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A Supplementary Information

A.1 Data

This section outlines details for the dataset (Appendix [A.I.T) as well as the data curation (Ap-
pendix [A.1.2) presented in this work.

A.1.1 Dataset statistics

We classify each material into a set of predetermined material categories and synthesis methods, as
determined by the recommendation of domain experts.

Material categories With the goal of covering practically the entire space of material science
synthesis, the following material categories were chosen by domain experts of our group and are
employed in this work: metals & alloys, ceramics & glasses, polymers & soft matter, composites,
semiconductors & electronic, nanomaterials, two-dimensional materials, framework & porous materi-
als, biomaterials & biological, liquid materials, hybrid & organic-inorganic, functional materials &
catalysts, energy & sustainability, smart & responsive materials, emerging & quantum materials. Any
category not covered in the list is assigned the label "other".

Synthesis methods Similarly, the following material categories were chosen by domain experts of
our group and are employed in this work: PVD, CVD, arc discharge, ball milling, spray pyrolysis,
electrospinning, sol-gel, hydrothermal, solvothermal, precipitation, coprecipitation, combustion,
microwave-assisted, sonochemical, template-directed, solid-state, flux growth, float zone & Bridgman,
arc melting & induction melting, spark plasma sintering, electrochemical deposition, chemical bath
deposition, liquid-phase epitaxy, self-assembly, atomic layer deposition, molecular beam epitaxy,
pulsed laser deposition, ion implantation, lithographic patterning, wet impregnation, incipient wetness
impregnation, mechanical mixing, solution-based, mechanochemical. Any category not covered in
the list is assigned the label "other".

(@) (b)
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dry
o dissolve
300 Q wash
€ = filter
3 c cool
<]
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o age
< deposit
100 calcine
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grow
0 other
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Figure 4: Statistics of the dataset evaluated in this work. (a) Distribution of action steps and (b)
the 15 most common actions. (c¢) Distribution of the number of starting materials and (d) the 10
most common starting materials. Note that similarly to material identifiers, starting materials are not
standardized.
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Figure 5: Synthesis procedures and methods for the evaluation set, colored according to the source of
the underlying publication (arXiV, ChemRxiv, OMG24).

Note that due to the costs of creating the whole dataset which is expected to contain 100-150k
synthesis procedures, we perform all evaluations on a random subset of 2.5k synthesis procedures
(526 stemming from the arXiV, 1252 ChemRxiv, 706 omg24 (239 Nature, 279 RSC, 188 Springer).
While this split is not stratified with respect to the entire corpus, we claim that it is a representative
sample (approx. 2-2.5%) that covers a broad array of synthesis methods, see Table[5]and Table[6] We
are currently rolling out the inference pipeline to the whole corpus of 81k publications.

A.1.2 Data acquisition

arXiV From over two million articles on arXiV in total, we fetched 381116 publications
in the category cond-mat from 1992 to April 2025. We filtered down the corpus to 62,267
publications that contain synthesis procedures by parsing the PDF with Marker and calling
Mistral-Small-3.1-24B-Instruct-2503 on a cluster of 8xA100-PG509-200 with 40GB of
memory each. The text from the PDF (if length larger the max tokens, chunk paper) is passed to
the LLM to return whether it contains a synthesis procedure, the material name and category, see

Appendix [A.4]

ChemRxiv From over 30000 articles with the cutoff date of June 2025, we fetched 2910 publications
in the categories Solid State Chemistry, Solution Chemistry, Solvates, Spectroscopy (Inorg.), Structure,
Supramolecular Chemistry (Inorg.), Supramolecular Chemistry (Org.), Surface, Surfactants, Thermal
Conductors and Insulators, Thin Films, Wastes, Water Purification, with the ChemRxiv API. We
obtain 1500 papers with synthesis procedures. If available, a supplementary file is appended to the
main text.

Open Materials Guide 2024 (OMG24) The data collection and curation from the Semantic Scholar
API is described in [21]. It contains 17667 synthesis procedures with ten different synthesis types
from open access publications. We fetched the PDFs from the URLS provided in the published
dataset, downloaded it and proceeded with parsing the text and images. As the papers in OMG24 are
already pre-filtered to contain synthesis procedures, no filtering step is needed.

PDF post-processing To extract text and figures from PDFs obtained from the arXiV, we use
marker-pdf, an open-source library, with Gemini 2.0 flash (gemini-2.0-flash). We strip
the images from the text, which is converted into Markdown format, and save the images separately,
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Figure 6: Synthesis procedures and methods for the evaluation set, colored according to the material
category.

but such that they can be reinserted into the Markdown text. For the ChemRxiv and OMG24, we
used Mistral-0CR (mistral-ocr-latest) to extract images and text in Markdown format. We
empirically tested Docling [36], an open source alternative to Mistral-OCR, and found Mistral-OCR
to empirically perform better and infer results faster. For post-processing the text, we removed
markdown image identifiers and the References section (= 50 lines after the heading References with
regex).

Conversely, entries for which no valid synthesized material was found (23%), the name consisted
of a character and/or symbol only (12%) or the material was described with an unclear identifier
("Intermediate 1", "8a", "Compound B" etc.) (0.3%) were subsequently filtered out to maintain
data quality. This high dropout rate highlights the need to standardize material identifiers to further
make the database properly searchable and interoperable. Lastly, entries where the extraction failed
according to the LLM-as-a-judge (vide infra, a materials extraction score equal to one) were filtered
out (13%), likely due to the complex ontology enforced.

A.2 Synthesis Extraction

Manual annotations Seven material scientists cross-manually annotated a total of 35 papers ([37,
38,139, 140,141,142, 143,144,145, 146,147, 48,149,150, 51,152,153, 54,155, |56, 157,158, 59, 160, 61, 62, 63,
64,165,|66, 67] by inferring synthesis procedures from a sample picked at random among each of
the following sources: arXiV, ChemRxiv, OMG24 (1 to 1 ratio, stratified sampling). The synthesis
procedures were manually reviewed for correctness, completeness, and adherence to a pre-defined
structured ontology. Note that this process ensured the relevant information was extracted as it was
in the text, and didn’t aim to directly assess scientific accuracy. To the material scientists’ capacity,
where relevant but ambiguous terms from the experimental workflows needed to be assessed, more
than one annotator was consulted and a consensus was reached in order to maintain the consistency
throughout the process.

Each validation assessed whether the LLM-extracted synthesis procedures were consistent with the
original text. The annotators noted down any missing, incorrect or hallucinated content generated
and attributed detailed scores for each procedure. A total of seven scoring criteria were used, ranging
from 1 (poor) to 5 (excellent) in 0.5 increments:
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* Structural completeness score: Coverage of ontology-relevant information, including
materials, synthesis steps, equipment, conditions, etc.

» Material extraction score: accuracy and completeness of the extracted materials, including
names, quantities, units, and purities.

* Process steps score: correctness and organization of the procedural steps, including the
sequence and classification of synthesis actions.

* Equipment extraction score: completeness and accuracy in identifying experimental
apparatus, including vendor names and operational settings where available.

* Conditions extraction score: correctness of temperature, pressure, duration, and atmo-
spheric conditions, along with unit consistency.

* Semantic accuracy score: the degree to which the structured extraction preserved the
scientific meaning and contextual integrity of the original description.

* Format compliance score: adherence of the structured data to the ontology schema and
data type requirements.

Finally, an overall score was computed as the mean of the individual criteria, with a final reasoning
field summarizing strengths, weaknesses, and suggestions for improvement.

A.2.1 Ontology

Figure[7 and Table[I show the ontology developed in this work. We abstracted a broad synthesis
procedure as a sequence of steps with actions, conditions, equipment and an associated material, as
well as starting materials. Note that in the library released in this work, the ontology can be adapted
to custom cases, e.g. specialized syntheses for catalysts or polymers. The ontology can be adapted
from the GeneralSynthesisOntology class.
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Figure 7: Visual representation of the hierarchical ontology for structuring synthesis procedures.
The ontology organizes information from a global level (target compound, synthesis method) down
to sequential process steps. Each step encapsulates detailed information about the specific actions,
materials, equipment, and conditions involved, ensuring data consistency and machine-readability

(Table[I).

A.2.2 Domain expert — LLLM as a judge comparison

The high Spearman correlation demonstrates that the LLM has demonstrated the ability to distinguish
better from worse extractions, which is practically valuable as the rank-order of scores between
humans and LLM-judge will be similar. The exact agreement is lower (Cohen’s « = 0.44), but this
is a result of calibration differences rather than fundamental disagreement. Discrepancies typically
arise when literature descriptions are vague or incomplete — experts may infer plausible synthesis
details, whereas the LLM more strictly penalizes under-specified inputs.

Example 1: Lower Agreement (Material: Au—OLC) This paper demonstrated significant dis-
agreement between the LLM and human validations, with the LLM consistently overestimating
extraction quality. The most substantial disagreements occurred in Structural Completeness and
Process Steps (both 2.0 point differences), stemming from fundamental misidentification of key
synthesis components. Most critically, the extraction incorrectly labeled the gold precursor as "chloro-
platinic acid"—a platinum-containing compound that would be chemically impossible to use for gold
nanoparticle synthesis. Additionally, the system missed essential materials including water and mixed
acid, and misclassified the annealing and hydrothermal treatment as a generic "heat" action rather
than the specific synthesis method. In contrast, the other metal-OLC materials (Pt-OLC, Pd-OLC,
Ag-OLC) extracted from the same paper achieved higher overall scores, suggesting that the extraction
difficulties were specific to the Au-OLC synthesis description rather than a systematic issue with
the paper’s clarity. The LLM’s overconfidence in its extraction quality, despite these fundamental
chemical and procedural errors, highlights the critical importance of human validation for ensuring
extraction accuracy in complex nanomaterial synthesis procedures.
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Table 1: Detailed structure of the GeneralSynthesisOntology scheme for the standardized rep-
resentation of asynthesis procedure. Note that the type (material category) and synthesis method
are chosen from a pre-determined list of verbs. The General Synthesis Ontology contains the target
compound, synthesis method, overall materials and equipment. The Process Steps object is sequential
and contains ordered operations with specific actions, local materials, equipment, and conditions.
Materials (Chemical identity, quantities, specifications, and vendor), Equipment (Instrumentation
with settings and vendor information), Conditions (Environmental parameters: temperature, time,
pressure, atmosphere, pH) are set.

Component Attributes Description & Examples
compound Chemical composition and description
Target Compound type Materjal category: metals.& alloys, ceramics, nano-
materials, polymers, semiconductors, etc.
synthesis method Technique: sol-gel, hydrothermal, CVD, precipita-
tion, electrodeposition, etc.
notes Additional observations or variations
name Chemical name (e.g., Nickel Nitrate, Deionized
Water)
Material amount Quantity used (numeric value)
unit Mass (g, mg), Volume (mL, L), Molar (mol, mmol),
Concentration (M, mM), etc.
vendor Supplier information
purity Grade specification (99%, ACS grade, etc.)
name Instrument type (autoclave, tube furnace, magnetic
Equipment stirrer)
vendor Manufacturer (Thermo Fisher, Agilent, Bruker,
etc.)
settings Operating parameters (500 rpm, heating rate
5°C/min)
temperature Process temperature with units (°C, K, °F)
duration Time period with units (h, min, s, days)
pressure Applied pressure with units (atm, bar, Pa, torr)
C s atmosphere Gas environment (air, No, Ho, Ar, vacuum)
onditions .
stirring Boolean and speed (rpm)
pH Solution acidity/basicity

Process Step

step number
action

Sequential order in procedure
Primary operation: add, mix, heat, cool, reflux,
age, filter, wash, dry, etc.

description Detailed procedure text

materials List of materials used in this step
equipment List of equipment used in this step
conditions Environmental parameters for this step

Example 2: High Agreement (Material: Fluorapatite-Titania Nanocomposite) This example
demonstrates excellent agreement between LLM and human evaluations, with perfect consensus
across six of seven criteria and only a minor 0.5-point difference in Semantic Accuracy. The extrac-
tion successfully captured all key aspects of the mechano-chemical synthesis procedure, correctly
identifying the starting materials (CaHPO,, Ca(OH),, CaF,, and TiO,), process steps (mixing, ball
milling, annealing), and reaction conditions. The LLM accurately extracted specific parameters
such as the 20 wt% TiO, content, 600 rpm milling speed, and 700°C annealing temperature, while
properly classifying the synthesis method as ball milling followed by thermal treatment.

Furthermore, the LLM only evaluates synthesis procedures that are extracted, and does not point out
procedures that failed to extract.
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Table 2: Comparing domain expert evaluations to LLM-as-a-judge. plexp, i1/2,cap a0d Oeyp refer to
the mean, median and standard deviation for all six annotators and pipas, ph1 /2, L and op s to
the mean, median and standard deviation of the LLM (Gemini-2.0-flash), respectively.

Criterion Spearman p-value Cohen ICC(2,1) ICCB3,1) flewp Hi1/2,cap OCexp HMLLM  Haj2,LLM  OLLM
Structural Completeness 0.4209 0.0004 02029  0.2286 0.2304  4.12 4.00 0.65  4.02 4.00 0.40
Material Extraction 0.7107 0.0002  0.5790  0.5996 0.5964  4.08 4.00 0.89 4.11 4.00 0.59
Process Steps 0.5547 0.0002  0.2867  0.2620 02626  4.15 425 082 427 4.25 0.55
Equipment Extraction 0.5842 0.0002 0.6287  0.6229 0.6325  4.05 4.50 1.19  3.80 4.00 1.18
Conditions Extraction 0.6201 0.0002 0.4747  0.4283 0.4565  4.27 4.00 0.70  4.01 4.00 0.68
Semantic Accuracy 0.5407 0.0002 0.3919  0.4170 04133 439 4.50 0.64  4.39 4.50 0.38
Format Compliance 0.2690 0.0350 0.1129  0.2141 02137 477 5.00 0.53  4.83 5.00 0.30
Overall 0.7195 0.0002  0.4407  0.5411 0.5399 425 4.30 052 4.20 4.25 0.42

Table 3: Evaluation scores for a low-agreement synthesis procedure extraction for Au-OLC from
paper id 9a889c1a671fd3cae48285eaa95069d189d02fe3443.

Criterion Human LLM Difference
Structural Completeness 2.0 4.0 2.0
Material Extraction 2.0 3.0 1.0
Process Steps 2.0 4.0 2.0
Equipment Extraction 5.0 4.0 1.0
Conditions Extraction 5.0 4.5 0.5
Semantic Accuracy 2.0 35 1.5
Format Compliance 4.0 5.0 1.0
Overall 3.1 4.0 0.9

A.2.3 Scaling LLM-as-a-judge across the dataset

Figure [8} Figure [9, Figure [IT, Figure [10, Figure [I2, Figure [I3, Table [5 and Table [6 show the
performance of LL.M-as-a-judge across the dataset. For the sample on which we assess human—
LLM agreement (n = 66), we report Spearman rank correlations (p) between human and model
scores, but compute their p-values using a permutation test (10,000 resamples, two-sided) rather than
relying on the standard asymptotic approximation. This choice is motivated by the modest sample
size and the bounded, quasi-ordinal nature of the scores, which induce many ties and can render
asymptotic p-values anticonservative and unreliable. As the SciPy documentation recommends “for
small samples, consider performing a permutation test instead of relying on the asymptotic p-value,”
especially when ties and discrete data violate large-sample assumptions. The permutation procedure
generates the exact finite-sample null distribution of p by permuting only one input (human scores)
relative to the other while preserving marginal distributions. This approach provides valid inference
under exchangeability, naturally handles ties, and ensures robust significance testing even with small,
discrete datasets.

*https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.spearmanr . html
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Table 4: Evaluation scores for a high-agreement synthesis procedure extraction for Fluorapatite—
Titania Nanocomposite from paper id ccc7c¢5d70ae3ca3f9¢975d0dc3b4d631586¢1586.

Criterion Human LLM Difference

Structural Completeness 4.0 4.0 0.0
Material Extraction 4.0 4.0 0.0
Process Steps 4.5 4.5 0.0
Equipment Extraction 4.0 4.0 0.0
Conditions Extraction 4.5 4.5 0.0
Semantic Accuracy 4.0 4.5 0.5
Format Compliance 5.0 5.0 0.0
Overall 44 4.3 0.1
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Figure 9: Distribution of LLM-judged overall extraction scores across different synthesis methods
(condition extraction and semantic accuracy score). See Table E for the full score overview. Each
violin plot shows the probability density of the scores for a given synthesis type.

combustion

ball milling

atomic layer deposition
PVD

solid-state

spark plasma sintering
coprecipitation

wet impregnation

arc melting & induction melting
microwave-assisted
pulsed laser deposition
hydrothermal
lithographic patterning
CVvD

molecular beam epitaxy
precipitation
solvothermal
solution-based
mechanical mixing
self-assembly

sol-gel

electrochemical deposition
other

template-directed

float zone & Bridgman
flux growth

chemical bath deposition

Process Steps

0 2 4

Equipment Extraction

800

700

600

500

Y
o
o
juno) ajdwes

300

200

100

Figure 10: Distribution of LLM-judged overall extraction scores across different synthesis methods
(process steps and equipment extraction score). See Table 5| for the full score overview. Each violin
plot shows the probability density of the scores for a given synthesis type.

18



] 800

combustion -

ball milling

atomic layer deposition
PVD

solid-state -

spark plasma sintering
coprecipitation

wet impregnation

arc melting & induction melting [
microwave-assisted -
pulsed laser deposition -
hydrothermal -
lithographic patterning
CVvD

molecular beam epitaxy -
precipitation
solvothermal - —
solution-based
mechanical mixing
self-assembly -

sol-gel

electrochemical deposition -
other —

template-directed

float zone & Bridgman
flux growth |

chemical bath deposition )
0 2

Format Compliance Overall

L

700

600

» w

o o

o o
juno) 3jdwes

w
o
o

200

100

WL LU b d gt

Figure 11: Distribution of LLM-judged overall extraction scores across different synthesis methods
(format compliance and overall score). See Table[5 for the full score overview. Each violin plot
shows the probability density of the scores for a given synthesis type.

composites [

metals & alloys
nanomaterials

ceramics & glasses [
semiconductors & electronic
hybrid & organic-inorganic
framework & porous materials -
polymers & soft matter
two-dimensional materials
functional materials & catalysts
biomaterials & biological

juno) ajdwes

other — —
0 0 0 2 4
Structural Completeness Material Extraction Process Steps Equipment Extraction
——
composites >>
metals & alloys D
nanomaterials { 73
ceramics & glasses 4 g
semiconductors & electronic D T
hybrid & organic-inorganic D o
framework & porous materials 77_/: Q
polymers & soft matter _;2 g
two-dimensional materials 4% )
functional materials & catalysts D
biomaterials & biological -
other 7"\'
o 3 " 0 0 2 4 0
Conditions Extraction Semantic Accuracy Format Compliance Overall

Figure 12: Distribution of LLM-judged overall extraction scores across different material classes.
See Table[6|for a complete overview. Each violin plot shows the probability density of the scores for
a given material category.

19



Table 5: Average LLM-judged extraction scores for the most frequent synthesis methods in the
evaluated dataset subset (N = 2483 procedures). Scores are reported as mean =+ standard deviation
on a 1-5 scale. The Overall Score is the average of all seven evaluation criteria.

Synthesis Structural Material Process Equipment Condition Semantic Format Overall  Count
method pl pl steps extraction extraction accuracy compliance score
other 3.85+0.73 4.14+0.65  4.00+£0.99 3.22+1.55 347+131 4424057 4.83+043 3.99£0.70 803
self-assembly 3.94+0.50 4.16+0.58 4.13+£0.75 3.56£1.53 3.56£1.16 4.494+0.39 4.89+0.26 4.10+0.56 226
solution-based 4.014+0.48 4124057  423+0.61 3.50+£1.32 3.71+£0.90 4.42+040 4.84+0.28 4.12+0.51 180
hydrothermal 3.9940.57 4.09+0.70 4.174£0.86  3.88+1.06 3.89+0.93 4.47+041 4.87£0.27 4.20£0.59 167
solid-state 4.09+0.42 4.29+0.56 4.2940.61 3.96+1.10 4.13£0.76 4.544+0.41 4.92+0.22 4.32+0.44 134
wet impregnation 4.154+0.37 4234047 4424046 3.49+1.20 4.17+£0.60 4.53+040 4.91+023  4.2840.38 92
solvothermal 4.03+£0.52 4.21+0.69 426+0.62 3.47+1.42 380+1.11 4.47+049 4.84+0.37 4.15+£0.57 89
CVD 3.96+0.45 4.16+0.55 4.18+0.74  3.79£1.11  3.71+£0.87 4.474+0.34 4.92+0.22 4.18+£0.46 79
PVD 4.0610.34 4324049 4344042 4.1440.78  3.92+0.71 4.574+0.34 4.90+0.23  4.3240.33 77
sol-gel 3.94+0.65 4.00+0.71 4.20+0.77 3.43£1.30 3.76£1.09 4.46+0.53 4.81+0.31 4.09+0.64 70
electrochemical deposition 3.91+0.49 4.14+0.59 4.12+0.82  3.26+£1.36  3.74+£0.92 4.414+0.37 4.84+0.29 4.06+0.51 56
ball milling 4.1740.50 4214056  438+0.60 4.36+0.93 4.07+0.87 4.51+0.52 4.88+0.34 4.3740.52 54
precipitation 4.03+0.38 4.20+0.58 4.35+0.47 3.36+£1.35 3.82+0.68 4.48+0.38 4.89+0.25 4.16+0.44 47
mechanical mixing 4.01+0.38 4.11+0.36 4.21+0.41  3.67£1.07 3.46+0.93 4.464+0.37 4.90+0.22 4.12+0.39 47
molecular beam epitaxy 4.0040.37 4214054  430+0.63 3.96+1.01 338+1.10 4.46+043 4.87+027 4.17+0.42 46
pulsed laser deposition 3.99+0.35 4.01+0.63 4.11+0.61  4.26+0.78  3.99+0.67 4.46+0.36 4.91+0.19 4254041 40
arc & induction melting 3.99+0.22 4.07+0.69 4204036 4224049 4.01+0.75 4.47+£031 4.92+022 4.27+0.30 37
flux growth 3.45+0.96 3.64+1.14 3594133  288+1.63 2.74+1.47 424+0.69 4.97+0.13  3.64+0.94 29
chemical bath deposition 3.39+0.80 3.66+0.95 329+1.11  2.70+1.65 241+1.47 4.02£0.70 4.80+£0.37 3.47+0.85 28
template-directed 3.75+0.71 3.96+0.85 3.944+0.85 3.29+1.55 3.27+1.41 4334041 4.90+0.25 3.92+0.75 24
atomic layer deposition 4.10+0.33 4.25+0.77 4274057 4.17+0.83  4.17+041 4.60£0.36 4.88+0.22 4.36+0.34 24
combustion 4.46+0.41 4.40+0.51 4.75+£0.39 4424097 4.77£0.39 4.71+0.39 4.94+0.17 4.63£0.28 24
float zone & Bridgman 3.73+0.78 3.70+1.32 3524141  395+125 291+1.41 43240.66 4.91+029 3.87+0.84 22
microwave-assisted 4.05+0.28 4.25+0.53 4324044 4104045 3.80+0.62 4.58+0.24 4.72+0.38 4.26+0.29 20
lithographic patterning 3.87+0.64 4.17+0.49 4.03+£0.67 4.10£0.57 3.67£0.79 4.434+0.53 4.93+0.18 4.18+£0.45 15
coprecipitation 4.2140.33 4124043  450+0.37 3.83+0.83 4.08+0.19 4.62+0.31 4.92+0.19 4.3240.25 12
spark plasma sintering 4.00+0.00 4.05+0.27 4234026 4324034 4142023 4.45+0.15 4.95+0.15 4.32+0.12 11
mechanochemical 3.94+0.88 3.94+0.88 3.89+1.34  4.11£1.27 3.89+1.11 4.44+0.53 4.78+£0.36  4.14+0.79 9
sonochemical 4.084+0.20 4254027 4254027 4.00£0.00 3.83+0.26 4.50+0.00 5.00+0.00  4.2840.08 6
spray pyrolysis 4.331+0.41 4.58+0.38 4.50+0.55 4.67£041 4.25+0.76 4.75+0.27 5.00£0.00 4.58+0.33 6
electrospinning 4.00+0.00 4.00+0.00 4.38+0.25 4.00£0.00 4.12+£0.25 4.384+0.25 5.00£0.00 4.28+0.13 4
ion implantation 3.83+0.29 4.00+£0.00  4.50+0.50 3.83+1.61 3.67+0.58 4.50+0.50  5.00+0.00  4.2040.53 3
liquid-phase epitaxy 4.00+nan 4.00+nan 4.00£nan  2.00+nan  4.00&nan  4.50fnan  5.00%nan 3.904nan 1
incipient wetness impregnation 4.00+nan 4.00+nan 4.00tnan  4.00+nan  4.00+nan  4.50-+nan 5.00+nan  4.204nan 1
arc discharge - - - - - - - - 0
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Figure 13: Distribution of LLM-judged overall extraction scores across different sources from
LeMat-Synth. Each violin plot shows the probability density of the scores for a given synthesis type.
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Table 6: Average LLM-judged extraction scores for the most frequent material types in the evaluated
dataset subset (IN = 2483 procedures). Scores are reported as mean =+ standard deviation on a 1-5
scale. The Overall Score is the average of all seven evaluation criteria.

Material Structural Material Process Equipment Condition Semantic Format Overall  Count
category 1 pl steps extraction extraction accuracy compliance score
nanomaterials 4.01+0.47 4.14+0.57 4.21+0.68 3.65£1.24 3.76+0.97 4.48+0.41 4.85+0.29 4.16£0.51 476

framework & porous materials 3.95+0.57 4.15+£0.67  4.12+0.84  3.45+1.47 3.63+1.19 4.50+0.43  4.88+0.30 4.09+0.61 385
functional materials & catalysts 3.9340.61 4.14+0.63 4.12+0.76  3.32+1.51  3.52+£1.21 4.443+045 4.88+026 4.05+0.61 351

ceramics & glasses 3.94+0.65 4.10+0.77 4.07+£0.95 3.80+1.32 3.83+1.15 4.43+0.53 4.90+0.26  4.1540.67 270
semiconductors & electronic 3.95+0.57 4.16+0.64 4.13+0.84  3.64+1.31 3.60+1.16 4.48+0.42 4.90+0.23 4.13+0.58 255
composites 4.06+0.35 4.23+0.41 4.27+0.54  3.79+£0.97 3.90+0.68 4.51+0.34 4.86+0.26  4.23+0.35 154
other 3.7540.99 4.20+0.69 3.88+1.26 3.26+1.61 3.59+1.36 4.33+0.87 4.71+£0.76  3.96+0.89 152
polymers & soft matter 3.96+0.50 4.134+0.61 4.20+0.68  3.43+£1.38 3.62+1.05 4.42+042 4.84+0.29 4.08+0.54 132
metals & alloys 3.9940.45 4.11+0.75 423+0.66 3.87+1.21 3.78+1.01 4.48+049 4.89+0.31 4.19+0.51 92
two-dimensional materials 3.88+0.71 4.10+0.63 4.05+1.07 3.52+£1.30 3.56+1.10 4.39+£0.49 4.90+0.24  4.06+0.66 89
biomaterials & biological 3.77+0.60 4.014+0.62  4.0240.69 3.48+1.59 3.49+125 4.40+040 4.85+0.30  4.00+0.60 66
hybrid & organic-inorganic 3.93+0.64 4.02+0.70 4.25+0.77 3.49+1.50 3.71+1.23 4.44+038 4.86+0.28 4.10+0.65 51

energy & sustainability 4.31+0.65 4.50+0.46 450+0.46 4.12+1.33  4.19+£0.65 4.69+0.37 4.884+0.23 4.45+045 8

emerging & quantum materials 4.50+0.71 4.50+0.71 4.75+£0.35  4.50+0.71  4.50+0.71 4.75+0.35 4.75£0.35  4.60+0.57 2
liquid materials - - - - - - -

A.3 Figure extraction

Segmenting large figures into sub-plots. To extract individual subplots from figures in research
papers, we employ the DINO model [29] with zero-shot image segmentation. The prompt ’a plot’ is
used to guide the model in localizing subplot regions, with both text and box confidence thresholds set
to 0.3. After initial detection, a post-processing step refines the bounding boxes to ensure complete
coverage of each subplot, including axis labels and tick marks. To distinguish multi-panel figures
from single-plot figures, we retain only bounding boxes that cover less than 50% of the total figure
area; larger boxes are assumed to correspond to entire figures and are excluded. Empirical results
indicate that this approach reliably identifies subplots across a variety of figure types.

Classifying plots with quantitative data. To classify segmented subplots and full-figure plots, we
employ a ResNet-152 model [68], pretrained on ImageNet and fine-tuned on the DocFig dataset [30].
The dataset is split into 19,000 samples for training and 13,000 samples for testing. The model is
trained with default hyperparameters for 20 epochs using the Adam optimizer with a learning rate of
le-3. Our classification task focuses exclusively on the plot types “line chart”, “bar plot” and “scatter
plot” which are relevant for downstream information extraction; qualitative figures are excluded from
further processing. The fine-tuned model achieves an F1-score of 88.03% on the test set, indicating
strong performance in accurately identifying quantitative plots for subsequent analysis.

Extracting data with a vision LLM. To convert these numerical figures into a structured and
interpretable format for further use, we explore the capabilities of advanced vision-language
models to extract data from line plots, focusing on 2D coordinate retrieval. Inspired by [33],
where multimodal models were used to extract and regenerate plots, we use Claude-Sonnet-4
(claude-sonnet-4-20250514) to extract 2D coordinates with their corresponding series names, as
well as metadata fields like titles, axis labels, and units. The model is prompted to output a JSON
object in a predefined schema, which is then parsed into a Pydantic object to ensure data consistency
and structured integration into our data extraction pipeline.

A.3.1 Figure Extraction Evaluation

Manual annotations. For each series, the extracted coordinates are matched to the closest ground
truth points using nearest-neighbor matching. This matching is performed in a normalized coordinate
space, where both x and y axes are scaled to their respective ranges to ensure that errors are comparable
across axes. The normalization scale is computed from the minimum and maximum values of the
ground truth coordinates for each axis. We manually annotate 15 line charts from selected papers in
catalysis [69, 70, 71,[72,(73]. For expanding the pipeline in the future, we plan to annotate larger
samples from a more diverse array of plot types, e.g. scatter, bar and box plots.

The evaluation is based on two error metrics:
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* Root Mean Square Error (RMSE): which penalizes larger errors more heavily due to its
quadratic nature.

* Mean Absolute Error (MAE): which treats all deviations linearly, providing a robust
average error.

To compute the error metrics for a single series, we define the extracted points as:

P=A(zi,yi)|ie{l,....,N}} (1)
and the ground truth points as:
G={@y)|ie{t,....M}} @
Compute the normalization scales for each axis as:
Sz = maxa} —mingj, Sy = maxy; —miny; 3)

For each extracted point (x;, y;), we find the nearest ground truth point by computing the normalized

Euclidean distance:
* N\ 2 x\ 2
Ti — T Yi —Y;
d; = mi -7 =7 4
(752 + (*52) @

The RMSE is then defined as:

&)

and the MAE as:
(6)

A.4 Prompts

This section shows the system prompts employed and the full configurations used (incl. signatures
and LLM configurations) to extract the data presented in this work.

Filtering papers

Analyze the following text and answer the questions in JSON format:
{chunk}
Questions:
1. Does it contain a material synthesis recipe?

(Answer with true or false)
2. If yes, what is the material name?

(Answer with the material name or "N/A" if no recipe)
3. If yes, which category of materials does it belong to?

(Answer with the specific material type or "N/A" if no recipe)
List of material categories:
Metals, Ceramics, Semiconductors, Superconductors, Composites,
Biomaterials, Nanomaterials, Polymers, Magnetic, Textiles, Chemicals, Other
Format your response as a JSON object with the following structure:
{{

"contains_recipe": true/false,

"material_name": "material name or N/A",
"material_category": "material category or N/A"
1
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ss4 Material extraction

You are a helpful assistant that extracts ONLY the final synthesized materials
— from scientific papers.

585

Your task is to identify ONLY the materials that are the final products of
— synthesis procedures described in the paper.

IMPORTANT GUIDELINES:

- ONLY include materials that are the final synthesized products

- DO NOT include starting materials, precursors, supports, gases, solvents, or
— other chemicals used in synthesis

- DO NOT include materials that are just mentioned or characterized but not

— synthesized

- Focus on the main target materials that are actually synthesized

EXAMPLES OF WHAT TO INCLUDE:

- "Ni/A1203" (if Ni is deposited on A1203)

- "Ir/Si02" (if Ir is supported on Si02)

- "LiFeP04 nanoparticles" (if LiFeP04 is synthesized)

- "Co-doped LiFeP04" (if this specific material is synthesized)

EXAMPLES OF WHAT TO EXCLUDE:

- "Ni", "Ir", "Ru" (if these are just precursors)

- "H-ZSM-5", "A1203", "Si02" (if these are just supports)
- "Ammonia", "Argon", "Hydrogen" (gases)

- "Deionized water" (solvents)

- "Ammonium hydroxide" (reagents)

Return a simple comma-separated list of ONLY the final synthesized materials.

If no materials are synthesized in the paper, return "No materials
— synthesized".

Keep the output simple and clean - just the final synthesized material names
— separated by commas.

Configuration (YAML)

architecture:
_target_: 11m_synthesis.transformers.material_extraction.dspy_extraction.DspJ
— yTextExtractor
signature:
_target_: 1lm_synthesis.transformers.material_extraction.dspy_extraction.m
— ake_dspy_text_extractor_signature
signature_name: "TextToMaterials"
instructions: "Extract ONLY the final synthesized materials from the
— publication text."
input_description: "The publication text to extract the final synthesized
— materials from."
output_name: "materials"
output_description: "The final synthesized materials as a comma-separated
— list."
Im:
_target_: 1llm_synthesis.utils.dspy_utils.get_llm_from_name
1lm_name: "gemini-2.0-flash"
model_kwargs:
temperature: 0.0
system_prompt:

586
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_target_: 1llm_synthesis.utils.read_prompt_str_from_txt
prompt_path: "examples/system_prompts/material_extraction/default.txt"

Synthesis extraction

You are a helpful assistant that extracts the structured synthesis for a
— specific material from the paper text.

Focus ONLY on the synthesis procedure for the specified material. Search
— through the entire paper text to find the synthesis procedure that
— describes how this specific material is made.

IMPORTANT: You must output ONLY a valid JSON object with a
< "structured_synthesis" field. Do not include any reasoning, explanations,
— or markdown formatting.

If you cannot find a synthesis procedure for the specified material, return a
— minimal structure with the material name and an empty synthesis.

The JSON output must follow this exact structure:
{
"structured_synthesis": {

"target_compound": "string (required) - should match the specified material

< name",

"target_compound_type": "string (required) - choose from: 'metals &
alloys', 'ceramics & glasses', 'polymers & soft matter', 'composites',
'semiconductors & electronic', 'nanomaterials', 'two-dimensional
materials', 'framework & porous materials', 'biomaterials &
biological', 'liquid materials', 'hybrid & organic-inorganic',
'functional materials', 'energy & sustainability', 'smart & responsive
materials', 'emerging & quantum materials', 'other'",

ynthesis_method": "string (required) - choose from: 'PVD', 'CVD', 'arc
discharge', 'ball milling', 'spray pyrolysis', 'electrospinning',
'sol-gel', 'hydrothermal', 'solvothermal', 'precipitation',
coprecipitation', 'combustion', 'microwave-assisted', 'sonochemical',
'template-directed', 'solid-state', 'flux growth', 'float zomne &
Bridgman', 'arc melting & induction melting', 'spark plasma sintering',
'electrochemical deposition', 'chemical bath deposition', 'liquid-phase
epitaxy', 'self-assembly', 'atomic layer deposition', 'molecular beam
epitaxy', 'pulsed laser deposition', 'ion implantation', 'lithographic
patterning', 'wet impregnation', 'incipient wetness impregnation',
'mechanical mixing', 'other'
"starting_materials": [{"name": "string", "amount": "number or null",
"unit": "string or null", "purity": "string or null", "vendor": "string
or null"}],
"steps": [{"step_number": "integer", "action": "string", "description":
"string or null", "materials": [{"name": "string", "amount": "number or
null", "unit": "string or null", "purity": "string or null", "vendor":
"string or null"}], "equipment": [{"name": "string",
"instrument_vendor": "string or null", "settings": "string or null"}],
"conditions": {"temperature": "number or null", "temp_unit": "string or
null", "duration": "number or null", "time_unit": "string or null",
"pressure": "number or null", "pressure_unit": "string or null",
"atmosphere": "string or null", "stirring": "boolean or null",
"stirring_speed": "number or null", "ph": "number or null"l}}],
"equipment": [{"name": "string", "instrument_vendor": "string or null",
— "settings": "string or null"}],
"notes": "string or null"
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}
}

Do not include any text before or after the JSON object. Output only the JSON.

Configuration (YAML)

architecture:
_target_: llm_synthesis.transformers.synthesis_extraction.dspy_synthesis_extJ
— raction.DspySynthesisExtractor
signature:
_target_: 1lm_synthesis.transformers.synthesis_extraction.dspy_synthesis_e
— xtraction.make_dspy_synthesis_extractor_signature
signature_name: "SynthesisSignature"
instructions: "Extract the structured synthesis for a specific material
— from the paper text."
paper_text_description: "The complete paper text to search for the
— material's synthesis procedure."
material_name_description: "The name of the specific material to extract
— synthesis for."
output_name: "structured_synthesis"
output_description: "The extracted structured synthesis for the specific
— material."
Im:
_target_: llm_synthesis.utils.dspy_utils.get_llm_from_name
1lm_name: "gemini-2.0-flash"
model_kwargs:
temperature: 0.0
max_tokens: 8000
max_retries: 3
system_prompt:
_target_: 1llm_synthesis.utils.read_prompt_str_from_txt
prompt_path: "examples/system_prompts/synthesis_extraction/default.txt"

Figure extraction

For figure extraction, we do not provide a separate DSPy configuration. Unlike material and synthesis
extraction (which are wrapped with DSPy signatures and explicit input/output schemas), the figure
extraction pipeline directly leverages the system prompt together with a Claude API client. In this
setup, the model is invoked with the raw prompt and image data, and the parsing into structured
objects (ExtractedLinePlotData) happens entirely within the custom transformer implementation.
Because no DSPy signature or schema mediation is involved, there is no corresponding YAML
configuration block to display. Instead, the logic is captured in the prompt (shown below) and the
Python implementation excerpted below.

LINE_CHART_PROMPT = """

You will be provided with a line chart. The chart may not be chunked very well,
so you may need to read only the plot in the center of the image.

In the chart, there will be several lines representing different data series.

[

. Identify the different lines by their colors and labels.

2. For each line, extract the coordinates of the points that make up the line.
Do not include any points that are not part of the line.

3. If the chart has metadata such as a title, x-axis label, y-axis labels,
or units, extract that information as well.
Keep the scientific terms in Markdown format.

4. Output the data in the specified format:

Name_of _Line_1: [[x1, y1], [x2, y2], ...]
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title:
x_axis_label:
X_axis_unit:
y_left_axis_label:
y_left_axis_unit:

Do not output any other text, just the data in the format above.
nmnn

Implementation excerpt (Python)

class ClaudeLinePlotDataExtractor(LinePlotDataExtractorInterface):
def __init__(self, model_name: str,

prompt: str = resources.LINE_CHART_PROMPT,
max_tokens: int = 1024,
temperature: float = 0.0):

super () .__init__()

self.claude_client = ClaudeAPIClient (model_name)

self.prompt = prompt

self .max_tokens = max_tokens

self.temperature = temperature

def forward(self, input: FigureInfoWithPaper) -> ExtractedLinePlotData:
figure_base64 = input.base64_data
self.claude_client.reset_cost()
claude_response_obj = self.claude_client.vision_model_api_call(
figure_base64=figure_base64,
prompt=self.prompt,
max_tokens=self.max_tokens,
temperature=self.temperature,
)

return self._parse_into_pydantic(claude_response_obj)

def _parse_into_pydantic(self, response: str) -> ExtractedLinePlotData:
"""Parse text into Pydantic object with regex pattern matching"""

Synthesis evaluation

In this case, the evaluation logic is fully captured within the DSPy configuration itself, so we do not
provide a standalone prompt block. Both the task instructions and the system prompt are directly
embedded inside the configuration file rather than stored separately. The complete configuration is
shown below:

Configuration (YAML)

architecture:
_target_: 1llm_synthesis.metrics.judge.general synthesis_judge.DspyGeneralSyn |
— thesisJudge
signature:
_target_: 1lm_synthesis.metrics.judge.general_synthesis_judge.make_general |
— _synthesis_judge_signature
signature_name: "GeneralSynthesisJudgeSignature"
instructions: >
You are an expert materials scientist and data extraction specialist with
— extensive experience in:
- Synthesis procedure analysis and documentation
- Structured data extraction from scientific literature
- Materials science ontology design and terminology standardization
- Quality assessment of automated scientific information extraction
— systems

Evaluate how well the GeneralSynthesisOntology extraction captures
— synthesis information from
the provided source text.
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IMPORTANT: Do NOT penalize the extraction system for failing to include
— information that is

not present in the original paper. Missing elements should only be

— considered errors if they

were clearly stated in the source but were not extracted. If an element
— 1is absent in both the

source and the extraction, and is correctly left blank or omitted, this
— should be considered

correct and scored highly.

ASSESSMENT FOCUS:
- Completeness: All synthesis components present in the source are
— captured
- Accuracy: Correct values, units, and classifications based on the
— text
- Structure: Proper organization and logical sequencing of elements
- Semantic Preservation: Scientific meaning and intent faithfully
— maintained
- Schema Compliance: Conforms to the expected ontology format and data
— types

EVALUATION CRITERIA (Score 1-5 for each):

Structural Completeness - Extraction of all relevant synthesis
components from the source (materials, steps, equipment,
conditions)

Material Extraction - Correct names, quantities, units, purities as
specified in the paper

Process Steps - Accurate step order and correct action
classification

Equipment Extraction - Proper identification of all equipment
explicitly mentioned

Conditions Extraction - Accurate recording of parameters such as
temperature, time, atmosphere, pressure, etc.

Semantic Accuracy - Faithful preservation of scientific meaning
without misinterpretation

Format Compliance - Adherence to ontology schema, data types, and
field structure

USRS R

For each criterion:

Assign a score between 1 and 5

- Provide detailed technical reasoning for the assigned score

- Dffer specific, constructive recommendations for improvement, if
— applicable

Im:
_target_: 1llm_synthesis.utils.dspy_utils.get_llm_from_name
1lm_name: "gemini-2.0-flash"
model_kwargs:
temperature: 0.1
max_tokens: 4096
system_prompt: >
You are a senior materials scientist and data extraction expert with deep
— expertise in:
- Inorganic and organic synthesis methodologies
- Laboratory instrumentation and experimental workflows
- Chemical nomenclature, stoichiometry, and unit conventions
- Optimization of synthesis conditions and reaction parameters
- Structured data modeling and materials science ontology design
- Evaluation methodologies for automated information extraction systems

Your assessments should reflect best practices in synthesis reporting and
— uphold the highest
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standards of scientific accuracy, reproducibility, and structured data
— quality.

When evaluating extracted synthesis data:
- Rely on your domain expertise to assess technical correctness,
— semantic fidelity, and structural organization
- Emphasize clarity, precision, and alignment with real-world
— experimental protocols
- Consider the intended schema and use context to assess compliance and
— completeness
- Do not penalize the extraction system for omitting elements that were
— not explicitly present in the source text

Your evaluation should be technically rigorous, yet fair, grounded in
— both materials science principles and data extraction best practices.

enable_reasoning_traces: true
confidence_threshold: 0.7
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