{P}} \mathbb{E}_{\mathbb{P}^{\mathrm{emp}} \mathbb{Q}_{\check{\boldsymbol{Y}}|\boldsymbol{X}} \mathbb{P}_{\check{\boldsymbol{Y}}|\boldsymbol{X}}} \ell(\boldsymbol{Y}, \check{\boldsymbol{Y}}) - I_{\mathcal{C}}(\boldsymbol{u}) \\ \text{s.t.} \quad \boldsymbol{u} = \mathbb{E}_{\mathbb{P}^{\mathrm{emp}} \mathbb{Q}_{\check{\boldsymbol{Y}}|\boldsymbol{X}}} \phi(\boldsymbol{X}, \check{\boldsymbol{Y}}), \end{split}$$

where $I_{\mathcal{C}}(\cdot)$ is the indicator function with $I_{\mathcal{C}}(x) = 0$ if $x \in \mathcal{C}$ and $+\infty$ otherwise. The simplex constraints are omitted.

The dual problem by relaxing the equality constraint is

$$\sup_{\mathbb{Q},\boldsymbol{u}} \min_{\boldsymbol{\theta}} \min_{\mathbb{P}} \mathbb{E}_{\boldsymbol{x}} \mathbb{P}_{\boldsymbol{x}}^{\mathrm{emp}} \mathbb{Q}_{\boldsymbol{\hat{Y}}|\boldsymbol{x}} \mathbb{P}_{\boldsymbol{\hat{Y}}|\boldsymbol{x}}} \ell(\boldsymbol{\hat{Y}}, \boldsymbol{\check{Y}}) - I_{\mathcal{C}}(\boldsymbol{u}) + \boldsymbol{\theta}^{\mathsf{T}} \mathbb{E}_{\mathbb{P}} \mathbb{P}_{\boldsymbol{x}}^{\mathrm{emp}} \mathbb{Q}_{\boldsymbol{\hat{Y}}|\boldsymbol{x}} \phi(\boldsymbol{X}, \boldsymbol{\check{Y}}) - \boldsymbol{\theta}^{\mathsf{T}} \boldsymbol{u},$$

where θ is the vector of Lagrange multipliers.

Given X = x, optimization of $\mathbb{Q}_{\check{Y}|x}$ and $\mathbb{P}_{\hat{Y}|x}$ can be done independently. Again by strong duality, we can rearrange the terms:

$$\min_{\boldsymbol{\theta}} \mathbb{E}_{\mathbb{P}_{\boldsymbol{X}}^{emp}} \min_{\mathbb{P}} \max_{\mathbb{Q}} \mathbb{E}_{\mathbb{Q}_{\check{\boldsymbol{Y}}|\boldsymbol{X}}\mathbb{P}_{\hat{\boldsymbol{Y}}|\boldsymbol{X}}} \ell(\hat{\boldsymbol{Y}}, \check{\boldsymbol{Y}}) + \boldsymbol{\theta}^{\mathsf{T}} \phi(\boldsymbol{X}, \check{\boldsymbol{Y}}) + \sup_{\boldsymbol{u}} -I_{\mathcal{C}}(\boldsymbol{u}) - \boldsymbol{\theta}^{\mathsf{T}} \boldsymbol{u}.$$

The associated dual norm $\|\cdot\|_*$ of the norm $\|\cdot\|$ is defined as

$$\|\boldsymbol{z}\|_{*} := \sup\{\boldsymbol{z}^{\mathsf{T}} \boldsymbol{x} : \|\boldsymbol{x}\| \leq 1\},\$$

based on which we are able to simplify the optimization over u as

$$\sup_{\boldsymbol{u}} - I_{\mathcal{C}}(\boldsymbol{u}) - \boldsymbol{\theta}^{\intercal} \boldsymbol{u} = \sup_{\boldsymbol{u} \in \mathcal{C}} - \boldsymbol{\theta}^{\intercal} \boldsymbol{u} = \sup_{\boldsymbol{e}: \|\boldsymbol{e}\| \leq 1} - \boldsymbol{\theta}^{\intercal} (\mathbb{E}_{\mathbb{P}^{emp}} \boldsymbol{\phi}(\cdot) - \varepsilon \boldsymbol{e}) = -\boldsymbol{\theta}^{\intercal} \mathbb{E}_{\mathbb{P}^{emp}} \boldsymbol{\phi}(\cdot) + \varepsilon \|\boldsymbol{\theta}\|_{*}.$$

Plugging it back to the dual problem, we have

$$\min_{\boldsymbol{\theta}} \mathbb{E}_{\mathbb{P}_{\boldsymbol{X},\boldsymbol{Y}}^{emp}} \min_{\mathbb{P}} \max_{\mathbb{Q}} \mathbb{E}_{\mathbb{Q}_{\check{\boldsymbol{Y}}|\boldsymbol{X}}\mathbb{P}_{\check{\boldsymbol{Y}}|\boldsymbol{X}}} \ell(\hat{\boldsymbol{Y}},\check{\boldsymbol{Y}}) + \boldsymbol{\theta}^{\intercal}(\boldsymbol{\phi}(\boldsymbol{X},\check{\boldsymbol{Y}}) - \boldsymbol{\phi}(\boldsymbol{X},\boldsymbol{Y})) + \varepsilon \|\boldsymbol{\theta}\|_{*}.$$

Theorem 2. Given *m* samples, a non-negative loss $\ell(\cdot, \cdot)$ such that $|\ell(\cdot, \cdot)| \leq K$, a feature function $\phi(\cdot, \cdot)$ such that $||\phi(\cdot, \cdot)|| \leq B$, a positive ambiguity level $\varepsilon > 0$, then, for any $\rho \in (0, 1]$, with a probability at least $1 - \rho$, the following excess true worst-case risk bound holds:

$$\max_{\mathbb{Q}\in\mathcal{B}(\mathbb{P}^{true})} R^L_{\mathbb{Q}}(\boldsymbol{\theta}^*_{emp}) - \max_{\mathbb{Q}\in\mathcal{B}(\mathbb{P}^{true})} R^L_{\mathbb{Q}}(\boldsymbol{\theta}^*_{true}) \leq \frac{4KB}{\varepsilon\sqrt{m}} \left(1 + \frac{3}{2}\sqrt{\frac{\ln(4/\rho)}{2}}\right),$$

where θ_{emp}^* and θ_{true}^* are the optimal parameters learned in Eq. (2) under \mathbb{P}^{emp} and \mathbb{P}^{true} respectively. The original risk of θ under \mathbb{Q} is $R_{\mathbb{Q}}^{L}(\theta) := \mathbb{E}_{\mathbb{Q}_{\mathbf{X},\mathbf{Y}},\mathbb{P}_{\hat{\mathbf{Y}}|\mathbf{X}}}^{\theta} \ell(\hat{\mathbf{Y}},\mathbf{Y})$ with Bayes prediction $\mathbb{P}_{\mathbf{Y}|\mathbf{X}}^{\theta} \in \arg\min_{\mathbb{P}}\max_{\mathbb{Q}}\mathbb{E}_{\mathbb{Q}_{\hat{\mathbf{Y}}|\mathbf{X}}}^{\mathbb{Q}}\ell(\hat{\mathbf{Y}},\check{\mathbf{Y}}) + \theta^{\intercal}\phi(\mathbf{x},\check{\mathbf{Y}}).$

Proof. Define the adversarial surrogate risk of $\boldsymbol{\theta}$ with respect to $\tilde{\mathbb{P}}$ as $R_{\tilde{\mathbb{P}}}^{S}(\boldsymbol{\theta}) := \mathbb{E}_{\tilde{\mathbb{P}}_{\boldsymbol{X},\boldsymbol{Y}}} \ell_{adv}(\boldsymbol{\theta}, (\boldsymbol{X}, \boldsymbol{Y})) := \mathbb{E}_{\tilde{\mathbb{P}}_{\boldsymbol{X},\boldsymbol{Y}}} \min_{\mathbb{P}} \max_{\mathbb{Q}} \mathbb{E}_{\mathbb{Q}_{\tilde{\boldsymbol{Y}}|\boldsymbol{X}}\mathbb{P}_{\hat{\boldsymbol{Y}}|\boldsymbol{X}}} \ell(\hat{\boldsymbol{Y}}, \check{\boldsymbol{Y}}) + \boldsymbol{\theta}^{\mathsf{T}}(\boldsymbol{\phi}(\boldsymbol{X}, \check{\boldsymbol{Y}}) - \boldsymbol{\phi}(\boldsymbol{X}, \boldsymbol{Y})) + \varepsilon \|\boldsymbol{\theta}\|_{*}.$

Let $\theta_{\text{true}}^* \in \arg\min_{\theta} R_{\mathbb{P}^{\text{true}}}^S(\theta)$ and $\theta_{\text{emp}}^* \in \arg\min_{\theta} R_{\mathbb{P}^{\text{emp}}}^S(\theta)$ be the optimal parameters learned with $\mathbb{P}_{\mathbf{X},\mathbf{Y}}^{\text{true}}$ and $\mathbb{P}_{\mathbf{X},\mathbf{Y}}^{\text{emp}}$ respectively.

Given x, define the decoded prediction by θ as

$$\mathbb{P}^{\boldsymbol{\theta}}_{\boldsymbol{Y}|\boldsymbol{x}} \in \arg\min_{\mathbb{P}} \max_{\mathbb{Q}} \mathbb{E}_{\mathbb{Q}_{\check{\boldsymbol{Y}}|\boldsymbol{x}} \mathbb{P}_{\check{\boldsymbol{Y}}|\boldsymbol{x}}} \ell(\hat{\boldsymbol{Y}}, \check{\boldsymbol{Y}}) + \boldsymbol{\theta}^{\intercal} \phi(\boldsymbol{x}, \check{\boldsymbol{Y}}).$$

Let the original risk of loss ℓ under some distribution \mathbb{Q} be

$$R^L_{\mathbb{Q}}(\boldsymbol{\theta}) := \mathbb{E}_{\mathbb{Q}_{\boldsymbol{X},\boldsymbol{Y}},\mathbb{P}^{\boldsymbol{\theta}}_{\hat{\boldsymbol{Y}}|\boldsymbol{X}}} \ell(\hat{\boldsymbol{Y}},\boldsymbol{Y}).$$

According to Proposition 1, for any fixed \mathbb{P} , we have similarly

$$\max_{\mathbb{Q}\in\mathcal{B}(\mathbb{P}^{emp})} \mathbb{E}_{\mathbb{Q}_{\boldsymbol{X},\check{\boldsymbol{Y}}}\mathbb{P}_{\check{\boldsymbol{Y}}|\boldsymbol{X}}} \ell(\hat{\boldsymbol{Y}},\check{\boldsymbol{Y}}) \triangleq \min_{\boldsymbol{\theta}} \mathbb{E}_{\mathbb{P}^{emp}_{\boldsymbol{X},\boldsymbol{Y}}} \max_{\mathbb{Q}} \mathbb{E}_{\mathbb{Q}_{\check{\boldsymbol{Y}}|\boldsymbol{X}}\mathbb{P}_{\check{\boldsymbol{Y}}|\boldsymbol{X}}} \ell(\hat{\boldsymbol{Y}},\check{\boldsymbol{Y}}) + \boldsymbol{\theta}^{\mathsf{T}}(\boldsymbol{\phi}(\boldsymbol{X},\check{\boldsymbol{Y}}) - \boldsymbol{\phi}(\boldsymbol{X},\boldsymbol{Y})) + \varepsilon \|\boldsymbol{\theta}\|_{*}.$$

We start by looking at the worst-case risk of θ_{true}^* and θ_{emp}^* .

$$\begin{split} & \max_{\mathbb{Q}\in\mathcal{B}(\mathbb{P}^{\text{frue}})} R^{L}_{\mathbb{Q}}(\boldsymbol{\theta}_{\text{emp}}^{*}) \\ &= \min_{\boldsymbol{\theta}} \mathbb{E}_{\mathbb{P}^{\text{frue}}_{\boldsymbol{X},\boldsymbol{Y}}} \max_{\mathbb{Q}} \mathbb{E}_{\mathbb{Q}_{\tilde{\boldsymbol{Y}}|\boldsymbol{X}} \mathbb{P}^{\boldsymbol{\theta}_{\text{emp}}^{*}}_{\tilde{\boldsymbol{Y}}|\boldsymbol{X}}} \ell(\hat{\boldsymbol{Y}}, \check{\boldsymbol{Y}}) + \boldsymbol{\theta}^{\intercal}(\boldsymbol{\phi}(\boldsymbol{X}, \check{\boldsymbol{Y}}) - \boldsymbol{\phi}(\boldsymbol{X}, \boldsymbol{Y})) + \varepsilon \|\boldsymbol{\theta}\|_{*} \\ &\leq \mathbb{E}_{\mathbb{P}^{\text{frue}}_{\boldsymbol{X},\boldsymbol{Y}}} \max_{\mathbb{Q}} \mathbb{E}_{\mathbb{Q}_{\tilde{\boldsymbol{Y}}|\boldsymbol{X}} \mathbb{P}^{\boldsymbol{\theta}_{\text{emp}}^{*}}_{\tilde{\boldsymbol{Y}}|\boldsymbol{X}}} \ell(\hat{\boldsymbol{Y}}, \check{\boldsymbol{Y}}) + \boldsymbol{\theta}^{*}_{\text{emp}} \cdot (\boldsymbol{\phi}(\boldsymbol{X}, \check{\boldsymbol{Y}}) - \boldsymbol{\phi}(\boldsymbol{X}, \boldsymbol{Y})) + \varepsilon \|\boldsymbol{\theta}_{\text{emp}}^{*}\|_{*}, \end{split}$$

where the last inequality holds because θ_{emp}^* is not necessarily a minimizer. Similarly for θ_{true}^* ,

$$\max_{\mathbb{Q}\in\mathcal{B}(\mathbb{P}^{\mathrm{true}})} R^{L}_{\mathbb{Q}}(\boldsymbol{\theta}^{*}_{\mathrm{true}}) \leq \mathbb{E}_{\mathbb{P}^{\mathrm{true}}_{\boldsymbol{X},\boldsymbol{Y}}} \max_{\mathbb{Q}} \mathbb{E}_{\mathbb{Q}_{\check{\boldsymbol{Y}}|\boldsymbol{X}} \mathbb{P}^{\boldsymbol{\theta}^{*}_{\mathrm{true}}}_{\check{\boldsymbol{Y}}|\boldsymbol{X}}} \ell(\hat{\boldsymbol{Y}},\check{\boldsymbol{Y}}) + \boldsymbol{\theta}^{*}_{\mathrm{true}} \cdot (\boldsymbol{\phi}(\boldsymbol{X},\check{\boldsymbol{Y}}) - \boldsymbol{\phi}(\boldsymbol{X},\boldsymbol{Y})) + \varepsilon \|\boldsymbol{\theta}^{*}_{\mathrm{true}}\|_{*}.$$

On the other hand,

$$\begin{split} \mathbb{E}_{\mathbb{P}_{\mathbf{X},\mathbf{Y}}^{\mathrm{true}}} & \max_{\mathbb{Q}} \mathbb{E}_{\mathbb{Q}_{\tilde{\mathbf{Y}}|\mathbf{X}} \mathbb{P}_{\tilde{\mathbf{Y}}|\mathbf{X}}^{\theta_{\mathrm{true}}^{*}}} \ell(\tilde{\mathbf{Y}}, \tilde{\mathbf{Y}}) + \boldsymbol{\theta}_{\mathrm{true}}^{*} \cdot (\boldsymbol{\phi}(\mathbf{X}, \tilde{\mathbf{Y}}) - \boldsymbol{\phi}(\mathbf{X}, \mathbf{Y})) + \varepsilon \|\boldsymbol{\theta}_{\mathrm{true}}^{*}\|_{*} \\ = & \min_{\boldsymbol{\theta}} \mathbb{E}_{\mathbb{P}_{\mathbf{X},\mathbf{Y}}^{\mathrm{true}}} \min_{\mathbb{P}} \max_{\mathbb{Q}} \mathbb{E}_{\mathbb{Q}_{\tilde{\mathbf{Y}}|\mathbf{X}} \mathbb{P}_{\tilde{\mathbf{Y}}|\mathbf{X}}} \ell(\hat{\mathbf{Y}}, \check{\mathbf{Y}}) + \boldsymbol{\theta}^{\mathsf{T}}(\boldsymbol{\phi}(\mathbf{X}, \check{\mathbf{Y}}) - \boldsymbol{\phi}(\mathbf{X}, \mathbf{Y})) + \varepsilon \|\boldsymbol{\theta}\|_{*} \\ = & \min_{\mathbb{P}} \min_{\boldsymbol{\theta}} \mathbb{E}_{\mathbb{P}_{\mathbf{X},\mathbf{Y}}^{\mathrm{true}}} \max_{\mathbb{Q}} \mathbb{E}_{\mathbb{Q}_{\tilde{\mathbf{Y}}|\mathbf{X}} \mathbb{P}_{\tilde{\mathbf{Y}}|\mathbf{X}}} \ell(\hat{\mathbf{Y}}, \check{\mathbf{Y}}) + \boldsymbol{\theta}^{\mathsf{T}}(\boldsymbol{\phi}(\mathbf{X}, \check{\mathbf{Y}}) - \boldsymbol{\phi}(\mathbf{X}, \mathbf{Y})) + \varepsilon \|\boldsymbol{\theta}\|_{*} \\ \leq & \min_{\boldsymbol{\theta}} \mathbb{E}_{\mathbb{P}_{\mathbf{X},\mathbf{Y}}^{\mathrm{true}}} \max_{\mathbb{Q}} \mathbb{E}_{\mathbb{Q}_{\tilde{\mathbf{Y}}|\mathbf{X}} \mathbb{P}_{\tilde{\mathbf{Y}}|\mathbf{X}}^{\theta_{\mathrm{true}}^{*}}} \ell(\hat{\mathbf{Y}}, \check{\mathbf{Y}}) + \boldsymbol{\theta}^{\mathsf{T}}(\boldsymbol{\phi}(\mathbf{X}, \check{\mathbf{Y}}) - \boldsymbol{\phi}(\mathbf{X}, \mathbf{Y})) + \varepsilon \|\boldsymbol{\theta}\|_{*} \\ = & \max_{\mathbb{Q}\in\mathcal{B}(\mathbb{P}^{\mathrm{true}})} \mathbb{R}_{\mathbb{Q}}^{L}(\boldsymbol{\theta}_{\mathrm{true}}^{*}), \end{split}$$

where the first equality holds according to the definition of θ_{true}^* . The above two inequalities imply the equality:

$$\max_{\mathbb{Q}\in\mathcal{B}(\mathbb{P}^{\mathrm{true}})} R^L_{\mathbb{Q}}(\boldsymbol{\theta}^*_{\mathrm{true}}) = \mathbb{E}_{\substack{\mathbb{P}^{\mathrm{true}}\\ \boldsymbol{X},\boldsymbol{Y}}} \max_{\mathbb{Q}} \mathbb{E}_{\substack{\mathbb{Q}_{\tilde{\boldsymbol{Y}}|\boldsymbol{X}} \mathbb{P}^{\boldsymbol{\theta}^*_{\mathrm{true}}}_{\boldsymbol{Y}|\boldsymbol{X}}}} \ell(\hat{\boldsymbol{Y}}, \check{\boldsymbol{Y}}) + \boldsymbol{\theta}^*_{\mathrm{true}} \cdot (\boldsymbol{\phi}(\boldsymbol{X}, \check{\boldsymbol{Y}}) - \boldsymbol{\phi}(\boldsymbol{X}, \boldsymbol{Y})) + \varepsilon \|\boldsymbol{\theta}^*_{\mathrm{true}}\|_{*}.$$

Therefore,

$$\max_{\mathbb{Q}\in\mathcal{B}(\mathbb{P}^{true})} R_{\mathbb{Q}}^{L}(\boldsymbol{\theta}_{emp}^{*}) - \max_{\mathbb{Q}\in\mathcal{B}(\mathbb{P}^{true})} R_{\mathbb{Q}}^{L}(\boldsymbol{\theta}_{true}^{*})$$

$$\leq \mathbb{E}_{\mathbb{P}_{\boldsymbol{X},\boldsymbol{Y}}^{true}} \max_{\mathbb{Q}} \mathbb{E}_{\mathbb{Q}_{\tilde{\boldsymbol{Y}}|\boldsymbol{X}}} \mathbb{P}_{\tilde{\boldsymbol{Y}}|\boldsymbol{X}}^{\boldsymbol{\theta}_{emp}^{*}} \ell(\hat{\boldsymbol{Y}}, \check{\boldsymbol{Y}}) + \boldsymbol{\theta}_{emp}^{*} \cdot (\boldsymbol{\phi}(\boldsymbol{X}, \check{\boldsymbol{Y}}) - \boldsymbol{\phi}(\boldsymbol{X}, \boldsymbol{Y})) + \varepsilon \|\boldsymbol{\theta}_{emp}^{*}\|_{*}$$

$$- (\mathbb{E}_{\mathbb{P}_{\boldsymbol{X},\boldsymbol{Y}}} \max_{\mathbb{Q}} \mathbb{E}_{\mathbb{Q}_{\tilde{\boldsymbol{Y}}|\boldsymbol{X}}} \mathbb{P}_{\tilde{\boldsymbol{Y}}|\boldsymbol{X}}^{\boldsymbol{\theta}_{emp}^{*}} \ell(\hat{\boldsymbol{Y}}, \check{\boldsymbol{Y}}) + \boldsymbol{\theta}_{true}^{*} \cdot (\boldsymbol{\phi}(\boldsymbol{X}, \check{\boldsymbol{Y}}) - \boldsymbol{\phi}(\boldsymbol{X}, \boldsymbol{Y})) + \varepsilon \|\boldsymbol{\theta}_{true}^{*}\|_{*}).$$
(5)

The main idea is thus to use uniform convergence bounds. Firstly, by substituting $\mathbb{Q} = \mathbb{P}^{true}$, note that

$$\min_{\mathbb{P}} \max_{\mathbb{Q}} \mathbb{E}_{\mathbb{Q}_{\check{\boldsymbol{Y}}|\boldsymbol{X}} \mathbb{P}_{\hat{\boldsymbol{Y}}|\boldsymbol{X}}} \ell(\hat{\boldsymbol{Y}}, \check{\boldsymbol{Y}}) + \boldsymbol{\theta}^{\intercal}(\boldsymbol{\phi}(\boldsymbol{X}, \check{\boldsymbol{Y}}) - \boldsymbol{\phi}(\boldsymbol{X}, \boldsymbol{Y})) \geq \min_{\mathbb{P}} \mathbb{E}_{\mathbb{P}_{\boldsymbol{Y}|\boldsymbol{X}} \mathbb{P}_{\hat{\boldsymbol{Y}}|\boldsymbol{X}}} \ell(\hat{\boldsymbol{Y}}, \boldsymbol{Y}) \geq 0$$

We can get an upper bound of the norm of any optimal solution θ_{true}^* or θ_{emp}^* as follows:

$$0 + \varepsilon \|\boldsymbol{\theta}_{\text{true}}^*\|_* \le R_{\mathbb{P}^{\text{true}}}^S(\boldsymbol{\theta}_{\text{true}}^*) \le R_{\mathbb{P}^{\text{true}}}^S(\mathbf{0}) \le \mathbb{E}_{\mathbb{P}_{\mathbf{X},\mathbf{Y}}^{\text{true}}} \min_{\mathbb{P}} \max_{\mathbb{Q}} \mathbb{E}_{\mathbb{Q}_{\tilde{\mathbf{Y}}|\mathbf{X}}^*} \mathbb{P}_{\hat{\mathbf{Y}}|\mathbf{X}}^* \ell(\hat{\mathbf{Y}}, \check{\mathbf{Y}}) \le K \implies \|\boldsymbol{\theta}_{\text{true}}^*\|_* \le \frac{K}{\varepsilon}.$$

T.2

Let $\psi(X, Y) := \theta^{\intercal} \phi(X, Y)$ and $\psi_x := (\psi(x, y))_{y \in \mathcal{Y}}$. Define

$$\begin{split} f(\boldsymbol{\theta}, \tilde{\mathbb{P}}) &:= \mathbb{E}_{\tilde{\mathbb{P}}_{\boldsymbol{X}, \boldsymbol{Y}}} \min_{\mathbb{P}} \max_{\mathbb{Q}} \mathbb{E}_{\mathbb{Q}_{\tilde{\boldsymbol{Y}} | \boldsymbol{X}} \mathbb{P}_{\tilde{\boldsymbol{Y}} | \boldsymbol{X}}} \ell(\hat{\boldsymbol{Y}}, \check{\boldsymbol{Y}}) + \boldsymbol{\theta}^{\intercal}(\boldsymbol{\phi}(\boldsymbol{X}, \check{\boldsymbol{Y}}) - \boldsymbol{\phi}(\boldsymbol{X}, \boldsymbol{Y})) \\ &\triangleq \mathbb{E}_{\tilde{\mathbb{P}}_{\boldsymbol{X}, \boldsymbol{Y}}} \max_{\mathbb{Q}} \mathbb{E}_{\mathbb{Q}_{\tilde{\boldsymbol{Y}} | \boldsymbol{X}} \mathbb{P}_{\tilde{\boldsymbol{Y}} | \boldsymbol{X}}} \ell(\hat{\boldsymbol{Y}}, \check{\boldsymbol{Y}}) + \boldsymbol{\theta}^{\intercal}(\boldsymbol{\phi}(\boldsymbol{X}, \check{\boldsymbol{Y}}) - \boldsymbol{\phi}(\boldsymbol{X}, \boldsymbol{Y})) \\ &\triangleq \mathbb{E}_{\tilde{\mathbb{P}}_{\boldsymbol{X}, \boldsymbol{Y}}} \max_{\mathbb{Q}} \mathbb{E}_{\mathbb{Q}_{\tilde{\boldsymbol{Y}} | \boldsymbol{X}} \mathbb{P}_{\tilde{\boldsymbol{Y}} | \boldsymbol{X}}} \ell(\hat{\boldsymbol{Y}}, \check{\boldsymbol{Y}}) + \psi(\boldsymbol{X}, \check{\boldsymbol{Y}}) - \psi(\boldsymbol{X}, \boldsymbol{Y}) \\ &\triangleq g(\boldsymbol{\psi}, \tilde{\mathbb{P}}). \end{split}$$

Let $q_x \in \Delta$ be the probability vector of $\mathbb{Q}_{\check{Y}|x}$ and e_y be the standard basis vector with y-th entry equal to 1. We have that for any (x, y),

$$\frac{\partial}{\partial \boldsymbol{\psi}_{\boldsymbol{x}}} g(\boldsymbol{\psi}, \delta_{(\boldsymbol{x}, \boldsymbol{y})}) \subseteq \operatorname{Conv}(\{\boldsymbol{q}_{\boldsymbol{x}} - \boldsymbol{e}_{\boldsymbol{y}} : \boldsymbol{q}_{\boldsymbol{x}} \in \Delta\}) \implies \|\frac{\partial}{\partial \boldsymbol{\psi}_{\boldsymbol{x}}} g(\boldsymbol{\psi}, \delta_{(\boldsymbol{x}, \boldsymbol{y})})\|_{1} \leq \max_{\boldsymbol{q}_{\boldsymbol{x}} \in \Delta} \|\boldsymbol{q}_{\boldsymbol{x}} - \boldsymbol{e}_{\boldsymbol{y}}\|_{1} \leq 2,$$

where $\delta_{(\boldsymbol{x},\boldsymbol{y})}$ is the Dirac point measure. $g(\cdot, \tilde{\mathbb{P}})$ is therefore 2-Lipschitz with respect to the ℓ_1 norm. As per the assumption, $\|\phi(\cdot, \cdot)\| \leq B$. This further implies that

$$f(\boldsymbol{\theta}_1, \delta_{(\boldsymbol{x}_1, \boldsymbol{y}_1)}) - f(\boldsymbol{\theta}_2, \delta_{(\boldsymbol{x}_2, \boldsymbol{y}_2)}) \leq \frac{4KB}{\varepsilon} \quad \forall \boldsymbol{\theta}_1, \boldsymbol{\theta}_2, \boldsymbol{x}_1, \boldsymbol{x}_2, \boldsymbol{y}_1, \boldsymbol{y}_2 \quad \text{s.t.} \quad \|\boldsymbol{\theta}_i\|_* \leq \frac{K}{\varepsilon} \quad \forall i = 1, 2.$$

We then follow the proof of Theorem 3 in Farnia and Tse [2016]. According to Theorem 26.12 in Shalev-Shwartz and Ben-David [2014], by uniform convergence, for any $\rho \in (0, 2]$, with a probability at least $1 - \frac{\rho}{2}$,

$$f(\boldsymbol{\theta}_{emp}^*, \mathbb{P}^{true}) - f(\boldsymbol{\theta}_{emp}^*, \mathbb{P}^{emp}) \leq \frac{4KB}{\varepsilon\sqrt{m}} \left(1 + \sqrt{\frac{\ln(4/\rho)}{2}}\right).$$

According to the definition of θ_{true}^* , the following inequality holds:

$$f(\boldsymbol{\theta}_{emp}^*, \mathbb{P}^{emp}) + \varepsilon \|\boldsymbol{\theta}_{emp}^*\|_* - f(\boldsymbol{\theta}_{true}^*, \mathbb{P}^{emp}) - \varepsilon \|\boldsymbol{\theta}_{true}^*\|_* \le 0.$$

Since θ_{true}^* do not depend on samples, according to the Hoeffding's inequality, with a probability $1 - \rho/2$,

$$f(\boldsymbol{\theta}_{\mathrm{true}}^*, \mathbb{P}^{\mathrm{emp}}) - f(\boldsymbol{\theta}_{\mathrm{true}}^*, \mathbb{P}^{\mathrm{true}}) \leq \frac{2KB}{\varepsilon\sqrt{m}} \sqrt{\frac{\ln(4/\rho)}{2}}.$$

Applying the union bound to the above three inequations, with a probability $1 - \rho$, we have

$$f(\boldsymbol{\theta}_{\rm emp}^*, \mathbb{P}^{\rm true}) + \varepsilon \|\boldsymbol{\theta}_{\rm emp}^*\|_* - f(\boldsymbol{\theta}_{\rm true}^*, \mathbb{P}^{\rm true}) - \varepsilon \|\boldsymbol{\theta}_{\rm true}^*\|_* \le \frac{4KB}{\varepsilon\sqrt{m}} \left(1 + \frac{3}{2}\sqrt{\frac{\ln(4/\rho)}{2}}\right).$$

As stated by Inequation (5), we conclude with the following excess risk bound:

$$\max_{\mathbb{Q}\in\mathcal{B}(\mathbb{P}^{\mathrm{true}})} R^{L}_{\mathbb{Q}}(\boldsymbol{\theta}^{*}_{\mathrm{emp}}) - \max_{\mathbb{Q}\in\mathcal{B}(\mathbb{P}^{\mathrm{true}})} R^{L}_{\mathbb{Q}}(\boldsymbol{\theta}^{*}_{\mathrm{true}}) \leq \frac{4KB}{\varepsilon\sqrt{m}} \left(1 + \frac{3}{2}\sqrt{\frac{\ln(4/\rho)}{2}}\right).$$

Corollary 3. When $\varepsilon = 0$, ℓ_{adv} is Fisher consistent with respect to ℓ . Namely,

$$\mathbb{P}^{m{ heta}_{true}}_{\hat{m{Y}}|m{X}} \in rg\min_{\mathbb{P}_{\hat{m{Y}}|m{X}}} \mathbb{E}_{\mathbb{P}_{m{X},m{Y}}^{true},\mathbb{P}_{\hat{m{Y}}|m{X}}}^{true} \ell(\hat{m{Y}},m{Y}),$$

where θ_{true}^* is learned with ℓ_{adv} and \mathbb{P}^{true} as in Theorem 2.

Proof. Our formulation differs from Nowak-Vila et al. [2020] in the fact that we allow probabilistic prediction to be ground truth. By defining $y^*(\mu)$ as the gold standard probabilistic prediction and \mathcal{Y} as the set of all possible probabilistic predictions in Proposition C.2 in Nowak-Vila et al. [2020], we have

$$\mathbb{P}_{\hat{\boldsymbol{Y}}|\boldsymbol{x}}^{\boldsymbol{\theta}^*_{\text{free}}} \in \text{Conv}(\arg\min_{\mathbb{P}_{\hat{\boldsymbol{Y}}|\boldsymbol{x}}} \mathbb{E}_{\mathbb{P}_{\hat{\boldsymbol{Y}}|\boldsymbol{x}}}, \mathbb{P}_{\hat{\boldsymbol{Y}}|\boldsymbol{x}}}(\hat{\boldsymbol{Y}}, \boldsymbol{Y}))$$

Therefore,

$$\mathbb{P}^{m{ heta}_{ ext{true}}}_{\hat{m{Y}}|m{x}} \in rg\min_{\mathbb{P}_{\hat{m{Y}}|m{x}}} \mathbb{E}_{\mathbb{P}^{ ext{true}}_{m{Y}|m{x}}} \mathbb{P}^{m{ heta}_{ ext{y}}}_{m{Y}|m{x}} \ell(\hat{m{Y}},m{Y}).$$

Proposition 4. Let \mathcal{G} be a multi-graph. $\mathcal{A}_{marb} \triangleq \mathcal{A}_{arb}$.

Proof. We follow the proof of Friesen [2019] for simple graphs. Recall the definition of A_{marb} :

$$\mathcal{A}_{\text{marb}} := \{ \boldsymbol{z}^r : \exists \boldsymbol{z} \ge \boldsymbol{0} \\ \sum_{a \in \delta^-(j)} z_a^k = \mathbb{1}(j \neq k) \; \forall k, j \in \mathcal{V} \land$$
(6)

$$\sum_{a \in \mathcal{E}'_{ij}} z_a^k = \sum_{a \in \mathcal{E}_{ij}} z_a^r \quad \forall k \neq r, i, j \in \mathcal{V} \}.$$
⁽⁷⁾

On one hand, given a legal r-arborescence with characteristic vector z^r , Eq. (6) and Eq. (7) hold by the definition of arborescences. The equality also holds for a convex combination of the characteristic vectors of r-arborescences.

On the other hand, given $z \in A_{marb}$. Consider Edmond's definition of *r*-arborescence polytope based on rank constraints:

$$\sum_{a \in S} x_a \le |S| - 1 \quad \forall S \subset \mathcal{V} \text{ with } S \ne \emptyset$$
(8)

$$\sum_{a \in \delta^{-}(j)} x_a = \mathbb{1}(j \neq r) \,\forall j \in \mathcal{V}$$
(9)

 $x \ge 0$.

We have Eq. (6) directly implies Eq. (9). According to Eq. (7),

$$\sum_{a \in S} z_a^r = \sum_{a \in S} z_a^u \quad \forall S \subseteq \mathcal{V} \land u \in \mathcal{V}.$$

Therefore,

$$\sum_{a \in S} z_a^r = \sum_{a \in S} z_a^u \le \sum_{j \in S} \sum_{a \in \delta^-(j)} z_a^u = |S| - 1 \quad \forall S \subseteq \mathcal{V} \land u \in S,$$

which is exactly Eq. (8).

Proposition 5. Let \mathcal{G} be a multi-graph. $\mathcal{A}_{mdep} \triangleq \mathcal{A}_{dep}$.

Proof. Recall the definition of A_{mdep} :

$$\mathcal{A}_{\text{mdep}} := \{ \boldsymbol{z}^r : \boldsymbol{z}^r \in \mathcal{A}_{\text{marb}} \land \\ \sum_{a \in \delta^+(r)} z_a^r = 1 \}.$$
(10)

Algorithm 1 Double Oracle Game Solver

Input: Lagrange multipliers θ ; feature function $\phi(\cdot, \cdot)$; initial set of trees $\{y_{initial}\}$ Output: A sparse Nash equilibrium $(\hat{\mathcal{T}}, \check{\mathcal{T}}, \mathbb{P}, \mathbb{Q})$ Initialize $\hat{\mathcal{T}} \leftarrow \check{\mathcal{T}} \leftarrow \{y_{initial}\}$ repeat $(\mathbb{P}, \hat{v}_{Nash}) \leftarrow \text{SolveZeroSumGame}_{\hat{\mathcal{T}}}(\ell, \theta^{\mathsf{T}}\phi, \hat{\mathcal{T}}, \check{\mathcal{T}})$ $(\check{y}_{BR}, \check{v}_{BR}) \leftarrow \text{FindBestResponse}(\ell, \theta^{\mathsf{T}}\phi, \mathbb{P}, \hat{\mathcal{T}})$ if $\hat{v}_{Nash} \neq \check{v}_{BR}$ then $\check{\mathcal{T}} \leftarrow \check{\mathcal{T}} \cup \{\check{y}_{BR}\}$ end if $(\mathbb{Q}, \check{v}_{Nash}) \leftarrow \text{SolveZeroSumGame}_{\check{\mathcal{T}}}(\ell, \theta^{\mathsf{T}}\phi, \hat{\mathcal{T}}, \check{\mathcal{T}})$ $(\hat{y}_{BR}, \hat{v}_{BR}) \leftarrow \text{FindBestResponse}(\ell, \theta^{\mathsf{T}}\phi, \mathbb{Q}, \check{\mathcal{T}})$ if $\check{v}_{Nash} \neq \hat{v}_{BR}$ then $\hat{\mathcal{T}} \leftarrow \hat{\mathcal{T}} \cup \{\hat{y}_{BR}\}$ end if until $\hat{v}_{Nash} = \check{v}_{BR} = \check{v}_{Nash} = \hat{v}_{BR}$ return $(\hat{\mathcal{T}}, \check{\mathcal{T}}, \mathbb{P}, \mathbb{Q})$

On one hand, given a legal dependency tree $z^r \in A_{dep}$, it satisfies Eq. (6) and Eq. (7) by Proposition 4. It also satisfies Eq. (10) by the definition of A_{dep} .

On the other hand, given $z^r \in \mathcal{A}_{mdep}$, firstly, z^r must be in \mathcal{A}_{arb} by Proposition 4, which implies that we can write it as a convex combination of k r-arborescences vectors: $z^r \triangleq \alpha_1 t^1 + \alpha_2 t^2 + \cdots + \alpha_k t^k$. All of them are legal r-arborescences, so $\sum_{a \in \delta^+(r)} t_a^i \ge 1$ for all $i \in [k]$. Now if $\sum_{a \in \delta^+(r)} t_a^i > 1$ for some i, we would have a contradiction, $\sum_{a \in \delta^+(r)} z_a^r > 1$.

B Algorithm Details

The pseudo-code of the constraint generation algorithm proposed in Section 3.2 is illustrated in Algorithm 1.

C More on Experiments

We adopt three public datasets, the English Penn Treebank (PTB v3.0) [Marcus et al., 1993], the Penn Chinese Treebank (CTB v5.1) [Xue et al., 2002], the Dutch Lassy Small Treebank and the Turkish Treebank in Universal Dependencies (UD v2.3) [Nivre et al., 2016]. We follow conventions in Chen and Manning [2014], Dyer et al. [2015] to prepare our data. We make standard train/validation/test splits. We use Stanford Dependencies (SD v3.3.0) [De Marneffe and Manning, 2008] to convert dependencies in PTB and CTB. The predicted POS tags with Stanford POS tagger [Toutanova et al., 2003] are adopted for PTB whereas gold POS tags are adopted for CTB and UD. Punctuation is excluded during evaluation⁶.

The pretrained models are trained with the suggested hyperparameters in SuPar. The pretrained models achieve 97.25%, 91.91% and 94.78% UAS on PTB, CTB and UD Dutch respectively, where RoBERTa [Liu et al., 2019], ELECTRA [Cui et al., 2020] and XLM-RoBERTa [Conneau et al., 2019] are adopted as encoders. No BERT embeddings are adopted for the UD Turkish dataset.

For our ADMM algorithm, we adopt the adaptive scheme of varying penalty parameters ($\tau_{\text{incr}} = \tau_{\text{decr}} = 1.1, \mu = 1$) in Boyd et al. [2011] and the stopping criterion ($\epsilon_{\text{tol}} = 10^{-2}$) for consensus ADMM in Xu et al. [2017]. In FW, the learning rate is set to $\frac{2}{t+2}$. The smoothness weight μ and ambiguity radius $\lambda = 2\varepsilon$ are tuned using a logarithmic scale on $[10^{-7}, 1]$. The batch size for the game-theoretic algorithm is 10. The batch size for *Stochastic* is 200. The error tolerance in *Game* is set to 10^{-2} . In stochastic gradient training, we use Adam with $lr = 10^{-2}, \beta_1 = 0.9$,

⁶A token is a punctuation if its gold POS tag is space, semi-colon, comma or period for English and PU for Chinese.

 $\beta_2 = 0.999$, $\epsilon = 10^{-8}$. In our experiments, for efficiency, we again adopt the FW algorithm for the outer maximization in *Marginal*.

Complete main experimental results including all the metrics are shown in Table 2.

D Extension Details

For the dependency tree polytope, recall that the dual problem of projection onto $\mathcal{U}'_r := \{ x : x \in \mathcal{U}_r \land \sum_{a \in \delta^+(r)} x_a = 1 \}$ is

$$\max_{\boldsymbol{\alpha},\beta} \sum_{a \in \mathcal{E}} h_a(\boldsymbol{\alpha},\beta) - \sum_{j \neq r} \alpha_j - \beta \quad \text{s.t.} \ h_a(\boldsymbol{\alpha},\beta) = \begin{cases} w_a^2 & \gamma_a > 2w_a, \\ w_a \gamma_a - \gamma_a^2/4 & \gamma_a \le 2w_a, \end{cases}$$

where $\gamma_{(i,j,l)} := \alpha_j + \mathbb{1}(i = r)\beta$. Following Zhang et al. [2010] similarly, we sort $2w_{(i,j,l)}$ for each jand compute the optimal α_j^* with $\beta = 0$. Let the sorted w's be $(w_1^{(j)}, \ldots, w_n^{(j)})$ for each j. We blend create a set $\{w_x^{(j)} - \alpha_j^*\}$ for all j and x. Let the sorted sequence be $-\infty = t_1 < t_2 < \cdots < t_{n_t} = \infty$. The derivative with respect to β is piecewise-linear in each interval $[t_k, t_{k+1}]$. Since the objective is concave in β , we can iterate over all the intervals or find the optimal β^* with binary search.

For higher-order tree local polytopes, the central problem is the projection onto

$$\mathcal{U}_s := \{ \boldsymbol{x} \in \mathbb{R}_{\geq 0}^{|\mathcal{R}|} : x_s \leq x_a \quad \forall a \in s \}.$$

The only variables of interest are x_a and x_s , given x_s , the optimal x_a is simply $x_a^* = \max(w_a, x_s)$. We can sort $(w_a, w_s)_{a \in s}$ and enumerate the range x_s takes over this set.

E Wong's Arborescence Polytope

We introduce another extended formulation of the arborescence polytope based on a multi-commodity flow representation [Wong, 1980, Martins, 2012, Friesen, 2019] as follows, which may be of independent interest:

$$\sum_{a \in \delta^{-}(j)} x_a = \mathbb{1}(j \neq r) \quad \forall j \in \mathcal{V}$$
(11)

$$\sum_{a\in\delta^{-}(j)} f_a^k - \sum_{a\in\delta^{+}(j)} f_a^k = \mathbb{1}(j=k) - \mathbb{1}(j=r) \quad \forall k\in\mathcal{V}\setminus\{r\}, j\in\mathcal{V}$$
(12)

$$0 \le f_a^k \le x_a \quad \forall a \in \mathcal{E}, k \in \mathcal{V} \setminus \{r\}.$$
(13)

Thus we have the arborescence polytope:

$$\mathcal{A}_{\rm mc} = \{ \boldsymbol{x} \in \mathbb{R}^{|\mathcal{E}|} | \exists \boldsymbol{f} : (\boldsymbol{x}, \boldsymbol{f}) \text{ satisfy equations } (11) - (13) \}.$$

According to Martins [2012], Friesen [2019], $\mathcal{A}_{mc} \triangleq \mathcal{A}_{arb}$ instead of an outer polytope of \mathcal{A}_{arb} . We are interested in the following quadratic programming problem with linear inequality constraints: $\min_{\boldsymbol{x} \in \mathcal{A}_{mc}} \|\boldsymbol{x} - \boldsymbol{w}\|_{2}^{2}.$

We can reformulate the problem as

$$\begin{split} \min_{\boldsymbol{x},\boldsymbol{u}} g(\boldsymbol{x},\boldsymbol{u}) &:= \frac{1}{2} \|\boldsymbol{x} - \boldsymbol{w}\|_{2}^{2} + \frac{1}{2} \|\boldsymbol{u} - \boldsymbol{w}\|_{2}^{2} + I_{\mathcal{X}}(\boldsymbol{x}) + I_{\mathcal{U}}(\boldsymbol{u}) \\ \text{s.t.} \quad \boldsymbol{x} = \boldsymbol{u} \\ \mathcal{X} &:= \{ \boldsymbol{x} : \sum_{a \in \delta^{-}(j)} x_{a} = \mathbbm{1}(j \neq r) \forall j \in \mathcal{V} \land x_{a} \geq 0 \forall a \in \mathcal{E} \} \\ \mathcal{U} &:= \{ \boldsymbol{u} : \exists \boldsymbol{f} \sum_{a \in \delta^{-}(j)} f_{a}^{k} - \sum_{a \in \delta^{+}(j)} f_{a}^{k} = \mathbbm{1}(j = k) - \mathbbm{1}(j = r) \quad \forall k \in \mathcal{V} \setminus \{r\}, j \in \mathcal{V} \\ 0 \leq f_{a}^{k} \leq u_{a} \quad \forall k \in \mathcal{V} \setminus \{r\}, a \in \mathcal{E} \}. \end{split}$$

Table 2: Comparison of mean UAS, LAS, UCM and LCM under different training set sizes. Statistically significant differences compared to BiAF are marked with \dagger (paired t-test, p < 0.05). We highlight in bold the best results among the four methods.

Dataset	# train	Metric	BiAF	Marginal	Stochastic	Game
РТВ		UAS	93.48 ± 2.30	$94.51 \pm 1.71^{\dagger}$	$94.62 \pm 1.60^{+}_{-0.14}$	$94.51 \pm 1.75^{\circ}$
	10	LAS UCM	$92.02 \pm 2.26 \\ 47.17 \pm 10.28$	$93.04 \pm 1.69^{\dagger}$ $52.30 \pm 8.71^{\dagger}$	$93.14 \pm 1.58 _{ m \dagger} \\ 52.62 \pm 8.18 _{ m \dagger}$	93.04 ± 1.73^{-5} 52.50 ± 8.60^{-5}
		LCM	39.73 ± 7.96	$43.63 \pm 6.71^{\dagger}$	$43.97 \pm 6.39^{\dagger}$	$43.86 \pm 6.58^{\circ}$
	50	UAS	96.87 ± 0.06	$96.81 \pm 0.05 \dagger$	96.81 ± 0.05	96.86 ± 0.05
		LAS	95.34 ± 0.06	$95.28\pm0.05\dagger$	95.28 ± 0.05	95.33 ± 0.05
		UCM	67.65 ± 0.81	67.38 ± 0.62	67.18 ± 0.79	67.73 ± 0.64
		LCM	55.46 ± 0.59	$54.93 \pm 0.56^{\dagger}$	$54.79 \pm 0.59^{\dagger}$	55.17 ± 0.49
	100	UAS LAS	$96.95 \pm 0.05 \\ 95.42 \pm 0.05$	96.92 ± 0.06 95.39 ± 0.06	$96.93 \pm 0.05 \\ 95.40 \pm 0.04$	96.92 ± 0.03 95.39 ± 0.02
		UCM	68.79 ± 0.42	68.27 ± 0.72	68.36 ± 0.41	68.29 ± 0.34
		LCM	56.21 ± 0.14	55.68 ± 0.56	55.67 ± 0.45	55.66 ± 0.33
	1000	UAS	97.16 ± 0.02	97.12 ± 0.03	97.14 ± 0.02	97.08 ± 0.03^{-1}
		LAS	95.63 ± 0.03	95.59 ± 0.02	95.60 ± 0.02	95.55 ± 0.03
		UCM LCM	$\begin{array}{c} 70.99 \pm 0.23 \\ 57.57 \pm 0.09 \end{array}$	$70.59 \pm 0.49 \\ 57.18 \pm 0.28^{\dagger}$	$70.61 \pm 0.32 \\ 57.24 \pm 0.28 \dagger$	69.94 ± 0.34 56.80 ± 0.23
СТВ	10			,		
		UAS LAS	88.45 ± 0.67 84.79 ± 0.62	$89.19 \pm 0.38 \dagger \\ 85.50 \pm 0.35 \dagger$	$89.27 \pm 0.33^{\dagger} \ 85.58 \pm 0.30^{\dagger}$	89.22 ± 0.39^{-6} 85.53 ± 0.36^{-6}
		UCM	35.21 ± 1.67	36.83 ± 1.20	$37.14\pm0.94^{\circ}$	$36.95 \pm 1.23^{\circ}$
		LCM	25.86 ± 0.87	26.82 ± 0.62	$26.95\pm0.59^\dagger$	$26.95 \pm 0.63^{\circ}$
		UAS	90.89 ± 0.10	$91.03 \pm 0.05 \dagger$	$91.03 \pm 0.05 \dagger$	91.06 ± 0.05
	50	LAS	87.08 ± 0.10 42.54 ± 0.24	$87.20 \pm 0.05^{\dagger}_{$	$87.20 \pm 0.05^{\dagger}_{12}$	87.23 ± 0.06
		UCM LCM	42.54 ± 0.24 29.70 ± 0.23	$42.92 \pm 0.24 \dagger 29.69 \pm 0.36$	$42.86 \pm 0.12 \dagger 29.72 \pm 0.38$	$42.99 \pm 0.30 \\ 29.79 \pm 0.23$
	100	UAS	91.15 ± 0.16	91.27 ± 0.08	91.27 ± 0.10	91.22 ± 0.05
		LAS	87.32 ± 0.14	87.42 ± 0.06	87.42 ± 0.08	87.37 ± 0.05
		UCM	43.41 ± 0.35	$43.91\pm0.27\dagger$	$43.86 \pm 0.43^{\dagger}$	43.81 ± 0.22
		LCM	30.02 ± 0.22	30.27 ± 0.25	30.23 ± 0.28	30.26 ± 0.26
	1000	UAS	91.70 ± 0.04	91.67 ± 0.03	91.66 ± 0.03	$91.57 \pm 0.03^{\circ}$
		LAS UCM	$\begin{array}{c} 87.84 \pm 0.04 \\ 45.80 \pm 0.27 \end{array}$	$87.80 \pm 0.03 \\ 45.43 \pm 0.11^{\dagger}$	$87.79 \pm 0.03 \\ 45.41 \pm 0.12 \dagger$	$87.70 \pm 0.03^{\circ}$ $45.36 \pm 0.27^{\circ}$
		LCM	31.14 ± 0.19	31.11 ± 0.18	31.08 ± 0.17	31.20 ± 0.11
UD Dutch	10	UAS	90.86 ± 1.23	$92.41 \pm 0.94^{\dagger}$	$92.40 \pm 0.91 \dagger$	$92.32 \pm 1.03^{\circ}$
		LAS	86.54 ± 1.26	$88.10\pm0.95^{\dagger}$	$88.08\pm0.91\dagger$	87.99 ± 1.00
		UCM LCM	64.11 ± 2.18 48.33 ± 1.88	$67.26 \pm 2.16 \dagger \\ 50.32 \pm 1.75 \dagger$	$67.21 \pm 1.91 \dagger \\ 50.48 \pm 1.45 \dagger$	67.26 ± 1.97 50.46 ± 1.30
		UAS	93.80 ± 0.43	$94.22 \pm 0.26^{\dagger}$	$94.23 \pm 0.18^{\dagger}$	94.34 ± 0.24
		LAS	89.36 ± 0.33	$89.79 \pm 0.20^{\circ}$	$89.79 \pm 0.12^{\dagger}$	89.89 ± 0.18
	50	UCM	70.57 ± 1.52	$72.42 \pm 0.90 \dagger$	72.05 ± 0.99	72.60 ± 1.3
		LCM	52.40 ± 0.61	$53.47\pm0.62\dagger$	53.40 ± 0.59	53.58 ± 0.7
	100	UAS	94.15 ± 0.18	$94.50\pm0.18\dagger$	94.47 ± 0.13	94.59 ± 0.12
		LAS	89.69 ± 0.18	$90.04 \pm 0.15^{\dagger}$	90.01 ± 0.12 72.01 ± 0.00	90.12 ± 0.10
		UCM LCM	$71.71 \pm 0.92 \\ 53.01 \pm 0.81$	$73.24 \pm 0.88 \dagger \\ 53.79 \pm 0.40$	$\begin{array}{c} 73.01 \pm 0.99 \\ 53.70 \pm 0.55 \end{array}$	$73.63 \pm 0.75 \\54.13 \pm 0.44$
			94.98 ± 0.07	$95.15 \pm 0.10^{\dagger}$	$95.14 \pm 0.11^{\dagger}$	95.01 ± 0.05
	1000					00.01 ± 0.00
	1000	UAS LAS	94.93 ± 0.07 90.44 ± 0.06	$90.59 \pm 0.08^{\dagger}$		90.44 ± 0.06
	1000	LAS UCM	$\begin{array}{c} 90.44 \pm 0.06 \\ 74.73 \pm 0.33 \end{array}$	$\begin{array}{c} 90.59 \pm 0.08 \dagger \\ 75.87 \pm 0.63 \dagger \end{array}$	$\begin{array}{c} 90.59 \pm 0.08 \dagger \\ 75.64 \pm 0.57 \dagger \end{array}$	75.41 ± 0.56
	1000	LAS	90.44 ± 0.06	$90.59\pm0.08^{\dagger}$	$\begin{array}{c} 90.59 \pm 0.08 \dagger \\ 75.64 \pm 0.57 \dagger \\ 55.16 \pm 0.21 \dagger \end{array}$	75.41 ± 0.56
	1000	LAS UCM LCM UAS	$\begin{array}{c} 90.44 \pm 0.06 \\ 74.73 \pm 0.33 \\ 54.59 \pm 0.13 \end{array}$ $\begin{array}{c} 17.64 \pm 2.45 \end{array}$	$\begin{array}{c} 90.59 \pm 0.08 \dagger \\ 75.87 \pm 0.63 \dagger \\ 55.21 \pm 0.17 \dagger \\ \hline 24.85 \pm 2.35 \dagger \end{array}$	$\begin{array}{c} 90.59 \pm 0.08 \dagger \\ 75.64 \pm 0.57 \dagger \\ 55.16 \pm 0.21 \dagger \end{array}$ $\begin{array}{c} \mathbf{25.06 \pm 0.58} \dagger \end{array}$	$75.41 \pm 0.56 \\ 54.70 \pm 0.22 \\ 19.85 \pm 0.46$
	1000	LAS UCM LCM UAS LAS	$\begin{array}{c} 90.44 \pm 0.06 \\ 74.73 \pm 0.33 \\ 54.59 \pm 0.13 \end{array}$ $\begin{array}{c} 17.64 \pm 2.45 \\ 4.86 \pm 2.74 \end{array}$	$\begin{array}{c} 90.59 \pm 0.08 \\ 75.87 \pm 0.63 \\ 55.21 \pm 0.17 \\ 24.85 \pm 2.35 \\ 5.33 \pm 2.97 \end{array}$	$\begin{array}{c} 90.59 \pm 0.08 \dagger \\ 75.64 \pm 0.57 \dagger \\ 55.16 \pm 0.21 \dagger \end{array}$ $\begin{array}{c} \mathbf{25.06 \pm 0.58} \dagger \\ \mathbf{5.40 \pm 2.85} \end{array}$	$75.41 \pm 0.56 \\ 54.70 \pm 0.22 \\ 19.85 \pm 0.46 \\ 5.02 \pm 3.04 \\ \end{cases}$
		LAS UCM LCM UAS	$\begin{array}{c} 90.44 \pm 0.06 \\ 74.73 \pm 0.33 \\ 54.59 \pm 0.13 \end{array}$ $\begin{array}{c} 17.64 \pm 2.45 \end{array}$	$\begin{array}{c} 90.59 \pm 0.08 \dagger \\ 75.87 \pm 0.63 \dagger \\ 55.21 \pm 0.17 \dagger \\ \hline 24.85 \pm 2.35 \dagger \end{array}$	$\begin{array}{c} 90.59 \pm 0.08 \dagger \\ 75.64 \pm 0.57 \dagger \\ 55.16 \pm 0.21 \dagger \end{array}$ $\begin{array}{c} \mathbf{25.06 \pm 0.58} \dagger \end{array}$	75.41 ± 0.56 54.70 ± 0.22 19.85 ± 0.46 5.02 ± 3.04 10.03 ± 0.5
		LAS UCM LCM UAS LAS UCM LCM	$\begin{array}{c} 90.44\pm 0.06\\ 74.73\pm 0.33\\ 54.59\pm 0.13\\ \hline 17.64\pm 2.45\\ 4.86\pm 2.74\\ 7.69\pm 1.72\\ \end{array}$	$\begin{array}{c} 90.59 \pm 0.08^{\dagger} \\ 75.87 \pm 0.63^{\dagger} \\ 55.21 \pm 0.17^{\dagger} \\ 24.85 \pm 2.35^{\dagger} \\ 5.33 \pm 2.97 \\ 9.03 \pm 1.33 \end{array}$	$\begin{array}{c} 90.59 \pm 0.08^{\dagger} \\ 75.64 \pm 0.57^{\dagger} \\ 55.16 \pm 0.21^{\dagger} \end{array}$ $\begin{array}{c} \textbf{25.06 \pm 0.58^{\dagger}} \\ \textbf{5.40 \pm 2.85} \\ 7.88 \pm 2.27 \end{array}$	$\begin{array}{c} 75.41 \pm 0.56\\ 54.70 \pm 0.22\\ \hline 19.85 \pm 0.46\\ 5.02 \pm 3.04\\ \textbf{10.03 \pm 0.5}\\ \textbf{1.74 \pm 1.38} \end{array}$
	10	LAS UCM LCM UAS LAS UCM LCM UAS LAS	$\begin{array}{c} 90.44\pm 0.06\\ 74.73\pm 0.33\\ 54.59\pm 0.13\\ \hline\\ 17.64\pm 2.45\\ 4.86\pm 2.74\\ 7.69\pm 1.72\\ 1.46\pm 1.03\\ \hline\\ 26.59\pm 2.37\\ 10.14\pm 0.57\\ \hline\end{array}$	$\begin{array}{c} 90.59 \pm 0.08^{\dagger} \\ 75.87 \pm 0.63^{\dagger} \\ 55.21 \pm 0.17^{\dagger} \\ 24.85 \pm 2.35^{\dagger} \\ 5.33 \pm 2.97 \\ 9.03 \pm 1.33 \\ 1.50 \pm 1.07 \\ 32.83 \pm 1.50^{\dagger} \\ 10.73 \pm 0.86 \end{array}$	$\begin{array}{c} 90.59\pm 0.08^{\dagger}\\ 75.64\pm 0.57^{\dagger}\\ 55.16\pm 0.21^{\dagger}\\ \hline \mathbf{25.06\pm 0.58^{\dagger}}\\ \mathbf{5.40\pm 2.85}\\ 7.88\pm 2.27\\ 1.50\pm 1.07\\ \hline \mathbf{31.35\pm 1.10^{\dagger}}\\ \mathbf{10.74\pm 0.54}\\ \end{array}$	$\begin{array}{c} 75.41 \pm 0.56\\ 54.70 \pm 0.22\\ \hline 19.85 \pm 0.46\\ 5.02 \pm 3.04\\ 10.03 \pm 0.5\\ 1.74 \pm 1.38\\ \hline 23.18 \pm 2.03\\ 10.10 \pm 0.69\end{array}$
(ID T. 1:1		LAS UCM LCM UAS LAS UCM LCM UAS LAS UCM	$\begin{array}{c} 90.44\pm 0.06\\ 74.73\pm 0.33\\ 54.59\pm 0.13\\ \hline 17.64\pm 2.45\\ 4.86\pm 2.74\\ 7.69\pm 1.72\\ 1.46\pm 1.03\\ \hline 26.59\pm 2.37\\ 10.14\pm 0.57\\ 10.03\pm 1.31\\ \hline \end{array}$	$\begin{array}{c} \mathbf{90.59 \pm 0.08^{\dagger}}\\ \mathbf{75.87 \pm 0.63^{\dagger}}\\ \mathbf{55.21 \pm 0.17^{\dagger}}\\ \mathbf{24.85 \pm 2.35^{\dagger}}\\ \mathbf{5.33 \pm 2.97}\\ \mathbf{9.03 \pm 1.33}\\ \mathbf{1.50 \pm 1.07}\\ \mathbf{32.83 \pm 1.50^{\dagger}}\\ \mathbf{10.73 \pm 0.86}\\ \mathbf{10.63 \pm 0.50} \end{array}$	$\begin{array}{c} 90.59\pm0.08^{\dagger}\\ 75.64\pm0.57^{\dagger}\\ 55.16\pm0.21^{\dagger}\\ \hline \\ \textbf{25.06}\pm\textbf{0.58}^{\dagger}\\ \textbf{5.40}\pm\textbf{2.85}\\ 7.88\pm2.27\\ 1.50\pm1.07\\ \hline \\ \textbf{31.35}\pm1.10^{\dagger}\\ \textbf{10.74}\pm\textbf{0.54}\\ \textbf{10.81}\pm\textbf{0.50}\\ \hline \end{array}$	$\begin{array}{c} 75.41 \pm 0.56\\ 54.70 \pm 0.22\\ \hline 19.85 \pm 0.46\\ 5.02 \pm 3.04\\ 10.03 \pm 0.5\\ 1.74 \pm 1.38\\ \hline 23.18 \pm 2.03\\ 10.10 \pm 0.69\\ 10.34 \pm 0.36\\ \end{array}$
UD Turkish	10	LAS UCM LCM UAS LAS UCM LCM UAS LAS UCM LCM	$\begin{array}{c} 90.44\pm 0.06\\ 74.73\pm 0.33\\ 54.59\pm 0.13\\ \hline\\ 17.64\pm 2.45\\ 4.86\pm 2.74\\ 7.69\pm 1.72\\ 1.46\pm 1.03\\ \hline\\ 26.59\pm 2.37\\ 10.14\pm 0.57\\ 10.03\pm 1.31\\ 3.24\pm 0.31\\ \hline\end{array}$	$\begin{array}{c} \textbf{90.59} \pm \textbf{0.08}^{\dagger} \\ \textbf{75.87} \pm \textbf{0.63}^{\dagger} \\ \textbf{55.21} \pm \textbf{0.17}^{\dagger} \\ 24.85 \pm 2.35^{\dagger} \\ 5.33 \pm 2.97 \\ \textbf{9.03} \pm 1.33 \\ 1.50 \pm 1.07 \\ \textbf{32.83} \pm \textbf{1.50}^{\dagger} \\ 10.73 \pm 0.86 \\ 10.63 \pm 0.50 \\ 3.26 \pm 0.24 \\ \end{array}$	$\begin{array}{c} 90.59\pm 0.08^{\dagger}\\ 75.64\pm 0.57^{\dagger}\\ 55.16\pm 0.21^{\dagger}\\ \hline 25.06\pm 0.58^{\dagger}\\ 5.40\pm 2.85\\ 7.88\pm 2.27\\ 1.50\pm 1.07\\ \hline 31.35\pm 1.10^{\dagger}\\ 10.74\pm 0.54\\ 10.81\pm 0.50\\ 3.38\pm 0.27\\ \end{array}$	$\begin{array}{c} 75.41 \pm 0.56\\ 54.70 \pm 0.22\\ \hline 19.85 \pm 0.46\\ 5.02 \pm 3.04\\ 10.03 \pm 0.5\\ 1.74 \pm 1.38\\ \hline 23.18 \pm 2.03\\ 10.10 \pm 0.66\\ 10.34 \pm 0.36\\ \hline 3.43 \pm 0.27\\ \end{array}$
UD Turkish	10 50	LAS UCM LCM UAS LAS UCM LCM UAS LAS UCM LCM UAS	$\begin{array}{c} 90.44\pm 0.06\\ 74.73\pm 0.33\\ 54.59\pm 0.13\\ \hline 17.64\pm 2.45\\ 4.86\pm 2.74\\ 7.69\pm 1.72\\ 1.46\pm 1.03\\ \hline 26.59\pm 2.37\\ 10.14\pm 0.57\\ 10.03\pm 1.31\\ 3.24\pm 0.31\\ \hline 30.75\pm 1.13\\ \end{array}$	$\begin{array}{c} \textbf{90.59} \pm \textbf{0.08}^{\dagger} \\ \textbf{75.87} \pm \textbf{0.63}^{\dagger} \\ \textbf{55.21} \pm \textbf{0.17}^{\dagger} \\ \hline \textbf{24.85} \pm \textbf{2.35}^{\dagger} \\ \textbf{5.33} \pm \textbf{2.97} \\ \textbf{9.03} \pm \textbf{1.33} \\ \textbf{1.50} \pm \textbf{1.07} \\ \hline \textbf{32.83} \pm \textbf{1.50}^{\dagger} \\ \textbf{10.73} \pm \textbf{0.86} \\ \textbf{10.63} \pm \textbf{0.50} \\ \textbf{3.26} \pm \textbf{0.24} \\ \hline \textbf{33.75} \pm \textbf{0.86}^{\dagger} \\ \end{array}$	$\begin{array}{c} 90.59\pm 0.08^{\dagger}\\ 75.64\pm 0.57^{\dagger}\\ 55.16\pm 0.21^{\dagger}\\ \hline \\ \textbf{25.06}\pm \textbf{0.58}^{\dagger}\\ \textbf{5.40}\pm \textbf{2.85}\\ 7.88\pm 2.27\\ 1.50\pm 1.07\\ \hline \\ \textbf{31.35}\pm 1.10^{\dagger}\\ \textbf{10.74}\pm \textbf{0.54}\\ \textbf{10.81}\pm \textbf{0.50}\\ \hline \\ \textbf{3.38}\pm 0.27\\ \hline \\ \textbf{33.62}\pm 1.49^{\dagger}\\ \hline \end{array}$	$\begin{array}{c} 75.41 \pm 0.56\\ 54.70 \pm 0.22\\ \hline 19.85 \pm 0.46\\ 5.02 \pm 3.04\\ 10.03 \pm 0.5\\ 1.74 \pm 1.38\\ \hline 23.18 \pm 2.03\\ 10.10 \pm 0.69\\ 10.34 \pm 0.36\\ \hline 3.43 \pm 0.27\\ \hline 27.12 \pm 1.25\\ \end{array}$
UD Turkish	10	LAS UCM LCM UAS LAS UCM LCM UAS LAS UCM LCM	$\begin{array}{c} 90.44\pm 0.06\\ 74.73\pm 0.33\\ 54.59\pm 0.13\\ \hline\\ 17.64\pm 2.45\\ 4.86\pm 2.74\\ 7.69\pm 1.72\\ 1.46\pm 1.03\\ \hline\\ 26.59\pm 2.37\\ 10.14\pm 0.57\\ 10.03\pm 1.31\\ 3.24\pm 0.31\\ \hline\end{array}$	$\begin{array}{c} \textbf{90.59} \pm \textbf{0.08}^{\dagger} \\ \textbf{75.87} \pm \textbf{0.63}^{\dagger} \\ \textbf{55.21} \pm \textbf{0.17}^{\dagger} \\ 24.85 \pm 2.35^{\dagger} \\ 5.33 \pm 2.97 \\ \textbf{9.03} \pm 1.33 \\ 1.50 \pm 1.07 \\ \textbf{32.83} \pm \textbf{1.50}^{\dagger} \\ 10.73 \pm 0.86 \\ 10.63 \pm 0.50 \\ 3.26 \pm 0.24 \\ \end{array}$	$\begin{array}{c} 90.59\pm 0.08^{\dagger}\\ 75.64\pm 0.57^{\dagger}\\ 55.16\pm 0.21^{\dagger}\\ \hline 25.06\pm 0.58^{\dagger}\\ 5.40\pm 2.85\\ 7.88\pm 2.27\\ 1.50\pm 1.07\\ \hline 31.35\pm 1.10^{\dagger}\\ 10.74\pm 0.54\\ 10.81\pm 0.50\\ 3.38\pm 0.27\\ \end{array}$	$\begin{array}{c} 75.41 \pm 0.56\\ 54.70 \pm 0.22\\ 19.85 \pm 0.46\\ 5.02 \pm 3.04\\ 10.03 \pm 0.5\\ 1.74 \pm 1.38\\ 23.18 \pm 2.03\\ 10.10 \pm 0.66\\ 10.34 \pm 0.36\\ 3.43 \pm 0.27\\ 27.12 \pm 1.25\\ 10.48 \pm 0.70\\ \end{array}$
UD Turkish	10 50	LAS UCM LCM UAS LAS UCM LCM UAS LAS UCM LCM UAS LAS	$\begin{array}{c} 90.44\pm 0.06\\ 74.73\pm 0.33\\ 54.59\pm 0.13\\ \hline\\ 17.64\pm 2.45\\ 4.86\pm 2.74\\ 7.69\pm 1.72\\ 1.46\pm 1.03\\ 26.59\pm 2.37\\ 10.14\pm 0.57\\ 10.03\pm 1.31\\ 3.24\pm 0.31\\ \hline\\ 30.75\pm 1.13\\ 10.84\pm 0.80\\ \end{array}$	$\begin{array}{c} \textbf{90.59} \pm \textbf{0.08}^{\dagger} \\ \textbf{75.87} \pm \textbf{0.63}^{\dagger} \\ \textbf{55.21} \pm \textbf{0.17}^{\dagger} \\ \hline 24.85 \pm 2.35^{\dagger} \\ 5.33 \pm 2.97 \\ \textbf{9.03} \pm 1.33 \\ 1.50 \pm 1.07 \\ \textbf{32.83} \pm 1.50^{\dagger} \\ 10.73 \pm \textbf{0.86} \\ 10.63 \pm 0.50 \\ 3.26 \pm 0.24 \\ \hline \textbf{33.75} \pm \textbf{0.86}^{\dagger} \\ 11.48 \pm 0.75 \\ \end{array}$	$\begin{array}{c} 90.59\pm0.08^{\dagger}\\ 75.64\pm0.57^{\dagger}\\ 55.16\pm0.21^{\dagger}\\ \hline \\ \textbf{25.06}\pm\textbf{0.58}^{\dagger}\\ \textbf{5.40}\pm\textbf{2.85}\\ 7.88\pm2.27\\ 1.50\pm1.07\\ \textbf{31.35}\pm1.10^{\dagger}\\ \textbf{10.74}\pm\textbf{0.54}\\ \textbf{10.81}\pm\textbf{0.50}\\ 3.38\pm0.27\\ \hline \\ \textbf{33.62}\pm1.49^{\dagger}\\ \textbf{11.69}\pm\textbf{0.67}^{\dagger}\\ \end{array}$	$\begin{array}{c} 75.41 \pm 0.56\\ 54.70 \pm 0.22\\ 19.85 \pm 0.46\\ 5.02 \pm 3.04\\ 10.03 \pm 0.5\\ 1.74 \pm 1.38\\ 23.18 \pm 2.03\\ 10.10 \pm 0.69\\ 10.34 \pm 0.36\\ 3.43 \pm 0.27\\ 27.12 \pm 1.25\\ 10.48 \pm 0.70\\ \end{array}$
UD Turkish	10 50	LAS UCM LCM UAS LAS UCM LCM UAS LAS UCM UAS LAS UCM	$\begin{array}{c} 90.44\pm 0.06\\ 74.73\pm 0.33\\ 54.59\pm 0.13\\ \hline\\ 17.64\pm 2.45\\ 4.86\pm 2.74\\ 7.69\pm 1.72\\ 1.46\pm 1.03\\ \hline\\ 26.59\pm 2.37\\ 10.14\pm 0.57\\ 10.03\pm 1.31\\ 3.24\pm 0.31\\ \hline\\ 30.75\pm 1.13\\ 10.84\pm 0.80\\ \hline\\ \mathbf{11.61\pm 1.22}\\ \end{array}$	$\begin{array}{c} 90.59 \pm 0.08^{\dagger}\\ 75.87 \pm 0.63^{\dagger}\\ 55.21 \pm 0.17^{\dagger}\\ 24.85 \pm 2.35^{\dagger}\\ 5.33 \pm 2.97\\ 9.03 \pm 1.33\\ 1.50 \pm 1.07\\ \textbf{32.83 \pm 1.50^{\dagger}}\\ 10.73 \pm 0.86\\ 10.63 \pm 0.50\\ 3.26 \pm 0.24\\ \textbf{33.75 \pm 0.86^{\dagger}}\\ 11.48 \pm 0.75\\ 11.30 \pm 0.29\\ \textbf{3.61 \pm 0.31}\\ \textbf{43.18 \pm 1.73}\\ \end{array}$	$\begin{array}{c} 90.59\pm0.08^{\dagger}\\ 75.64\pm0.57^{\dagger}\\ 55.16\pm0.21^{\dagger}\\ \hline \\ \textbf{25.06}\pm\textbf{0.58}^{\dagger}\\ \textbf{5.40}\pm\textbf{2.85}\\ 7.88\pm2.27\\ 1.50\pm1.07\\ \hline \\ \textbf{31.35}\pm1.10^{\dagger}\\ \textbf{10.74}\pm\textbf{0.50}\\ \textbf{3.38}\pm0.27\\ \hline \\ \textbf{33.62}\pm1.49^{\dagger}\\ \textbf{11.69}\pm\textbf{0.67}^{\dagger}\\ \textbf{11.34}\pm0.26\\ \end{array}$	$\begin{array}{c} \textbf{10.03}\pm\textbf{0.5}\\ \textbf{1.74}\pm\textbf{1.38}\\ \textbf{23.18}\pm2.03\\ \textbf{10.10}\pm0.69\\ \textbf{10.34}\pm0.36\\ \textbf{3.43}\pm\textbf{0.27}\\ \textbf{27.12}\pm1.25\\ \textbf{10.48}\pm0.70\\ \textbf{11.08}\pm0.44 \end{array}$
UD Turkish	10 50	LAS UCM LCM UAS LAS UCM LCM UAS LAS UCM LCM UAS LAS UCM LCM	$\begin{array}{c} 90.44\pm 0.06\\ 74.73\pm 0.33\\ 54.59\pm 0.13\\ \hline\\ 17.64\pm 2.45\\ 4.86\pm 2.74\\ 7.69\pm 1.72\\ 1.46\pm 1.03\\ 26.59\pm 2.37\\ 10.14\pm 0.57\\ 10.03\pm 1.31\\ 3.24\pm 0.31\\ \hline\\ 30.75\pm 1.13\\ 10.84\pm 0.80\\ \hline\\ 11.61\pm 1.22\\ 3.53\pm 0.60\\ \hline\end{array}$	$\begin{array}{c} \textbf{90.59} \pm \textbf{0.08}^{\dagger} \\ \textbf{75.87} \pm \textbf{0.63}^{\dagger} \\ \textbf{55.21} \pm \textbf{0.17}^{\dagger} \\ \hline \textbf{24.85} \pm \textbf{2.35}^{\dagger} \\ \textbf{5.33} \pm \textbf{2.97} \\ \textbf{9.03} \pm \textbf{1.33} \\ \textbf{1.50} \pm \textbf{1.07} \\ \textbf{32.83} \pm \textbf{1.50}^{\dagger} \\ \textbf{10.73} \pm \textbf{0.86}^{\dagger} \\ \textbf{10.63} \pm \textbf{0.50} \\ \textbf{3.26} \pm \textbf{0.24} \\ \hline \textbf{33.75} \pm \textbf{0.86}^{\dagger} \\ \textbf{11.48} \pm \textbf{0.75} \\ \textbf{11.30} \pm \textbf{0.29} \\ \textbf{3.61} \pm \textbf{0.31} \\ \end{array}$	$\begin{array}{c} 90.59\pm0.08^{\dagger}\\ 75.64\pm0.57^{\dagger}\\ 55.16\pm0.21^{\dagger}\\ \hline \\ \textbf{25.06}\pm\textbf{0.58}^{\dagger}\\ \textbf{5.40}\pm\textbf{2.85}\\ 7.88\pm2.27\\ 1.50\pm1.07\\ \textbf{31.35}\pm1.10^{\dagger}\\ \textbf{10.74}\pm\textbf{0.54}\\ \textbf{10.81}\pm\textbf{0.50}\\ 3.38\pm0.27\\ \hline \\ \textbf{33.62}\pm1.49^{\dagger}\\ \textbf{11.69}\pm\textbf{0.67}^{\dagger}\\ \textbf{11.34}\pm0.26\\ 3.57\pm0.23\\ \end{array}$	$\begin{array}{c} 75.41 \pm 0.56\\ 54.70 \pm 0.22\\ 19.85 \pm 0.46\\ 5.02 \pm 3.04\\ 10.03 \pm 0.5\\ 1.74 \pm 1.38\\ 23.18 \pm 2.03\\ 10.10 \pm 0.69\\ 10.34 \pm 0.36\\ 3.43 \pm 0.27\\ 27.12 \pm 1.25\\ 10.48 \pm 0.70\\ 11.08 \pm 0.44\\ 3.55 \pm 0.23\\ \end{array}$

The scaled augmented Lagrangian function is

$$\begin{split} L_{\rho}(\boldsymbol{x},\boldsymbol{u},\boldsymbol{y}) &= g(\boldsymbol{x},\boldsymbol{u}) + \boldsymbol{\lambda}'^{\intercal}(\boldsymbol{x}-\boldsymbol{u}) + \frac{\rho}{2} \|\boldsymbol{x}-\boldsymbol{u}\|_{2}^{2} \\ &= g(\boldsymbol{x},\boldsymbol{u}) + \frac{\rho}{2} \|\boldsymbol{x}-\boldsymbol{u} + \frac{1}{\rho} \boldsymbol{\lambda}'\|_{2}^{2} - \frac{1}{2\rho} \|\boldsymbol{\lambda}'\|_{2}^{2} \\ &= g(\boldsymbol{x},\boldsymbol{u}) + \frac{\rho}{2} \|\boldsymbol{x}-\boldsymbol{u} + \boldsymbol{\lambda}\|_{2}^{2} - \frac{\rho}{2} \|\boldsymbol{\lambda}\|_{2}^{2}, \end{split}$$
where $\boldsymbol{\lambda} := \frac{1}{\rho} \boldsymbol{\lambda}'.$

The ADMM algorithm updates the parameters as follows:

$$\begin{split} \boldsymbol{x}^{t+1} &:= \arg\min_{\boldsymbol{x}} L_{\rho}(\boldsymbol{x}, \boldsymbol{u}^{t}, \boldsymbol{\lambda}^{t}) \\ &= \arg\min_{\boldsymbol{x}} \frac{1}{2} \|\boldsymbol{x} - \boldsymbol{w}\|_{2}^{2} + I_{\mathcal{X}}(\boldsymbol{x}) + \frac{\rho}{2} \|\boldsymbol{x} - \boldsymbol{u}^{t} + \boldsymbol{\lambda}^{t}\|_{2}^{2} \\ &= \arg\min_{\boldsymbol{x}\in\mathcal{X}} \|\boldsymbol{x} - \frac{1}{\rho+1}(\boldsymbol{w} + \rho\boldsymbol{u}^{t} - \rho\boldsymbol{\lambda}^{t})\|_{2}^{2}, \\ &\triangleq \operatorname{Proj}_{\mathcal{X}} \left(\frac{1}{\rho+1}(\boldsymbol{w} + \rho\boldsymbol{u}^{t} - \rho\boldsymbol{\lambda}^{t})\right) \\ \boldsymbol{u}^{t+1} &:= \arg\min_{\boldsymbol{u}} L_{\rho}(\boldsymbol{x}^{t+1}, \boldsymbol{u}, \boldsymbol{\lambda}^{t}) \\ &= \arg\min_{\boldsymbol{u}} \frac{1}{2} \|\boldsymbol{u} - \boldsymbol{w}\|_{2}^{2} + I_{\mathcal{F}}(\boldsymbol{u}) + \frac{\rho}{2} \|\boldsymbol{x}^{t+1} - \boldsymbol{u} + \boldsymbol{\lambda}^{t}\|_{2}^{2} \\ &= \arg\min_{\boldsymbol{u}\in\mathcal{U}} \|\boldsymbol{u} - \frac{1}{\rho+1}(\boldsymbol{w} + \rho\boldsymbol{x}^{t+1} + \rho\boldsymbol{\lambda}^{t})\|_{2}^{2}, \\ &\triangleq \operatorname{Proj}_{\mathcal{U}} \left(\frac{1}{\rho+1}(\boldsymbol{w} + \rho\boldsymbol{x}^{t+1} + \rho\boldsymbol{\lambda}^{t})\right) \\ \boldsymbol{\lambda}^{t+1} &:= \boldsymbol{\lambda}^{t} + (\boldsymbol{x}^{t+1} - \boldsymbol{u}^{t+1}). \end{split}$$

Projection onto \mathcal{X} is decomposable over each $j \in \mathcal{V}$. And for each j, the optimal value of the group can be computed in $\mathcal{O}(n)$ in almost closed form via Section 5.5.1 in Zhang et al. [2010] or other simplex projection algorithms in $\mathcal{O}(n \log n)$.

Projection onto ${\cal U}$ is a minimum quadratic capacity expansion cost problem for fixed multi-commodity flows:

$$\min_{\boldsymbol{u}\in\mathcal{U}}\|\boldsymbol{u}-\boldsymbol{w}\|_2^2.$$

A partially relaxed problem is

$$\begin{split} \max_{\boldsymbol{\beta}} \min_{\boldsymbol{u},\boldsymbol{f}} & \|\boldsymbol{u} - \boldsymbol{w}\|_{2}^{2} + \sum_{a,k} \beta_{a}^{k} (f_{a}^{k} - u_{a}) \\ \text{s.t.} \quad \sum_{a \in \delta^{-}(j)} f_{a}^{k} - \sum_{a \in \delta^{+}(j)} f_{a}^{k} = \mathbb{I}(j = k) - \mathbb{I}(j = r) \quad \forall k \in \mathcal{V} \setminus \{r\}, j \in \mathcal{V} \\ f_{a}^{k} \geq 0, \beta_{a}^{k} \geq 0 \quad \forall k \in \mathcal{V} \setminus \{r\}, a \in \mathcal{E}. \end{split}$$

Given β , the sub-problem for u is

$$\min_{\boldsymbol{u}} \sum_{a} u_a^2 - 2u_a w_a - \sum_{k} \beta_a^k u_a,$$

with an analytical solution

$$\boldsymbol{u}^* = \boldsymbol{w} + \frac{1}{2}\boldsymbol{\beta}^k.$$

Given β , the sub-problem for f is

$$\begin{split} & \min_{\boldsymbol{f}} \sum_{a,k} \beta_a^k f_a^k \\ \text{s.t.} \quad & \sum_{a \in \delta^-(j)} f_a^k - \sum_{a \in \delta^+(j)} f_a^k = \mathbb{I}(j=k) - \mathbb{I}(j=r) \forall k \in \mathcal{V} \setminus \{r\}, j \in \mathcal{V} \\ & f_a^k \geq 0 \quad \forall k \in \mathcal{V} \setminus \{r\}, a \in \mathcal{E}, \end{split}$$

which is a minimum-cost multi-commodity flow problem.

With u^* and f^* , we can optimize β with sub-gradient ascent.

Alternatively, another partially relaxed problem is

$$\begin{split} \max_{\boldsymbol{\beta}} \min_{\boldsymbol{u},\boldsymbol{f}} & \|\boldsymbol{u} - \boldsymbol{w}\|_{2}^{2} + \sum_{a,k} f_{a}^{k} (\beta_{h(a)}^{k} - \beta_{t(a)}^{k}) + \sum_{k} \beta_{r}^{k} - \beta_{k}^{k} \\ \text{s.t.} \quad & 0 \leq f_{a}^{k} \leq u_{a}, \beta_{a}^{k} \geq 0 \quad \forall k \in \mathcal{V} \setminus \{r\}, a \in \mathcal{E}, \end{split}$$

where h(a) and t(a) are the head and tail of arc *a* respectively.

Given β , the inner minimization problem is decomposed over *a*:

$$\begin{split} \min_{\boldsymbol{u},\boldsymbol{f}} u_a^2 - 2u_a w_a + \sum_k f_a^k (\beta_{h(a)}^k - \beta_{t(a)}^k) \\ \text{s.t.} \quad 0 \le f_a^k \le u_a \quad \forall k \in \mathcal{V} \setminus \{r\}, \end{split}$$

which is a convex continuous knapsack problem for each a.

The above optimization requires sub-gradient methods, which are usually slower than FW ($\mathcal{O}(\frac{1}{\epsilon^2})$).