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ABSTRACT

The video-conditioned policy takes prompt videos of the desired tasks as a condition
and is regarded for its prospective generalizability. Despite its promise, training a
video-conditioned policy is non-trivial due to the need for abundant demonstrations.
In some tasks, the expert rollouts are merely available as videos, and costly and
time-consuming efforts are required to annotate action labels. To address this,
we explore training video-conditioned policy on a mixture of demonstrations and
unlabeled expert videos to reduce reliance on extensive manual annotation. We
introduce the Joint Embedding Predictive Transformer (JEPT) to learn a video-
conditioned policy through sequence modeling. JEPT is designed to jointly learn
visual transition prediction and inverse dynamics. The visual transition is captured
from both demonstrations and expert videos, on the basis of which the inverse
dynamics learned from demonstrations is generalizable to the tasks without action
labels. Experiments on a series of simulated visual control tasks evaluate that
JEPT can effectively leverage the mixture dataset to learn a generalizable policy.
JEPT outperforms baselines in the tasks without action-labeled data and unseen
tasks. We also experimentally reveal the potential of JEPT as a simple visual priors
injection approach to enhance the video-conditioned policy.
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Figure 1: Illustration of the BC and JEPT for visual-conditioned policy learning. Video-conditioned
Behavior Cloning (BC) (right top) directly models the policy from the demonstrations. JEPT (bottom)
decomposes imitation learning into visual transition prediction (solid arrows) and inverse dynamics
learning (dashed arrows). BC is constrained to the action-labeled dataset, whereas JEPT enables
visual transition prediction on unlabeled data and leverages the mixture dataset.
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1 INTRODUCTION

Learning generalizable policies through multi-task imitation learning remains a considerable chal-
lenge. A generalizable policy should adapt seamlessly to novel tasks whose demonstrations are
absent from the training dataset. In response to this, the video-conditioned policy (Jiang et al., 2023;
Bahl et al., 2023; Shah et al., 2023) has garnered attention for its superior potential to generalize
across tasks. A video-conditioned policy takes a prompt video depicting the task as a condition and
executes the desired task in the dynamics encountered. Utilizing a prompt video as a policy condition
exhibits a better potential for generalization compared to other forms of task specifications, such as
instructions or goals given in language (Brohan et al., 2023; Padalkar & et al., 2023; Jiang et al., 2019;
Yenamandra et al., 2023) or image (Bousmalis et al., 2024; Lee et al., 2020; Du et al., 2024; Nair
et al., 2018) formats. The abundant information conveyed in videos offers sufficient policy guidance
for novel tasks, thus circumventing the misleading caused by language ambiguities or the absence of
process depiction in static images (Jain et al., 2024).

Although comprehensive information in prompt videos imbues video-conditioned policy with flex-
ibility and generalization, learning such a policy is more than trivial. Imitating the tasks depicted
in prompt videos requires models capable of both temporal reasoning to understand the task and
fine-grained control to replicate it. To this end, previous methods (Shah et al., 2023; Jain et al., 2024)
typically conduct behavior cloning on large datasets of paired prompt videos and expert demonstra-
tions. However, procuring expert demonstrations can be prohibitively costly and time-consuming. In
the tasks where expert policies are hard to obtain, we can acquire the videos of the expert rollouts
through human intervention, but these videos are devoid of action labels. Conducting behavior
cloning in this scenario requires additional efforts to annotate the action labels. This raises the
question: Can these expert videos1 be effectively harnessed without additional annotation, thus allevi-
ating the data collection burden? Accordingly, we explore the possibility of training a generalizable
video-conditioned policy on a dataset containing both expert demonstrations and unlabeled expert
videos paired with prompt videos.

Unlike methods that directly imitate expert demonstrations, behavior cloning is infeasible on the
mixture dataset due to the absence of the action labels from the data samples with expert videos.
Intuitively, we decompose the behavior cloning into two synergistic subtasks to fully exploit the
mixture dataset of expert demonstrations and expert videos. Specifically, the process of video-
conditioned imitation can be broken down into visual transition prediction and inverse dynamics
learning. In the visual transition prediction, the model learns how the prompt videos should manifest
in the dynamics of the tasks. In inverse dynamics learning, the model infers the actions required
to realize the visual transition. By combining them, the model can learn to predict plausible future
observations and then convert them into actions, enabling video-conditioned imitation.

This design potentially suits the setting of mixture dataset. On the one hand, visual transition
prediction is more task-specific in visual imitation learning task and can be more sufficiently learned
from both expert videos and demonstrations. On the other hand, although the inverse dynamics is
merely embedded in the demonstrations, it remains universally applicable across tasks. Consequently,
the expert videos could enhance the learning of visual transitions, while the inverse dynamics derived
from the demonstrations could generalize to guide the execution of the tasks without action labels.

In light of these insights, we propose the Joint Embedding Predictive Transformer (JEPT) to encap-
sulate both visual transition and inverse dynamics for video-conditioned policy learning. Building on
the framework of Decision Transformers (Chen et al., 2021; Lee et al., 2022; Furuta et al., 2022), we
employ a video-conditioned Transformer-based architecture to perform sequence modeling, serving
as the policy. As shown in Figure 1, we modify the typical behavior cloning sequence into a two-step
process. First, JEPT predicts the embeddings of the next observations, thus capturing visual transition.
Then, conditioned on these predicted embeddings, JEPT predicts the corresponding actions, thereby
learning inverse dynamics. Additionally, we integrate the Joint Embedding Predictive Architecture
(JEPA) (LeCun, 2022) into the video-conditioned Transformer. Prior works (Assran et al., 2023;
Bardes et al., 2024) have demonstrated that JEPA is an effective visual representation learning ap-
proach, compressing visual inputs into predictive features. By incorporating JEPA, we aim to learn

1For simplicity and distinction, we use ‘prompt videos’ referring to videos depicting the desired task and
used as the policy condition, while ‘expert videos’ for the visual observation sequence of the expert rollouts.
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predictive visual representations of future observations, thereby improving the transfer of inverse
dynamics between action-labeled and unlabeled data.

To evaluate the effectiveness of JEPT, we conduct experiments on Meta-World (Yu et al., 2020a) and
Robosuite (Zhu et al., 2020). In our Meta-World experiments, JEPT outperforms all the baselines
regarding the average success rates of the tasks within the dataset and the unseen tasks. In the
Robosuite experiments, we further validate the effectiveness of JEPT in handling tasks where there
is a larger discrepancy between prompt videos and task dynamics. Additionally, we explore the
potential of JEPT in injecting visual priors via adjusting the inputs of the joint embedding encoder.
Our experiments on Meta-World reveal that the optical flow priors can effectively improve the
performance. These results demonstrate the effectiveness of JEPT in jointly leveraging the mixture
dataset of expert demonstrations and expert videos to train a generalizable video-conditioned policy.

In summary, our contributions are as follows:
• We propose a novel paradigm, JEPT, to learn video-conditioned policies using the dataset

containing a mixture of expert videos and demonstrations.
• We design JEPT as a joint embedding predictive architecture to learn an abstract visual

representation for learning a generalizable video-conditioned policy.
• We explore the JEPT as an approach of visual priors injection and experimentally find that

JEPT can effectively leverage visual prior knowledge and achieve better performance.

2 RELATED WORKS

Video Prompt Policy Learning. As a densely informative data form, video inherently contains
abundant information for task completion when used as a task description. The detailed guidance of
the task completion process in the video makes it possible to learn the policy generalizable to novel
tasks beyond the training dataset. Some works (Finn et al., 2017; Duan et al., 2017; Yu et al., 2018)
employ meta-learning methods to adapt the policy to novel tasks depicted by prompt video, which
requires the similarity between the tasks. More recent works focus on learning policy via behavior
cloning on datasets of paired prompt videos and expert demonstrations. These works take the prompt
videos as a condition input to the policy network and generalize to unseen tasks with corresponding
prompt videos. Various auxiliary mechanisms have been explored to achieve generalizable imitation,
such as inverse dynamics prediction (Dasari & Gupta, 2021), cross-painiting (Chen et al., 2024), skill
decomposition (Shin et al., 2024; 2023), hierarchical policy learning (Jain et al., 2023), text-aligned
representation (Jang et al., 2022), contrastive video encoder (Chane-Sane et al., 2023) and observation-
attentive representation (Jain et al., 2024). Some works (Sivakumar et al., 2022) design object-centric
decomposition for some specific manipulation tasks and achieve generalization within the same
task category. The core of these methods remains direct behavior cloning, necessitating access to
action-labeled demonstration data. Recent works (Jain et al., 2024; Shah et al., 2023; Jiang et al.,
2023) construct large-scale datasets for video-conditioned policy learning, evaluating that large-scale
and well-aligned data can effectively improve the video-conditioned policy learning in terms of
generalization and success rates. However, these works require extensive demonstration annotation
efforts, which is costly and time-consuming. Our work basically follows the video-conditioned policy
learning setting. Still, we explore how the video-conditioned policy can learn effectively when the
dataset is a mixture of expert videos and demonstrations paired with prompt videos.

Learning from Videos. Given the relative accessibility of video data compared to action-labeled
demonstrations, some works explore leveraging unlabeled videos to aid in policy learning. Despite
the absence of action labels, videos contain substantial decision-related knowledge due to their
rich temporal information. A path for learning from videos involves self-supervised representation
learning on videos, including masked autoencoder (Radosavovic et al., 2023; Xiao et al., 2022;
Yang et al., 2024), temporal contrastive learning (Li et al., 2024; Nair et al., 2023), and video
prediction (Seo et al., 2022; Luo et al., 2024). These methods aim to learn a compact and informative
representation from videos that aid in policy learning. Other approaches focus on learning reward
functions (Escontrela et al., 2023; Yu et al., 2020b; Bruce et al., 2023) or value functions (Bobrin
et al., 2024; Chang et al., 2022) to expedite online policy learning. Due to the absence of action
labels, these methods require fine-tuning on the downstream tasks for adaptation. Additionally, some
research utilizes datasets combining videos and demonstrations, learning an inverse dynamics model
(IDM) (Baker et al., 2022; Schmeckpeper et al., 2021; Zheng et al., 2023; Zhang et al., 2022; Kim
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Figure 2: The architecture of the Joint Embedding Predictive Transformer (JEPT). The model consists
of a joint embedding encoder, a prompt video encoder, and a video-conditioned causal predictor. The
demonstrations and the expert videos are processed as a sequence of tokens, and the causal predictor
predicts the tokens causally. The visual embedding token of the next observation is predicted to learn
a predictive joint embedding. We use t′ := t− k + 1 to denote the start of the context.

et al., 2023) or a latent inverse dynamics model (Schmidt & Jiang, 2024; Ye et al., 2022; Edwards
et al., 2019) on the action-labeled data. The learned IDM can be used to annotate the video data,
facilitating imitation learning to derive policies. In these works, the decoupling of inverse dynamics
learning and visual imitation may limit the generalizability of the IDM. In our work, however, the
learning of visual transitions and inverse dynamics is conducted jointly, offering better generalization.

Joint Embedding Predictive Architecture. The Joint Embedding Predictive Architecture
(JEPA) (LeCun, 2022) emerges as a promising representation learning framework. JEPA optimizes
a predictive loss on the encoded embeddings to learn an embedding space where the embeddings
are predictable to each other. Unlike the generative architectures, JEPA optimizes the predictive
loss on embeddings rather than raw data, potentially discarding extraneous information to learn
more compact and meaningful representations. In order to train a JEPA, it is a common practice
to construct data pairs to predict and be predicted. JEPA is a versatile framework. Various works
employ different data pair construction methods to enable JEPA to learn embedding spaces tailored
to specific information, enhancing tasks such as image classification (Assran et al., 2023), mask
classification (Kim et al., 2024), video understanding (Bardes et al., 2024), and motion and content
learning (Bardes et al., 2023). Our work integrates JEPA with sequence modeling on trajectories,
providing a novel data pair construction method for JEPA. This extends JEPA to architectures akin to
the Decision Transformers, aiming to learn visual representations that facilitate inverse dynamics
knowledge transfer.

3 METHODOLOGY

In this section, we describe how our Joint Embedding Predictive Transformer (JEPT) works on the
mixture of expert demonstrations and expert videos paired with prompt videos.

3.1 PRELIMINARIES

We aim to learn a video-conditioned policy across a set of tasks. The environment is viewed as
a collection of Partially Observable Markov Decision Process variants (POMDPs), with each task
represented by a POMDP variant Mi := (S,A,P,O,Ω,Vi). Here, S,A,P,O,Ω denote the state
space, action space, transition function, observation space, and observation function, respectively,
shared across all tasks. Specifically, Vi comprises a set of prompt videos depicting the task Mi.

Video-Conditioned Policy. During interaction with the environment, the agent receives a prompt
video V ∈ Vi illustrating the desired task at the start of each rollout. At each timestep t, the agent
obtains a visual observation ot ∈ O, derived from the current state st ∈ S via the observation
function Ω: S → O. Upon executing an action at ∈ A, the environment transitions to the subsequent
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state st+1 according to the transition function P : S × A × S → [0, 1]. A video-conditioned
policy generates actions based on the visual observation context and the prompt video. Formally, a
video-conditioned policy is denoted as π

(
at|o[t−k+1:t], V

)
, where o[t−k+1:t] represents the visual

observation context over the last k timesteps.

Mixture Dataset. We consider training the video-conditioned policy on a mixture dataset. Ideally,
we collect three types of data for imitation learning: (1) the prompt video V := (v1, v2, . . . , vN )
specifying the task with N frames, (2) the expert video O := (o0, o1, . . . , oT ), the visual observation
sequence recorded alongside a T -step expert rollout of the task, and (3) the corresponding action
sequence A := (a0, a1, . . . , aT−1) executed during the same rollout. In the tasks where expert
demonstrations are available, we assume access to the dataset Ddemo, and each data sample ddemo ∈
Ddemo is in the form:

d
(i)
demo = ((v1, v2, . . . , vN ) , (o0, a0, o1, a1, . . . , oT ) ∼ π⋆

i ) . (1)

Here, π⋆ represents the expert policies, ∼ denotes the rollout process, and i indexes the dataset
sample. Conversely, in the tasks where merely videos of expert rollouts are available, we denote this
dataset as Dvid, and each data sample dvid ∈ Dvid is in the form:

d
(i)
vid = ((v1, v2, . . . , vN ) , (o0, o1, . . . , oT ) ∼ π⋆

i ) . (2)

Each data sample in Ddemo consists of a prompt video V and a paired expert demonstration (O,A),
while each data sample in Dvid consists of a prompt video V and a paired expert video O. In summary,
our objective is to train the video-conditioned policy π

(
at|o[t−k+1:t], V

)
on a dataset mixed of these

two kinds of data, denoted as Ddemo ∪ Dvid.

3.2 MODEL ARCHITECTURE

Our JEPT employs a Transformer-based architecture to perform sequence modeling on the data,
following the supervised learning paradigm of the Generalized Decision Transformers (Furuta et al.,
2022). In this context, demonstrations are treated as sequences of observation and action tokens,
where the sequence modeling serves as a video-conditioned policy via predicting the corresponding
action tokens. To perform the sequence modeling, JEPT comprises two kinds of modules: (1) visual
encoders that process the high-dimensional visual input and (2) a causal predictor aggregating the
visual representations to causally predict tokens in the sequence. The comprehensive architecture of
JEPT is illustrated in Figure 2, and we elucidate each component in detail below.

3.2.1 VISUAL ENCODERS

Joint Embedding Encoder. A Joint Embedding Encoder is employed to learn the visual representa-
tion for each observation. In our design, the Joint Embedding Encoder captures information from
both single-timestep and contextual levels. Structurally, the Joint Embedding Encoder comprises a
spatial encoder for single-timestep encoding and a bi-directional temporal encoder for contextual
encoding. Formally, the Joint Embedding Encoder Ψobs takes as input a visual observation context
and outputs the visual representations:

(ht−k+1, . . . , ht−1, ht) = Ψobs (ot−k+1, . . . , ot−1, ot) . (3)

Each representation ht consists of Nobs tokens. The visual embeddings of the next observation is
predicted by the causal predictor and thus a joint embedding will be learned. Via learning joint
embeddings predictive of the previous observation tokens, the encoder can compress the high-
dimensional visual space into a low-dimensional space and discard extraneous information for
effective and generalizable policy learning.

Prompt Video Encoder. A Prompt Video Encoder encodes a prompt video into an embedding
that serves as a reference for the policy. To specify the desired task, the embedding of the prompt
video is used for an implicit understanding of task execution. Specifically, the Prompt Video
Encoder comprises a per-frame encoder and a Perceiver Resampler (Jaegle et al., 2022). The
Perceiver Resampler aggregates frame embeddings from the per-frame encoder to produce an overall
embedding Eprt of the prompt video. Each representation Eprt consists of Nprt tokens. Eprt abstracts
task-relevant attributes from videos and serves as the policy condition. Formally, the Prompt Video
Encoder outputs as:

Eprt = Ψprt (v1, v2, . . . , vN ) . (4)
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3.2.2 CAUSAL PREDICTOR

Connecting to the visual encoders, a video-conditioned Causal Predictor integrates the visual repre-
sentations of prompt videos and observations to conduct sequence modeling on the mixture dataset.

To effectively leverage the mixture dataset, the predictor is designed to conduct two subtasks of
behavior cloning, visual transition prediction and inverse dynamics learning. The visual transition
delineates how observations should evolve to accomplish tasks depicted by the prompt videos. For-
mally, visual transition prediction approximates the distribution P (ot+1|o≤t, V ), which is embedded
in both Ddemo and Dvid. Through visual transition prediction, the model learns to align the visual
observation sequence with the prompt videos. Inverse dynamics learning approximates the distri-
bution P (at|ot, ot+1), reflecting the actions required to realize a given visual transition. Although
the action labels are only available in Ddemo, P (at|ot, ot+1) is shared across tasks due to the shared
transition function P . Given the challenge of predicting in the raw visual observation space, we re-
place ot+1 with the joint embedding of the next observation ht+1 in seek of a compressed embedding
space conducive to knowledge transfer. Accordingly, the causal predictor is tasked with capturing
P (ht+1|o≤t, V ) and P (at|ot, ht+1).

The input and output sequences of the causal predictor are designed to concurrently capture the
visual transition P (ht+1|o≤t, V ) and the inverse dynamics P (at|ot, ht+1). As shown in Figure 2,
with the video representation Eprt as the prompt, the causal predictor takes the trajectory sequence
(ot−k+1, ht−k+2, . . . , ot, ht+1) as input to causally predict (ĥt−k+2, ât−k+1, . . . , ĥt+1, ât) respec-
tively. Structurally, the predictor comprises a causal Transformer encoder Ψpred and two prediction
heads, Γobs and Γact. Respectively, Γobs predicts the joint embedding of the next observation ht+1

from the hidden states of observation tokens ot, and Γact predicts the action tokens at from the hidden
states of ht+1. Formally, the predictor encodes the input sequence:

Z = Ψpred (Eprt, ot−k+1, ht−k+2, . . . , ot, ht+1) (5)

and predicts the tokens:

ĥt+1 = Γobs

(
Z

(o)
t

)
, ât = Γact

(
Z

(h)
t+1

)
. (6)

Here, Z [·]
t denotes the hidden states of the corresponding tokens in Z, while ĥt+1 and ât represent

the predicted tokens.

In this predictive form, the causal predictor alternatively models P (ht+1|Eprt, h≤t, o≤t) to capture
the visual transition and P (at|Eprt, o≤t, h≤t+1) to capture the inverse dynamics. During inference,
the predictor iteratively feeds the predicted joint embedding tokens back into the input sequence to
predict tokens. By combining the two types of token prediction together, the causal predictor indeed
works as a planning-based policy, which predicts the desired next observations first and then converts
the plan into actions.

3.3 TRAINING PROCEDURE

With the designed sequence modeling form, JEPT can simultaneously capture visual transition and
inverse dynamics. In this subsection, we describe how JEPT is optimized on the mixture dataset
Ddemo ∪ Dvid. Specifically, two predictive losses, the visual transition loss and the inverse dynamics
loss, are optimized to predict the joint embedding tokens and the action tokens, respectively.

Visual Transition Loss. For the joint embedding prediction, we compute the average L2 distance
between the predicted joint embedding and the encoded joint embedding as the visual transition loss
Lobs to approximate the visual transition P (ht+1|Eprt, h≤t, o≤t). For both Ddemo and Dvid, the joint
embedding of the next observations is available. The visual transition loss Lobs is defined as:

Lobs = E(V,O)∼Ddemo∪Dvid

[
1

k

t∑
i=t−k+1

∥∥∥hi+1 − ĥi+1

∥∥∥
2

]
. (7)

Inverse Dynamics Loss. For the action prediction, we compute the average Cross-Entropy between
the predicted actions and the discrete ground-truth actions as the inverse dynamics loss Lact to
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approximate the inverse dynamics P (at|Eprt, o≤t, h≤t+1). The ground-truth action label is merely
available in Ddemo. The inverse dynamics loss Lact is defined as:

Lact = E(V,O,A)∼Ddemo

[
1

k

t∑
i=t−k+1

ai log âi

]
. (8)

Via optimizing Lobs, JEPT learns to generate the visual transitions aligned with the prompt videos.
By optimizing Lact, JEPT learns to convert the visual transitions into actions. Formally, all the
components of JEPT are trained with the loss Ltotal:

Ltotal = Lobs + 1d∈Ddemo · c · Lact, (9)
where c is a hyperparameter balancing the two losses, and 1d∈Ddemo is an indicator function that
equals 1 when the data sample d is from Ddemo and 0 otherwise. Considering that JEPT predicts the
encoded joint embeddings instead of the raw visual observations, we adopt an alternative training
procedure to separately optimize the Joint Embedding Encoder and other components in case of
potential model collapse. Additionally, an exponential moving average (EMA) of the joint embedding
is used when the Joint Embedding Encoder is a fixed target network to stabilize the training, which is
widely adapted in the previous JEPAs (Assran et al., 2023; Bardes et al., 2024). The overall process
is shown in Algorithm 1 in Appendix A.1.

4 EXPERIEMNTS

In this section, we evaluate the effectiveness of our proposed JEPT on the mixture dataset, where the
model learns from action-labeled expert demonstrations and unlabeled expert videos. We evaluate
JEPT and baselines on two simulated benchmarks, Meta-World (Yu et al., 2020a) and RoboSuite (Zhu
et al., 2020). Both benchmarks provide a variety of robotic manipulation tasks and are widely used
for evaluating visual control tasks. Via the experiments, we aim to figure out: (1) whether JEPT
effectively leverages the additional Dvid to improve the performance on unlabeled tasks, (2) whether
the learned policy can generalize to unseen tasks, and (3) whether the joint embedding predictive
mechanism in JEPT is essential for knowledge transfer.

4.1 EXPERIMENT SETUP

We first introduce the experimental setup, including the environments, dataset, metrics, and baselines
used in our experiments. More details are available in Appendix B.

Environments. We replace the language task descriptions in the environments with prompt videos
recorded in the environments as task specifications. In our Meta-World experiments, a Sawyer
robot arm interacts with various objects. The prompt videos are recorded with the same robot arm
performing identical manipulations, which means there is no visual gap between the prompt videos
and the expert videos. In our Robosuite experiments, a Panda robot arm interacts with objects. The
prompt videos are recorded by performing the same manipulation with various robot arms, including
Panda, Sawyer, IIWA, and UR5e, introducing a visual gap between the prompt and expert videos.

Dataset. We select 18 tasks for the Meta-World task set and 15 tasks for the Robosuite task set.
In order to construct the mixture dataset Ddemo ∪ Dvid and evaluate on the unseen tasks, we split
each task set into three subsets: (1) Tdemo: the tasks with the prompt videos and the paired expert
demonstrations, (2) Tvid: the tasks with the prompt videos and the paired expert videos, and (3)
Tunseen: the tasks with merely the prompt videos. For each task, we construct an expert policy in the
vector state space and collect demonstrations or videos by running this expert policy in the rendered
environments. Ddemo is collected from the tasks in Tdemo, while Dvid is collected from the tasks in
Tvid. We also collect prompt videos for the tasks from Tunseen, which are not included in the mixture
dataset.

Metrics. We evaluate the model performance in terms of success rate, which is the percentage of
successful episodes within 50 trials with different random seeds. The success rates of the tasks from
Tdemo, Tvid and Tunseen reflect the model’s ability of behavior cloning, learning from videos, and
one-shot imitation learning, respectively. We also calculate the average success rates of seen and
unseen tasks to evaluate the overall performance.

Baselines. The baselines chosen for comparison with JEPT in our setting are as follows:
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Table 1: Success Rates (%) of JEPT and the baselines calculated from 50 trials for each task in
Meta-World. The average success rate of the tasks in Tdemo and Tvid are listed in the first two rows,
while the individual success rate of the 4 tasks in Tunseen are listed in the following rows. The average
success rates of the seen and unseen tasks are listed in the last two row.

Task Vid2Robot-D Vid2Robot-M BC+IDM JEPT+MWM DT⋆ JEPT
T demo 51.8 46.3 49.5 44.5 61.3 51.3
T vid 4.7 28.7 8.3 21.3 13.0 31.7
Handle Press 10.0 22.0 8.0 18.0 6.0 28.0
Lever Pull 0.0 4.0 0.0 4.0 0.0 10.0
Plate Slide Back 4.0 8.0 0.0 2.0 0.0 14.0
Faucet Open 4.0 14.0 4.0 14.0 0.0 22.0
Seen Average 28.2 37.5 28.9 32.9 37.1 41.5
Unseen Average 4.5 12.0 3.0 9.5 1.5 18.5

Table 2: Success Rates (%) of the ablations calculated from 50 trials for each task in Meta-World.
We train JEPT on a dataset with various task numbers for Dvid collection. The average success rate of
the tasks in Tdemo is listed in the first row, while the individual success rate of the 4 tasks in Tunseen are
listed in the following rows. The average success rate of the unseen tasks is calculated in the last row.

Task None 2 Tasks 4 Tasks 6 Tasks (JEPT)
T demo 59.5 49.8 47.0 51.3
Handle Press 6.0 4.0 16.0 28.0
Lever Pull 0.0 0.0 4.0 10.0
Plate Slide Back 0.0 0.0 10.0 14.0
Faucet Open 0.0 2.0 20.0 22.0
Unseen Average 1.5 1.5 12.5 18.5

• Vid2Robot (Jain et al., 2024): conducts behavior cloning and auxiliary representation learning
on a large dataset where all the data is action-labeled. We train two variants of Vid2Robot:
Vid2Robot-D refers to Vid2Robot trained merely on Ddemo, while Vid2Robot-M refers to
Vid2Robot trained on Ddemo ∪ Dvid with behavior cloning loss masked from Dvid.

• BC+IDM: Zheng et al. (2023); Kim et al. (2023) proposed a paradigm leveraging the mixture
dataset for visual imitation learning. These methods separately learn an inverse dynamics model
for action annotation and conduct behavior cloning on the mixture dataset. We accommodate
these methods to video-conditioned imitation learning.

• DT⋆: We remove the joint embedding predictive mechanism from JEPT, which indeed conducts
behavior cloning with a DT variant on Ddemo.

• JEPT+MWM (Seo et al., 2023): We replace the joint embedding in JEPT with the representation
learned with MWM as a baseline. MWM provides a practical representation learning method
for visual control tasks. Unlike the joint embedding in JEPT, MWM learns a generative Masked
Auto-Encoder (MAE).

4.2 META-WORLD EXPERIMENTS

In the Meta-World experiments, we divide the 18 tasks into three subsets: Tdemo, Tvid and Tunseen,
respectively containing 8, 6 and 4 tasks.

Comparisons with Baselines. The task success rates of JEPT and the baselines are presented
in Table 1, where JEPT surpasses all baselines in terms of average success rates. Regarding the
success rates of tasks from Tdemo, JEPT performs slightly worse than DT⋆, similar to the gap between
Vid2Robot-M and Vid2Robot-D. This may be a side-effect of the more tasks integrated into the policy,
leading to a decrease in the performance of individual tasks. Notably, JEPT exhibits a significant
advantage in tasks from both Tvid and Tunseen, indicating that JEPT effectively leverages the additional
Dvid to learn a more generalizable policy. Compared to Vid2Robot-M, the sequence modeling
design in JEPT, extracting visual transition and inverse dynamics, might suit the mixture dataset
more. Although BC+IDM also captures the inverse dynamics, JEPT integrates transition-aware
representation learning with inverse dynamics learning on the mixture dataset instead of an IDM
learned merely on Ddemo, which may capture more generalizable inverse dynamics knowledge and
accounts for the better performance of JEPT. Additionally, the outperformance of JEPT over DT⋆
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Embeddings from Vid2Robot-M Embeddings from MWM Embeddings from JEPT

Door Close Drawer Close Faucet Open

Figure 3: Visualization of the observation embeddings learned in JEPT (right), MWM (mid), and
Vid2Robot-M (left). The observation embeddings are calculated in a rollout video from ‘Door
Close’ in Tdemo, ‘Drawer Close’ in Tvid, and ‘Facet Open’ in Tunseen. We apply t-SNE on one whole
embedding set and split the projected vectors according to the algorithms into three sub-figures.

and JEPT+MWM indicates that the predictive joint embedding in JEPT is more suitable for learning
on mixture datasets than non-specialized or alternative embedding mechanisms.

Ablation Study. We conduct an ablation study to investigate the impact of the size of Dvid. As is
listed in Table 2, we train JEPT on datasets where 0, 2, 4 and 6 tasks are covered in Dvid. The success
rates of tasks increases as the size of Tvid grows. The results indicates that the additional video
data is benificial and JEPT can effectively leverage the data in Dvid to learn a more generalizable
video-conditioned policy. Additionally, when the Dvid grows from 0 tasks to 6 tasks, the performance
degradation on the seen tasks might result from a higher integration of the policy, which stands with
our observation in Table 1.

Visualizations. We also visualize the visual embeddings learned in JEPT, MWM, and Vid2Robot-M.
Specifically, we select one task from each of Tdemo, Tvid, and Tunseen and calculate the observation
embeddings of a rollout video from each task. We apply t-SNE to the whole set containing the
observation embeddings of the three videos from JEPT, MWM, and Vid2Robot to project them into
a shared 2D space. As shown in Figure 3, the observation embeddings from Vid2Robot-M and
MWM demonstrate severe out-of-distribution phenomena among the action-labeled, unlabeled, and
unseen tasks. The embeddings from JEPT exhibit greater similarity in the distribution, potentially
contributing to its superior generalization.

4.3 ROBOSUITE EXPERIMENTS

We also conduct experiments on the Robosuite, which offers a variety of robotic arms for manip-
ulation tasks. Thus we evaluate the performance of JEPT in the case where there is a visual gap
between prompt videos and expert videos. We split the 15 tasks into three subsets: Tdemo, Tvid, and
Tunseen, containing 6, 5, and 4 tasks, respectively. The results of these experiments are shown in
Table 3. Although the success rates in these tasks are somewhat lower than those in the Meta-World
experiments due to the increased difficulty, JEPT still outperforms the baselines across all tasks.
Similarly to the Meta-world results, the success rate of JEPT in Tdemo is lower than that of DT⋆,
possibly due to the integration of more tasks into a single policy. However, JEPT still exceeds all
the baselines in Tvid and Tunseen, indicating that JEPT can effectively leverage Dvid to learn more
generalizable policies despite visual gaps.

4.4 VISUAL PRIOR INJECTION

Considering that visual priors learned from external datasets may enhance the generalization of the
model due to their universality, we additionally explore the possibility of injecting such priors from
the pre-trained models into JEPT. A directly injection approach is adopted in our practice. We simply
replace the output of the single-timestep spatial encoder in the Joint Embedding Encoder with the
output from the visual encoders of some pre-trained visual models. Specifically, we experiment
on Meta-World with FlowFormer (Huang et al., 2022), VideoMAE-v2 (Wang et al., 2023), Dino-
v2 (Oquab et al., 2024), and SAM (Kirillov et al., 2023), representing visual priors related to optical
flow, video reconstruction, depth estimation, and visual segmentation, respectively. As shown
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Table 3: Success Rates (%) of JEPT and the baselines calculated from 50 trials for each task in
Robosuite. The average success rate of the tasks in Tdemo and Tvid are listed in the first two rows,
while the individual success rate of the 4 tasks in Tunseen are listed in the following rows. ‘X T’ refers
to the task where Panda robot arm performs the task T with the prompt video recorded with X robot
arm. The average success rates of the seen and unseen tasks are listed in the last two rows.

Task Vid2Robot-D Vid2Robot-M BC+IDM JEPT+MWM DT⋆ JEPT
T demo 26.8 20.7 26.7 24.3 36.3 27.2
T vid 4.0 11.6 8.4 10.8 2.0 12.8
Panda Lift 4.0 16.0 6.0 22.0 8.0 38.0
Sawyer Lift 0.0 2.0 0.0 6.0 0.0 16.0
IIWA Lift 0.0 4.0 0.0 2.0 0.0 12.0
UR5e Lift 0.0 0.0 0.0 0.0 0.0 8.0
Seen Average 15.5 16.1 17.5 17.6 19.2 20.1
Unseen Average 1.0 5.5 1.5 7.5 2.0 18.5

Table 4: Success Rates (%) of JEPT injected with different visual priors calculated from 50 trials for
each task in Meta-World tasks. The average success rate of the tasks in Tdemo and Tvid are listed in the
first two rows, while the individual success rate of the 4 tasks in Tunseen are listed in the following
rows. The average success rate of the seen and unseen tasks are calculated in the last two row.

Task JEPT+FlowFormer JEPT+VideoMAE-v2 JEPT+Dino-v2 JEPT+SAM
T demo 59.8 33.3 38.5 41.3
T vid 35.3 11.7 9.3 19.0
Handle Press 36.0 8.0 8.0 16.0
Lever Pull 10.0 2.0 2.0 4.0
Plate Slide Back 6.0 0.0 0.0 2.0
Faucet Open 26.0 4.0 4.0 10.0

Seen Average 47.5 22.5 23.9 30.1
Unseen Average 19.5 3.5 3.5 8.0

in Table 4, JEPT+FlowFormer outperforms other visual priors and surpasses the original JEPT.
This indicates that the optical flow priors are beneficial for visual control tasks and can generalize
across tasks. Meanwhile, JEPT can effectively incorporate the optical flow priors to enhance model
performance. The poor performance of other visual priors may result from the inherent unsuitability
of these priors for visual control tasks or the inadequacy of the injection approach, requiring further
exploration in future work.

5 CONCLUSION

In this paper, we propose the Joint Embedding Predictive Transformer (JEPT), a novel approach for
video-conditioned policy learning. JEPT is designed to learn from a mixture of expert demonstrations
and expert videos paired with prompt videos, aiming to reduce the burden of action label annotation.
To suit the mixture dataset, we decompose the video-conditioned policy learning into two subtasks:
visual transition prediction and inverse dynamics learning. By jointly learning the two subtasks in the
sequence modeling, JEPT works as a planning-based policy. We implement JEPT as an extension of
the joint embedding predictive architecture to learn an abstract representation of visual observation,
which aids in generalizing video-conditioned policy. Experimentally, we evaluate the effectiveness of
JEPT on a series of visual control tasks. Additionally, we explore the JEPT as a simple visual priors
injection approach and find it valid in injecting optical flow knowledge.

Limitations. A series of experimental results of JEPT indicate that joint learning visual transition
and inverse dynamics allow it to effectively leverage the mixture dataset and derive a generalizable
policy. Despite this, we have also identified some limitations. Since our work focuses on solving
problems within datasets containing expert videos, our method does not include additional designs
for the potential visual gap between the prompt videos and task dynamics. We have validated the
effectiveness of JEPT in addressing a certain level of visual gap in Robosuite environments, but more
design and validation are needed to apply JEPT to one-shot visual imitation with more discrepancy
prompt videos such as human videos. In this regard, our attempt at injecting visual priors could be
one beneficial approach.
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A IMPLEMENTATIONS

We build our framework based on PyTorch (Paszke et al., 2019) and use the implementations of
Transformer modules from the codebase x-transformers2. We use the 3090 Nvidia GPU and i9-
12900K CPU for the JEPT training and testing. It takes around 10 hours to train JEPT on the
Meta-World dataset and 16.5 hours to train JEPT on the Robosuite dataset. The details of the
implementations are as follows.

A.1 ALGORITHM

Algorithm 1 Joint Embedding Predictive Transformer

1: Input: Mixture dataset Ddemo ∪ Dvid
2: Initialize: JEPT components Ψobs, Ψprt, Ψpred, Γobs, Γact with random weights
3: for e = 1, 2, . . . do
4: for d ∈ Ddemo ∪ Dvid do ▷ Optimizing Joint Embedding Encoder
5: Encode V and O into Eprt and (ht−k+1, . . . , ht) as Equations 3 and 4
6: Predict the joint embedding tokens and action tokens as Equations 5 and 6
7: Compute Ltotal as Equation 9
8: Update Ψobs with Ltotal
9: end for

10: for d ∈ Ddemo ∪ Dvid do ▷ Optimizing other components
11: Repeat steps in lines 5-7
12: Update Ψprt, Ψpred, Γobs, Γact with Ltotal
13: end for
14: end for

A.2 MODEL DETAILS

Joint Embedding Encoder. To encode visual observations, we utilize a pre-trained ViT (Dosovitskiy
et al., 2021) variant, ‘vit_base_patch16_224’, as the spatial visual encoder. To effectively compress
the tokens of visual observations, a Perceiver-IO (Jaegle et al., 2022) with a fixed number of learnable
queries is employed to compress the visual tokens of single-frame observations. The ViT weights
remain fixed during training, allowing the Perceiver-IO to function as an adaptor network. The
compressed visual tokens are concatenated with representations of the self-state vector produced
by an MLP to form the observation tokens. A bi-directional Transformer temporal encoder is used
to encode the observation tokens with context awareness. For visual prior injection approaches in
Section 4.4, we simply replace the outputs of the fixed ViT with the embedding outputs of visual
encoders pre-trained to capture visual priors. Notably, there are subtle distinctions in input processing
among these four visual prior injections. For FlowFormer, observation tokens at each temporal step
are computed from adjacent frames. VideoMAE v2 replicates all video frames excluding the first to
preserve the original temporal length. Dino v2 and SAM v2 both utilize single-frame images as inputs.
Moreover, these models diverge in architectural design, pre-training datasets, and methodological
approaches. Despite these variations, our visual prior experiments do not aim to comparatively
evaluate visual prior performance. Instead, our objective is to ascertain whether a joint embedding
predictive of these representations with visual priors can further compress visual information and
enhance generalization.

Prompt Video Encoder. To encode the prompt videos, we utilize the same ViT variant as the Joint
Embedding Encoder for encoding the visual tokens. Two cascaded Perceiver-IOs are employed to
aggregate these tokens. The first Perceiver compresses the tokens from a single frame, while the
second compresses the flattened tokens from the first layer to form the prompt video embeddings.
During training, only the Perceiver-IOs are trained, the ViT weights remain fixed.

Video-Conditioned Causal Predictor. To process observations in expert videos and demonstrations,
we employ the same structure as the Joint Embedding Encoder to encode single-timestep observations.
Notably, the single-timestep encoder shares the weights in our implementation, and the EMAs are

2https://github.com/lucidrains/x-transformers
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calculated when producing the target joint embeddings. A causal Transformer is utilized, taking as
input the sequence of all compressed tokens. A causal mask, where tokens attend only to preceding
tokens and tokens from the same observations, ensures prediction causality. To predict the joint
embedding tokens and action tokens, two prediction heads are applied to the causal Transformer’s
output. Specifically, an MLP predicts the joint embedding tokens, while a cross-attention Transformer
with learnable action queries for each action dimension predicts the action tokens.

A.3 BASELINE ADAPTATION

Vid2Robot We implement Vid2Robot following the original paper (Jain et al., 2024), as no codebase
is released. Similar to our structure, a spatial visual encoder followed by a Perceiver processes the
spatiotemporal information of videos and observation sequences. We use the same ViT variant as
the Joint Embedding Encoder to encode the visual tokens of the prompt videos and observations,
ensuring consistency in comparison. We align the Perceiver structure and the action prediction head
in Vid2Robot with our framework. Since no text instruction is provided in our setting, we remove the
auxiliary text-video contrastive loss in Vid2Robot.

MWM We adapt the released codebase of MWM (Seo et al., 2023) to our setting. The only difference
is the absence of a reward signal in our setting; thus, we remove the reward prediction loss.

DT⋆ We adapt our implementation of JEPT to perform sequence modeling in a typical behavior
cloning sequence P (at|Eprt, o1, a1, . . . , ot).

A.4 HYPERPARAMETERS

In our implementation, the Perceiver-IO structure is shared across the Joint Embedding Encoder, the
Prompt Video Encoder, and the Video-Conditioned Causal Predictor. The hyperparameters for the
Perceiver-IOs and other modules are detailed in Table 5. During training, Eprt is initially excluded in
the causal predictor as a warm-up strategy. Furthermore, the hyperparameters for the training process
are listed in Table 6.

B ENVIRONMENT SETUP DETAILS

B.1 ENVIRONMENT

Meta-World Environment. In the Meta-World environment, a Sawyer robot arm is directed to
execute a variety of manipulation tasks. We employ 18 tasks originally from Meta-World to establish
our video prompt visual control framework. As shown in Figure 4, for each task, a video of the
identical manipulation in the same environment, albeit with a different random seed, is provided as
the task prompt, while the original task descriptions are omitted. We utilize the customized camera1
perspective for visual observation and resize the image from the camera to 224 × 224 pixels. In
addition to the visual observation, we assume the agent is aware of its current self-state, which
encompasses the joint angles, joint velocities, and end-effector position. A vector representing these
self-state details is supplied alongside the visual camera image to form the observation. For action
prediction using Cross-Entropy, the original continuous action space is discretized into 7 bins for
each action dimension. During the rollout of each task, the episode is truncated after 250 steps, with
an action repeat of 2.

Robosuite Environment. In the Robosuite environment, we select tasks involving a Panda robot
arm performing various manipulation tasks. We employ two tasks originally from the Robosuite
simulator and four tasks implemented by MimicGen (Mandlekar et al., 2023) within the Robosuite
framework to create our video prompt visual task. As illustrated in Figure 4, a video depicting a
specific robot arm completing the same manipulation serves as the task prompt. The robot in these
prompt videos may be a Panda, Sawyer, IIWA, or UR5e, indicating a potential visual gap between the
prompt videos and the task dynamics. Two tasks are considered distinct if the robot arm in the prompt
videos or the desired manipulation differs. Consequently, we construct 15 tasks from the 6 tasks of
MimicGen. We utilize the ‘agentview_image’ attribute of the state as the visual image. Similar to the
Meta-World environment, the visual image is resized to 224× 224 pixels and accompanied by the
self-state vector. The continuous action space is discretized into 7 bins per dimension. During each
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Table 5: The hyperparameters of the JEPT Modules.

Single-Frame Perceiver-IO
num latents 64
num queries 8
embedding channels 512
attention heads 8
encoder cross-attention layers 1
encoder self-attention layers 2
decoder cross-attention layers 1
attention feedforward dim 1024
attention dropout 0.1

Temproal Perceiver-IO
num latents 128
num queries 32
embedding channels 512
attention heads 8
encoder cross-attention layers 1
encoder self-attention layers 2
decoder cross-attention layers 1
attention feedforward dim 892
attention dropout 0.08

Bi-directional Tempral Encoder
joint embedding dim 256
attention layers 2
attention heads 8
attention dim 512
attention feedforward dim 1024
attention dropout 0.1
attention activation GeLU

Causal Transformer
Max prompt length 250
prompt tokens num Nprt 32
obs tokens num Nobs 9
context length k 8
embedding channels 584
attention heads 8
attention layers 4
attention feedforward dim 1168
attention dropout 0.05
Attention Activation GeLU

Action Prediction Head Γact

Cross-attention layers 2
Cross-attention heads 4
Cross-attention dim 256
Feedforward dim 512
activation GeLU

Joint Embedding Prediction Head Γobs

layers 3
hidden dim 256
activation LeakyRelu
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Table 6: The hyperparameters of the training process.

Training Hyperparameters Value
Minibatch size 90
Optimizer AdamW
Joint Embedding Encoder Learning Rate 3e-5
Prompt Video Encoder Learning Rate 7e-5
Video-Conditioned Causal Predictor Learning Rate 7e-5
Weight Decay 1e-4
Max Gradient Clip 1.0
Warm Up Steps 200
Loss Weight c 8

Meta-World

robosuite

prompt videos expert videos/demonstrations

Figure 4: The video prompt task setting of the Meta-World and Robosuite. In Meta-World, the task
specification is a video of the same manipulation in the same environment with different random seed.
In Robosuite, the task specification is a video of a certain robot arm executing the same manipulation,
and the visual gap between the prompt videos and the task dynamics is likely.

task rollout, the episode is truncated after 200 steps, although there is no restriction on episode length
within the Robosuite environment.

B.2 DATASET

Task Subset. In both Meta-World and Robosuite, tasks are manually categorized into three subsets:
those with expert demonstrations and prompt videos, Tdemo; those with expert videos and prompt
videos, Tvid; and those with only prompt videos, Tunseen. The specific task divisions are detailed
in Table 7 and 8. For Meta-World experiments, 500 expert videos/demonstrations are collected
by executing expert policies on tasks from Tdemo ∪ Tvid. For Robosuite experiments, 1000 expert
videos/demonstrations are gathered for each task in the dataset. For the tasks in Tunseen, 10 prompt
videos are sampled for 5 trials with different random seeds on each to assess the one-shot imitation
capability of the learned policy. In the ablation study of task numbers covered in Tvid, we use the
‘Button Press Topdown Wall’ and ‘Door Open’ tasks for the 2-task variant. Additionally, we include
the ‘Reach Wall’ and ‘Drawer Close’ tasks for the 4-task variant.

Expert Policy. To construct the data used for training and evaluation, we develop expert policies for
individual tasks within the vector state space, collecting both prompt videos and corresponding expert
demonstrations. Initially, expert policies are formulated in the continuous action space. In Meta-
World, policies are trained using PPO for each task, utilizing the vector state and reward function
provided by the environment. We integrate rule-based policies from the GitHub repository3 with PPO
policies to form expert policies, executing rule-based policies with a probability of 0.85 and PPO
policies with a probability of 0.15 to ensure diversity. For tasks in Robosuite, expert policies are learne
through behavior cloning on the expert demonstrations from MimicGen. Additionally, expert policies
for ‘Stack’ and ‘Lift’ tasks are trained using DrQ-v2 (Yarats et al., 2021) with no demonstrations
available in Mimicgen. To collect expert rollouts in the discrete action space, continuous expert
policies are used to generate actions, which are then replaced with the nearest discrete actions in the
bins for interaction with the environment. A performance drop is noted in the discrete action space
compared to the continuous action space. Specifically, the average success rate for expert policies in

3https://github.com/Farama-Foundation/Metaworld/tree/master/metaworld/policies
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Table 7: The division of tasks in our Meta-World experiments.

Task Subset Tasks

Tdemo
Button Press, Button Press Topdown, Handle Pull, Reach,

Door Close, Window Open, Plate Slide, Faucet Close

Tvid
Button Press Topdown Wall, Door Open, Reach Wall,
Drawer Close, Plate Slide Back Side, Window Close

Tunseen Handle Press, Lever Pull, Plate Slide Back, Faucet Open

Table 8: The division of tasks in our Robosuite experiments. ‘X T’ refers to the task where the Panda
robot arm performs the task T with the prompt video recorded with X robot arm.

Task Subset Tasks

Tdemo
Panda Stack, Sawyer Stack, IIWA Stack, UR5e Stack,

Three Pieces Assembly, Coffee

Tvid
Panda Square, Sawyer Square, IIWA Square, UR5e Square,

Stack Three

Tunseen Panda Lift, Sawyer Lift, IIWA Lift, UR5e Lift

Meta-World decreases from 91.5% to 85.3% post-discretization, and in Robosuite, it declines from
78.3% to 69.7%. For prompt video collection, we record visual observation sequences of the expert
rollouts, while for expert videos or demonstrations, both visual observation sequences and self-state
vector sequences are recorded.

C ADDITIONAL EXPERIMENTS

C.1 VISUAL PRIOR INJECTION ON ROBOSUITE

In order to supplement the effects of various visual priors on JEPT in different environments, we
conduct experiments on visual prior injection within the RoboSuite environment. The implementation
of visual prior injection is consistent with the experiments conducted in Meta-World. The results,
as shown in Table 9, indicate that the performance of JEPT can be slightly enhanced by utilizing
priors based on optical flow to process the visual inputs. This suggests that optical flow might be
a suitable prior for enhancing JEPT’s performance across different environments. However, all of
these visual encoders have been trained on large datasets across numerous visual tasks and possess
certain generalizable priors for handling visual inputs. Our experiments with visual priors aim to
ascertain whether a joint embedding predictive of these representations, when combined with visual
priors, can further compress visual information and improve generalization. From the perspective
of introducing more generalizable visual priors, these different priors for processing visual inputs
should be logical. However, the success of learning predictive joint embeddings of these priors and
effectively enhancing performance may depend on selecting more refined injection methods and
better training designs. We merely highlight JEPT’s potential in this domain, and further detailed
research on other visual prior injections is left for future exploration.

C.2 ADDITIONAL ABLATIONS

We conduct additional ablation studies to explore the influence of the hyperparameter c in JEPT.
The value of c is varied within the set {0.3, 1, 5, 8, 12}, and the performance of JEPT is assessed in
Meta-World. The results are presented in Table 10. When c remains within a reasonable range, JEPT
exhibits similar performance. However, when c is excessively small or large, JEPT’s performance
declines significantly. This underscores the critical role of the hyperparameter c in JEPT’s efficacy.
In other experiments, we set c = 8, as it yields the optimal performance in Meta-World.

To thoroughly investigate the impact of the ratio between Ddemo and Dvid on model performance, we
conduct additional ablation experiments. Specifically, beyond the original 14-task training dataset,
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we incorporate 6 additional tasks from Meta-World to collect training data (Handle Pull Side, Door
Lock, Drawer Open, Plate Slide Side, Dial Turn, Handle Press Side). We maintain a constant total
amount of training data while varying the ratio of Tdemo to Tvid. For various ratios, we experiment
with different hyperparameters c, and the results are presented in Table 11. Given the variability
of Tdemo and Tvid, we report the average success rate on Tunseen under different settings. The results
indicate that within a certain range, Dvid effectively compensates for the lack of data with action
labels. However, when Ddemo is insufficient, it may not adequately learn, making IDM difficult to
generalize to unseen tasks. Moreover, the results suggest that when Dvid is reduced, a larger c is often
required to achieve better performance.

Considering that employing a fixed video encoder mitigates the distribution shift in video repre-
sentation between action-labeled and unlabeled data, thereby enhancing the generalization of the
inverse dynamics model in BC+IDM, we conducted experiments on Meta-World using a pre-trained
video encoder, denoted as BC+IDM⋆. Most pre-trained video encoders utilize a kernel size of 2
for temporal compression, halving the representation length in the temporal dimension. Similar to
our approach in visual prior injection with VideoMAE v2, we repeat all frames within the video
except for the first frame to maintain consistent length and accurately decode the actions. Employing
VideoMAE v2, the experimental results are presented in Table 12. There is a slight improvement in
success rates on unlabeled tasks, but no gain on unseen tasks. Overall, the improvement from using a
fixed video encoder is limited.

C.3 ADDITIONAL VISUALIZATION

We conduct a series of visualizations within the Meta-World environment to reveal the distribution of
some variants within the rollouts. Specifically, we process 150 videos for each of the 18 different
tasks using a prompt video encoder to encode them into Eprt. We flatten these embeddings and
apply t-SNE to reduce the dimensionality to two dimensions. As is shown in Figure 5, there are
clear distinctions between different tasks, suggesting that JEPT effectively captures and represents
the unique features of each task. Additionally, we observe a degree of similarity between related
tasks, such as ‘Faucet Close’ and ‘Faucet Open’, as well as ‘Window Open’, ‘Window Close’, and
‘Drawer Close’. This similarity reflects the inherent relationships between tasks, which may facilitate
knowledge transfer during the learning process.

Furthermore, we also apply t-SNE to visualize the actions and joint embeddings of the 150 trajectories
for each task. Each point in the visualization is color-coded with varying transparency to denote
its temporal position within the trajectory, with points closer to the end being less transparent.
The visualizations are shown in Figures 7 and 6. From this analysis, we find that the overall
distributions of actions and joint embeddings across different tasks are similar, which partially
explains the generalization capability of JEPT. Additionally, there are specific concentrated regions
in the distribution for each task, which likely arise from the unique nature of each task.

Table 9: Success Rates (%) of JEPT injected with different visual priors calculated from 50 trials for
each task in RoboSuite tasks. The average success rate of the tasks in Tdemo and Tvid are listed in the
first two rows, while the individual success rate of the 4 tasks in Tunseen are listed in the following
rows. The average success rate of the seen and unseen tasks are calculated in the last two row.

Task JEPT+FlowFormer JEPT+VideoMAE-v2 JEPT+Dino-v2 JEPT+SAM JEPT
T demo 27.7 20.7 24.3 26.7 27.3
T vid 13.2 11.6 10.8 8.4 12.8
Panda Lift 34.0 14.0 16.0 12.0 38.0
Sawyer Lift 18.0 0.0 4.0 2.0 16.0
IIWA Lift 8.0 8.0 0.0 0.0 12.0
UR5e Lift 14.0 0.0 0.0 0.0 8.0

Seen Average 20.4 16.1 17.6 17.5 20.1
Unseen Average 18.5 5.5 5.0 3.5 18.5
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Table 10: Success Rates (%) of JEPT and the ablations on c calculated from 50 trials for each task
in Meta-World. The average success rates of the tasks in Tdemo and Tvid are listed in the first two
rows, while the individual success rates of the 4 tasks in Tunseen are listed in the following rows. The
average success rates of the seen and unseen tasks are listed in the last two row.

Task c = 0.3 c = 1 c = 5 c = 8(JEPT) c = 10 c = 12

T demo 38.5 33.0 47.0 51.3 52.5 54.5
T vid 19.0 17.7 24.3 31.7 27.7 12.3
Handle Press 4.0 12.0 24.0 28.0 14.0 6.0
Lever Pull 0.0 0.0 8.0 10.0 12.0 0.0
Plate Slide Back 2.0 8.0 6.0 14.0 16.0 2.0
Faucet Open 0.0 2.0 16.0 22.0 20.0 8.0

Seen Average 28.8 25.3 35.7 41.5 40.1 33.4
Unseen Average 1.5 5.5 13.5 18.5 15.5 4.0

Table 11: Average Success Rates (%) of JEPT variants on the 4 tasks in Tunseen in Meta-World
experiments. The columns represent the variants with different ratios of Tdemo and T vid, while the
rows represent the variants with different values of hyperparameter c.

T demo + T vid (1) + (19) (3) + (17) (5) + (15) (8) + (12) (10) + (10) (12) + (8)

c = 1 0.0 0.0 8.0 5.0 3.0 9.0
c = 5 0.0 1.0 5.5 7.5 10.0 8.5
c = 8 1.5 2.0 3.5 8.5 18.0 18.5
c = 10 0.0 0.0 6.0 10.0 16.0 10.0
c = 12 0.5 2.5 8.0 19.5 14.5 9.5
c = 16 0.0 5.0 12.5 12.0 10.0 10.5
c = 20 1.0 0.0 10.0 11.0 8.0 4.0

Table 12: Success Rates (%) of JEPT and two baselines calculated from 50 trials for each task in
Meta-World. The average success rate of the tasks in Tdemo and Tvid are listed in the first two rows,
while the individual success rate of the 4 tasks in Tunseen are listed in the following rows. The average
success rates of the seen and unseen tasks are listed in the last two row.

Task BC+IDM BC+IDM⋆ JEPT
T demo 49.5 47.5 51.3
T vid 8.3 14.7 31.7
Handle Press 8.0 7.0 28.0
Lever Pull 0.0 0.0 10.0
Plate Slide Back 0.0 0.0 14.0
Faucet Open 4.0 3.0 22.0
Seen Average 28.9 31.1 41.5
Unseen Average 3.0 2.5 18.5
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Window Open
Handle Pull
Button Press
Window Close
Door Open
Faucet Close

Button Press Topdown
Door Close
Handle Press
Faucet Open
Reach
Plate Slide Back Side

Reach Wall
Plate Slide Back
Lever Pull
Plate Slide
Drawer Close
Button Press Topdown Wall

Figure 5: Visualization of the prompt video embeddings learned in JEPT. The prompt video embed-
dings are calculated from 150 videos of each task in Meta-World. We apply t-SNE on the whole
embedding set.
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Window Open Handle Pull Button Press

Window Close Door Open Faucet Close

Button Press Topdown Door Close Handle Press

Faucet Open Reach Plate Slide Back Side

Reach Wall Plate Slide Back Lever Pull

Plate Slide Drawer Close Button Press Topdown Wall

Figure 6: Visualization of the joint embeddings learned in JEPT. The joint embeddings are calculated
from 150 trajectories of each task in Meta-World. We apply t-SNE on one whole embedding set and
split the projected vectors according to the tasks into 18 sub-figures. The transparency of the points
reflects the temporal positions of the corresponding embeddings, with points closer to the end being
less transparent.
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Window Open Handle Pull Button Press

Window Close Door Open Faucet Close

Button Press Topdown Door Close Handle Press

Faucet Open Reach Plate Slide Back Side

Reach Wall Plate Slide Back Lever Pull

Plate Slide Drawer Close Button Press Topdown Wall

Figure 7: Visualization of the actions learned in JEPT. The actions are collected from 150 trajectories
of each task in Meta-World. We apply t-SNE on one whole embedding set and split the projected
vectors according to the tasks into 18 sub-figures. The transparency of the points reflects the temporal
positions of the corresponding embeddings, with points closer to the end being less transparent.
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