
A Supplementary Information387

A.1 Data388

This section outlines details for the dataset (Appendix A.1.1) as well as the data curation (Ap-389

pendix A.1.2) presented in this work.390

A.1.1 Dataset statistics391

We classify each material into a set of predetermined material categories and synthesis methods, as392

determined by the recommendation of domain experts.393

Material categories With the goal of covering practically the entire space of material science394

synthesis, the following material categories were chosen by domain experts of our group and are395

employed in this work: metals & alloys, ceramics & glasses, polymers & soft matter, composites,396

semiconductors & electronic, nanomaterials, two-dimensional materials, framework & porous materi-397

als, biomaterials & biological, liquid materials, hybrid & organic-inorganic, functional materials &398

catalysts, energy & sustainability, smart & responsive materials, emerging & quantum materials. Any399

category not covered in the list is assigned the label "other".400

Synthesis methods Similarly, the following material categories were chosen by domain experts of401

our group and are employed in this work: PVD, CVD, arc discharge, ball milling, spray pyrolysis,402

electrospinning, sol-gel, hydrothermal, solvothermal, precipitation, coprecipitation, combustion,403

microwave-assisted, sonochemical, template-directed, solid-state, flux growth, float zone & Bridgman,404

arc melting & induction melting, spark plasma sintering, electrochemical deposition, chemical bath405

deposition, liquid-phase epitaxy, self-assembly, atomic layer deposition, molecular beam epitaxy,406

pulsed laser deposition, ion implantation, lithographic patterning, wet impregnation, incipient wetness407

impregnation, mechanical mixing, solution-based, mechanochemical. Any category not covered in408

the list is assigned the label "other".409

Figure 4: Statistics of the dataset evaluated in this work. (a) Distribution of action steps and (b)
the 15 most common actions. (c) Distribution of the number of starting materials and (d) the 10
most common starting materials. Note that similarly to material identifiers, starting materials are not
standardized.
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Figure 5: Synthesis procedures and methods for the evaluation set, colored according to the source of
the underlying publication (arXiV, ChemRxiv, OMG24).

Note that due to the costs of creating the whole dataset which is expected to contain 100-150k410

synthesis procedures, we perform all evaluations on a random subset of 2.5k synthesis procedures411

(526 stemming from the arXiV, 1252 ChemRxiv, 706 omg24 (239 Nature, 279 RSC, 188 Springer).412

While this split is not stratified with respect to the entire corpus, we claim that it is a representative413

sample (approx. 2-2.5%) that covers a broad array of synthesis methods, see Table 5 and Table 6. We414

are currently rolling out the inference pipeline to the whole corpus of 81k publications.415

A.1.2 Data acquisition416

arXiV From over two million articles on arXiV in total, we fetched 381116 publications417

in the category cond-mat from 1992 to April 2025. We filtered down the corpus to 62,267418

publications that contain synthesis procedures by parsing the PDF with Marker and calling419

Mistral-Small-3.1-24B-Instruct-2503 on a cluster of 8xA100-PG509-200 with 40GB of420

memory each. The text from the PDF (if length larger the max tokens, chunk paper) is passed to421

the LLM to return whether it contains a synthesis procedure, the material name and category, see422

Appendix A.4.423

ChemRxiv From over 30000 articles with the cutoff date of June 2025, we fetched 2910 publications424

in the categories Solid State Chemistry, Solution Chemistry, Solvates, Spectroscopy (Inorg.), Structure,425

Supramolecular Chemistry (Inorg.), Supramolecular Chemistry (Org.), Surface, Surfactants, Thermal426

Conductors and Insulators, Thin Films, Wastes, Water Purification, with the ChemRxiv API. We427

obtain 1500 papers with synthesis procedures. If available, a supplementary file is appended to the428

main text.429

Open Materials Guide 2024 (OMG24) The data collection and curation from the Semantic Scholar430

API is described in [21]. It contains 17667 synthesis procedures with ten different synthesis types431

from open access publications. We fetched the PDFs from the URLS provided in the published432

dataset, downloaded it and proceeded with parsing the text and images. As the papers in OMG24 are433

already pre-filtered to contain synthesis procedures, no filtering step is needed.434

PDF post-processing To extract text and figures from PDFs obtained from the arXiV, we use435

marker-pdf, an open-source library, with Gemini 2.0 flash (gemini-2.0-flash). We strip436

the images from the text, which is converted into Markdown format, and save the images separately,437
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Figure 6: Synthesis procedures and methods for the evaluation set, colored according to the material
category.

but such that they can be reinserted into the Markdown text. For the ChemRxiv and OMG24, we438

used Mistral-OCR (mistral-ocr-latest) to extract images and text in Markdown format. We439

empirically tested Docling [36], an open source alternative to Mistral-OCR, and found Mistral-OCR440

to empirically perform better and infer results faster. For post-processing the text, we removed441

markdown image identifiers and the References section (= 50 lines after the heading References with442

regex).443

Conversely, entries for which no valid synthesized material was found (23%), the name consisted444

of a character and/or symbol only (12%) or the material was described with an unclear identifier445

("Intermediate 1", "8a", "Compound B" etc.) (0.3%) were subsequently filtered out to maintain446

data quality. This high dropout rate highlights the need to standardize material identifiers to further447

make the database properly searchable and interoperable. Lastly, entries where the extraction failed448

according to the LLM-as-a-judge (vide infra, a materials extraction score equal to one) were filtered449

out (13%), likely due to the complex ontology enforced.450

A.2 Synthesis Extraction451

Manual annotations Seven material scientists cross-manually annotated a total of 35 papers ([37,452

38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63,453

64, 65, 66, 67] by inferring synthesis procedures from a sample picked at random among each of454

the following sources: arXiV, ChemRxiv, OMG24 (1 to 1 ratio, stratified sampling). The synthesis455

procedures were manually reviewed for correctness, completeness, and adherence to a pre-defined456

structured ontology. Note that this process ensured the relevant information was extracted as it was457

in the text, and didn’t aim to directly assess scientific accuracy. To the material scientists’ capacity,458

where relevant but ambiguous terms from the experimental workflows needed to be assessed, more459

than one annotator was consulted and a consensus was reached in order to maintain the consistency460

throughout the process.461

Each validation assessed whether the LLM-extracted synthesis procedures were consistent with the462

original text. The annotators noted down any missing, incorrect or hallucinated content generated463

and attributed detailed scores for each procedure. A total of seven scoring criteria were used, ranging464

from 1 (poor) to 5 (excellent) in 0.5 increments:465
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• Structural completeness score: Coverage of ontology-relevant information, including466

materials, synthesis steps, equipment, conditions, etc.467

• Material extraction score: accuracy and completeness of the extracted materials, including468

names, quantities, units, and purities.469

• Process steps score: correctness and organization of the procedural steps, including the470

sequence and classification of synthesis actions.471

• Equipment extraction score: completeness and accuracy in identifying experimental472

apparatus, including vendor names and operational settings where available.473

• Conditions extraction score: correctness of temperature, pressure, duration, and atmo-474

spheric conditions, along with unit consistency.475

• Semantic accuracy score: the degree to which the structured extraction preserved the476

scientific meaning and contextual integrity of the original description.477

• Format compliance score: adherence of the structured data to the ontology schema and478

data type requirements.479

Finally, an overall score was computed as the mean of the individual criteria, with a final reasoning480

field summarizing strengths, weaknesses, and suggestions for improvement.481

A.2.1 Ontology482

Figure 7 and Table 1 show the ontology developed in this work. We abstracted a broad synthesis483

procedure as a sequence of steps with actions, conditions, equipment and an associated material, as484

well as starting materials. Note that in the library released in this work, the ontology can be adapted485

to custom cases, e.g. specialized syntheses for catalysts or polymers. The ontology can be adapted486

from the GeneralSynthesisOntology class.487
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Figure 7: Visual representation of the hierarchical ontology for structuring synthesis procedures.
The ontology organizes information from a global level (target compound, synthesis method) down
to sequential process steps. Each step encapsulates detailed information about the specific actions,
materials, equipment, and conditions involved, ensuring data consistency and machine-readability
(Table 1).

A.2.2 Domain expert – LLM as a judge comparison488

The high Spearman correlation demonstrates that the LLM has demonstrated the ability to distinguish489

better from worse extractions, which is practically valuable as the rank-order of scores between490

humans and LLM-judge will be similar. The exact agreement is lower (Cohen’s ω = 0.44), but this491

is a result of calibration differences rather than fundamental disagreement. Discrepancies typically492

arise when literature descriptions are vague or incomplete — experts may infer plausible synthesis493

details, whereas the LLM more strictly penalizes under-specified inputs.494

Example 1: Lower Agreement (Material: Au–OLC) This paper demonstrated significant dis-495

agreement between the LLM and human validations, with the LLM consistently overestimating496

extraction quality. The most substantial disagreements occurred in Structural Completeness and497

Process Steps (both 2.0 point differences), stemming from fundamental misidentification of key498

synthesis components. Most critically, the extraction incorrectly labeled the gold precursor as "chloro-499

platinic acid"—a platinum-containing compound that would be chemically impossible to use for gold500

nanoparticle synthesis. Additionally, the system missed essential materials including water and mixed501

acid, and misclassified the annealing and hydrothermal treatment as a generic "heat" action rather502

than the specific synthesis method. In contrast, the other metal-OLC materials (Pt-OLC, Pd-OLC,503

Ag-OLC) extracted from the same paper achieved higher overall scores, suggesting that the extraction504

difficulties were specific to the Au-OLC synthesis description rather than a systematic issue with505

the paper’s clarity. The LLM’s overconfidence in its extraction quality, despite these fundamental506

chemical and procedural errors, highlights the critical importance of human validation for ensuring507

extraction accuracy in complex nanomaterial synthesis procedures.508
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Table 1: Detailed structure of the GeneralSynthesisOntology scheme for the standardized rep-
resentation of asynthesis procedure. Note that the type (material category) and synthesis method
are chosen from a pre-determined list of verbs. The General Synthesis Ontology contains the target
compound, synthesis method, overall materials and equipment. The Process Steps object is sequential
and contains ordered operations with specific actions, local materials, equipment, and conditions.
Materials (Chemical identity, quantities, specifications, and vendor), Equipment (Instrumentation
with settings and vendor information), Conditions (Environmental parameters: temperature, time,
pressure, atmosphere, pH) are set.

Component Attributes Description & Examples

Target Compound
compound Chemical composition and description
type Material category: metals & alloys, ceramics, nano-

materials, polymers, semiconductors, etc.
synthesis method Technique: sol-gel, hydrothermal, CVD, precipita-

tion, electrodeposition, etc.
notes Additional observations or variations

Material

name Chemical name (e.g., Nickel Nitrate, Deionized
Water)

amount Quantity used (numeric value)
unit Mass (g, mg), Volume (mL, L), Molar (mol, mmol),

Concentration (M, mM), etc.
vendor Supplier information
purity Grade specification (99%, ACS grade, etc.)

Equipment
name Instrument type (autoclave, tube furnace, magnetic

stirrer)
vendor Manufacturer (Thermo Fisher, Agilent, Bruker,

etc.)
settings Operating parameters (500 rpm, heating rate

5°C/min)

Conditions

temperature Process temperature with units (°C, K, °F)
duration Time period with units (h, min, s, days)
pressure Applied pressure with units (atm, bar, Pa, torr)
atmosphere Gas environment (air, N2, H2, Ar, vacuum)
stirring Boolean and speed (rpm)
pH Solution acidity/basicity

Process Step

step number Sequential order in procedure
action Primary operation: add, mix, heat, cool, reflux,

age, filter, wash, dry, etc.
description Detailed procedure text
materials List of materials used in this step
equipment List of equipment used in this step
conditions Environmental parameters for this step

Example 2: High Agreement (Material: Fluorapatite–Titania Nanocomposite) This example509

demonstrates excellent agreement between LLM and human evaluations, with perfect consensus510

across six of seven criteria and only a minor 0.5-point difference in Semantic Accuracy. The extrac-511

tion successfully captured all key aspects of the mechano-chemical synthesis procedure, correctly512

identifying the starting materials (CaHPO4, Ca(OH)2, CaF2, and TiO2), process steps (mixing, ball513

milling, annealing), and reaction conditions. The LLM accurately extracted specific parameters514

such as the 20 wt% TiO2 content, 600 rpm milling speed, and 700→C annealing temperature, while515

properly classifying the synthesis method as ball milling followed by thermal treatment.516

Furthermore, the LLM only evaluates synthesis procedures that are extracted, and does not point out517

procedures that failed to extract.518
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Table 2: Comparing domain expert evaluations to LLM-as-a-judge. µexp, µ1/2,exp and εexp refer to
the mean, median and standard deviation for all six annotators and µLLM , µ1/2,LLM and εLLM to
the mean, median and standard deviation of the LLM (Gemini-2.0-flash), respectively.

Criterion Spearman p-value Cohen ICC(2,1) ICC(3,1) µexp µ1/2,exp εexp µLLM µ1/2,LLM εLLM

Structural Completeness 0.4209 0.0004 0.2029 0.2286 0.2304 4.12 4.00 0.65 4.02 4.00 0.40
Material Extraction 0.7107 0.0002 0.5790 0.5996 0.5964 4.08 4.00 0.89 4.11 4.00 0.59
Process Steps 0.5547 0.0002 0.2867 0.2620 0.2626 4.15 4.25 0.82 4.27 4.25 0.55
Equipment Extraction 0.5842 0.0002 0.6287 0.6229 0.6325 4.05 4.50 1.19 3.80 4.00 1.18
Conditions Extraction 0.6201 0.0002 0.4747 0.4283 0.4565 4.27 4.00 0.70 4.01 4.00 0.68
Semantic Accuracy 0.5407 0.0002 0.3919 0.4170 0.4133 4.39 4.50 0.64 4.39 4.50 0.38
Format Compliance 0.2690 0.0350 0.1129 0.2141 0.2137 4.77 5.00 0.53 4.83 5.00 0.30

Overall 0.7195 0.0002 0.4407 0.5411 0.5399 4.25 4.30 0.52 4.20 4.25 0.42

Table 3: Evaluation scores for a low-agreement synthesis procedure extraction for Au-OLC from
paper id 9a889c1a671fd3cae48285eaa95069d189d02fe3443.

Criterion Human LLM Difference
Structural Completeness 2.0 4.0 2.0
Material Extraction 2.0 3.0 1.0
Process Steps 2.0 4.0 2.0
Equipment Extraction 5.0 4.0 1.0
Conditions Extraction 5.0 4.5 0.5
Semantic Accuracy 2.0 3.5 1.5
Format Compliance 4.0 5.0 1.0

Overall 3.1 4.0 0.9

A.2.3 Scaling LLM-as-a-judge across the dataset519

Figure 8, Figure 9, Figure 11, Figure 10, Figure 12, Figure 13, Table 5 and Table 6 show the520

performance of LLM-as-a-judge across the dataset. For the sample on which we assess human–521

LLM agreement (n = 66), we report Spearman rank correlations (ϑ) between human and model522

scores, but compute their p-values using a permutation test (10,000 resamples, two-sided) rather than523

relying on the standard asymptotic approximation. This choice is motivated by the modest sample524

size and the bounded, quasi-ordinal nature of the scores, which induce many ties and can render525

asymptotic p-values anticonservative and unreliable. As the SciPy documentation recommends,3 “for526

small samples, consider performing a permutation test instead of relying on the asymptotic p-value,”527

especially when ties and discrete data violate large-sample assumptions. The permutation procedure528

generates the exact finite-sample null distribution of ϑ by permuting only one input (human scores)529

relative to the other while preserving marginal distributions. This approach provides valid inference530

under exchangeability, naturally handles ties, and ensures robust significance testing even with small,531

discrete datasets.532

3https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.spearmanr.html
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Table 4: Evaluation scores for a high-agreement synthesis procedure extraction for Fluorapatite–
Titania Nanocomposite from paper id ccc7c5d70ae3ca3f9e975d0dc3b4d631586c1586.

Criterion Human LLM Difference
Structural Completeness 4.0 4.0 0.0
Material Extraction 4.0 4.0 0.0
Process Steps 4.5 4.5 0.0
Equipment Extraction 4.0 4.0 0.0
Conditions Extraction 4.5 4.5 0.0
Semantic Accuracy 4.0 4.5 0.5
Format Compliance 5.0 5.0 0.0

Overall 4.4 4.3 0.1

Figure 8: Distribution of LLM-judged overall extraction scores across different synthesis methods
(structural completeness and material extraction score). See Table 5 for the full score overview. Each
violin plot shows the probability density of the scores for a given synthesis type.
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Figure 9: Distribution of LLM-judged overall extraction scores across different synthesis methods
(condition extraction and semantic accuracy score). See Table 5 for the full score overview. Each
violin plot shows the probability density of the scores for a given synthesis type.

Figure 10: Distribution of LLM-judged overall extraction scores across different synthesis methods
(process steps and equipment extraction score). See Table 5 for the full score overview. Each violin
plot shows the probability density of the scores for a given synthesis type.
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Figure 11: Distribution of LLM-judged overall extraction scores across different synthesis methods
(format compliance and overall score). See Table 5 for the full score overview. Each violin plot
shows the probability density of the scores for a given synthesis type.

Figure 12: Distribution of LLM-judged overall extraction scores across different material classes.
See Table 6 for a complete overview. Each violin plot shows the probability density of the scores for
a given material category.
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Table 5: Average LLM-judged extraction scores for the most frequent synthesis methods in the
evaluated dataset subset (N = 2483 procedures). Scores are reported as mean ± standard deviation
on a 1–5 scale. The Overall Score is the average of all seven evaluation criteria.

Synthesis Structural Material Process Equipment Condition Semantic Format Overall Count
method completeness completeness steps extraction extraction accuracy compliance score

other 3.85±0.73 4.14±0.65 4.00±0.99 3.22±1.55 3.47±1.31 4.42±0.57 4.83±0.43 3.99±0.70 803
self-assembly 3.94±0.50 4.16±0.58 4.13±0.75 3.56±1.53 3.56±1.16 4.49±0.39 4.89±0.26 4.10±0.56 226
solution-based 4.01±0.48 4.12±0.57 4.23±0.61 3.50±1.32 3.71±0.90 4.42±0.40 4.84±0.28 4.12±0.51 180
hydrothermal 3.99±0.57 4.09±0.70 4.17±0.86 3.88±1.06 3.89±0.93 4.47±0.41 4.87±0.27 4.20±0.59 167
solid-state 4.09±0.42 4.29±0.56 4.29±0.61 3.96±1.10 4.13±0.76 4.54±0.41 4.92±0.22 4.32±0.44 134
wet impregnation 4.15±0.37 4.23±0.47 4.42±0.46 3.49±1.20 4.17±0.60 4.53±0.40 4.91±0.23 4.28±0.38 92
solvothermal 4.03±0.52 4.21±0.69 4.26±0.62 3.47±1.42 3.80±1.11 4.47±0.49 4.84±0.37 4.15±0.57 89
CVD 3.96±0.45 4.16±0.55 4.18±0.74 3.79±1.11 3.71±0.87 4.47±0.34 4.92±0.22 4.18±0.46 79
PVD 4.06±0.34 4.32±0.49 4.34±0.42 4.14±0.78 3.92±0.71 4.57±0.34 4.90±0.23 4.32±0.33 77
sol-gel 3.94±0.65 4.00±0.71 4.20±0.77 3.43±1.30 3.76±1.09 4.46±0.53 4.81±0.31 4.09±0.64 70
electrochemical deposition 3.91±0.49 4.14±0.59 4.12±0.82 3.26±1.36 3.74±0.92 4.41±0.37 4.84±0.29 4.06±0.51 56
ball milling 4.17±0.50 4.21±0.56 4.38±0.60 4.36±0.93 4.07±0.87 4.51±0.52 4.88±0.34 4.37±0.52 54
precipitation 4.03±0.38 4.20±0.58 4.35±0.47 3.36±1.35 3.82±0.68 4.48±0.38 4.89±0.25 4.16±0.44 47
mechanical mixing 4.01±0.38 4.11±0.36 4.21±0.41 3.67±1.07 3.46±0.93 4.46±0.37 4.90±0.22 4.12±0.39 47
molecular beam epitaxy 4.00±0.37 4.21±0.54 4.30±0.63 3.96±1.01 3.38±1.10 4.46±0.43 4.87±0.27 4.17±0.42 46
pulsed laser deposition 3.99±0.35 4.01±0.63 4.11±0.61 4.26±0.78 3.99±0.67 4.46±0.36 4.91±0.19 4.25±0.41 40
arc & induction melting 3.99±0.22 4.07±0.69 4.20±0.36 4.22±0.49 4.01±0.75 4.47±0.31 4.92±0.22 4.27±0.30 37
flux growth 3.45±0.96 3.64±1.14 3.59±1.33 2.88±1.63 2.74±1.47 4.24±0.69 4.97±0.13 3.64±0.94 29
chemical bath deposition 3.39±0.80 3.66±0.95 3.29±1.11 2.70±1.65 2.41±1.47 4.02±0.70 4.80±0.37 3.47±0.85 28
template-directed 3.75±0.71 3.96±0.85 3.94±0.85 3.29±1.55 3.27±1.41 4.33±0.41 4.90±0.25 3.92±0.75 24
atomic layer deposition 4.10±0.33 4.25±0.77 4.27±0.57 4.17±0.83 4.17±0.41 4.60±0.36 4.88±0.22 4.36±0.34 24
combustion 4.46±0.41 4.40±0.51 4.75±0.39 4.42±0.97 4.77±0.39 4.71±0.39 4.94±0.17 4.63±0.28 24
float zone & Bridgman 3.73±0.78 3.70±1.32 3.52±1.41 3.95±1.25 2.91±1.41 4.32±0.66 4.91±0.29 3.87±0.84 22
microwave-assisted 4.05±0.28 4.25±0.53 4.32±0.44 4.10±0.45 3.80±0.62 4.58±0.24 4.72±0.38 4.26±0.29 20
lithographic patterning 3.87±0.64 4.17±0.49 4.03±0.67 4.10±0.57 3.67±0.79 4.43±0.53 4.93±0.18 4.18±0.45 15
coprecipitation 4.21±0.33 4.12±0.43 4.50±0.37 3.83±0.83 4.08±0.19 4.62±0.31 4.92±0.19 4.32±0.25 12
spark plasma sintering 4.00±0.00 4.05±0.27 4.23±0.26 4.32±0.34 4.14±0.23 4.45±0.15 4.95±0.15 4.32±0.12 11
mechanochemical 3.94±0.88 3.94±0.88 3.89±1.34 4.11±1.27 3.89±1.11 4.44±0.53 4.78±0.36 4.14±0.79 9
sonochemical 4.08±0.20 4.25±0.27 4.25±0.27 4.00±0.00 3.83±0.26 4.50±0.00 5.00±0.00 4.28±0.08 6
spray pyrolysis 4.33±0.41 4.58±0.38 4.50±0.55 4.67±0.41 4.25±0.76 4.75±0.27 5.00±0.00 4.58±0.33 6
electrospinning 4.00±0.00 4.00±0.00 4.38±0.25 4.00±0.00 4.12±0.25 4.38±0.25 5.00±0.00 4.28±0.13 4
ion implantation 3.83±0.29 4.00±0.00 4.50±0.50 3.83±1.61 3.67±0.58 4.50±0.50 5.00±0.00 4.20±0.53 3
liquid-phase epitaxy 4.00±nan 4.00±nan 4.00±nan 2.00±nan 4.00±nan 4.50±nan 5.00±nan 3.90±nan 1
incipient wetness impregnation 4.00±nan 4.00±nan 4.00±nan 4.00±nan 4.00±nan 4.50±nan 5.00±nan 4.20±nan 1
arc discharge - - - - - - - - 0

Figure 13: Distribution of LLM-judged overall extraction scores across different sources from
LeMat-Synth. Each violin plot shows the probability density of the scores for a given synthesis type.
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Table 6: Average LLM-judged extraction scores for the most frequent material types in the evaluated
dataset subset (N = 2483 procedures). Scores are reported as mean ± standard deviation on a 1–5
scale. The Overall Score is the average of all seven evaluation criteria.

Material Structural Material Process Equipment Condition Semantic Format Overall Count
category completeness completeness steps extraction extraction accuracy compliance score

nanomaterials 4.01±0.47 4.14±0.57 4.21±0.68 3.65±1.24 3.76±0.97 4.48±0.41 4.85±0.29 4.16±0.51 476
framework & porous materials 3.95±0.57 4.15±0.67 4.12±0.84 3.45±1.47 3.63±1.19 4.50±0.43 4.88±0.30 4.09±0.61 385
functional materials & catalysts 3.93±0.61 4.14±0.63 4.12±0.76 3.32±1.51 3.52±1.21 4.44±0.45 4.88±0.26 4.05±0.61 351
ceramics & glasses 3.94±0.65 4.10±0.77 4.07±0.95 3.80±1.32 3.83±1.15 4.43±0.53 4.90±0.26 4.15±0.67 270
semiconductors & electronic 3.95±0.57 4.16±0.64 4.13±0.84 3.64±1.31 3.60±1.16 4.48±0.42 4.90±0.23 4.13±0.58 255
composites 4.06±0.35 4.23±0.41 4.27±0.54 3.79±0.97 3.90±0.68 4.51±0.34 4.86±0.26 4.23±0.35 154
other 3.75±0.99 4.20±0.69 3.88±1.26 3.26±1.61 3.59±1.36 4.33±0.87 4.71±0.76 3.96±0.89 152
polymers & soft matter 3.96±0.50 4.13±0.61 4.20±0.68 3.43±1.38 3.62±1.05 4.42±0.42 4.84±0.29 4.08±0.54 132
metals & alloys 3.99±0.45 4.11±0.75 4.23±0.66 3.87±1.21 3.78±1.01 4.48±0.49 4.89±0.31 4.19±0.51 92
two-dimensional materials 3.88±0.71 4.10±0.63 4.05±1.07 3.52±1.30 3.56±1.10 4.39±0.49 4.90±0.24 4.06±0.66 89
biomaterials & biological 3.77±0.60 4.01±0.62 4.02±0.69 3.48±1.59 3.49±1.25 4.40±0.40 4.85±0.30 4.00±0.60 66
hybrid & organic-inorganic 3.93±0.64 4.02±0.70 4.25±0.77 3.49±1.50 3.71±1.23 4.44±0.38 4.86±0.28 4.10±0.65 51
energy & sustainability 4.31±0.65 4.50±0.46 4.50±0.46 4.12±1.33 4.19±0.65 4.69±0.37 4.88±0.23 4.45±0.45 8
emerging & quantum materials 4.50±0.71 4.50±0.71 4.75±0.35 4.50±0.71 4.50±0.71 4.75±0.35 4.75±0.35 4.60±0.57 2
liquid materials - - - - - - - - 0

A.3 Figure extraction533

Segmenting large figures into sub-plots. To extract individual subplots from figures in research534

papers, we employ the DINO model [29] with zero-shot image segmentation. The prompt ’a plot’ is535

used to guide the model in localizing subplot regions, with both text and box confidence thresholds set536

to 0.3. After initial detection, a post-processing step refines the bounding boxes to ensure complete537

coverage of each subplot, including axis labels and tick marks. To distinguish multi-panel figures538

from single-plot figures, we retain only bounding boxes that cover less than 50% of the total figure539

area; larger boxes are assumed to correspond to entire figures and are excluded. Empirical results540

indicate that this approach reliably identifies subplots across a variety of figure types.541

Classifying plots with quantitative data. To classify segmented subplots and full-figure plots, we542

employ a ResNet-152 model [68], pretrained on ImageNet and fine-tuned on the DocFig dataset [30].543

The dataset is split into 19,000 samples for training and 13,000 samples for testing. The model is544

trained with default hyperparameters for 20 epochs using the Adam optimizer with a learning rate of545

1e-3. Our classification task focuses exclusively on the plot types “line chart”, “bar plot” and “scatter546

plot” which are relevant for downstream information extraction; qualitative figures are excluded from547

further processing. The fine-tuned model achieves an F1-score of 88.03% on the test set, indicating548

strong performance in accurately identifying quantitative plots for subsequent analysis.549

Extracting data with a vision LLM. To convert these numerical figures into a structured and550

interpretable format for further use, we explore the capabilities of advanced vision-language551

models to extract data from line plots, focusing on 2D coordinate retrieval. Inspired by [33],552

where multimodal models were used to extract and regenerate plots, we use Claude-Sonnet-4553

(claude-sonnet-4-20250514) to extract 2D coordinates with their corresponding series names, as554

well as metadata fields like titles, axis labels, and units. The model is prompted to output a JSON555

object in a predefined schema, which is then parsed into a Pydantic object to ensure data consistency556

and structured integration into our data extraction pipeline.557

A.3.1 Figure Extraction Evaluation558

Manual annotations. For each series, the extracted coordinates are matched to the closest ground559

truth points using nearest-neighbor matching. This matching is performed in a normalized coordinate560

space, where both x and y axes are scaled to their respective ranges to ensure that errors are comparable561

across axes. The normalization scale is computed from the minimum and maximum values of the562

ground truth coordinates for each axis. We manually annotate 15 line charts from selected papers in563

catalysis [69, 70, 71, 72, 73]. For expanding the pipeline in the future, we plan to annotate larger564

samples from a more diverse array of plot types, e.g. scatter, bar and box plots.565

The evaluation is based on two error metrics:566

21



• Root Mean Square Error (RMSE): which penalizes larger errors more heavily due to its567

quadratic nature.568

• Mean Absolute Error (MAE): which treats all deviations linearly, providing a robust569

average error.570

To compute the error metrics for a single series, we define the extracted points as:571

P = {(xi, yi) | i → {1, . . . , N}} (1)

and the ground truth points as:572

G =
{
(x↑

j , y
↑
j )

∣∣ j → {1, . . . ,M}
}

(2)

Compute the normalization scales for each axis as:573

Sx = max
j

x↑
j ↑min

j
x↑
j , Sy = max

j
y↑j ↑min

j
y↑j (3)

For each extracted point (xi, yi), we find the nearest ground truth point by computing the normalized574

Euclidean distance:575

di = min
j

√(
xi ↑ x↑

j

Sx

)2

+

(
yi ↑ y↑j
Sy

)2

(4)

The RMSE is then defined as:576

RMSE =

√√√√ 1

N

N∑

i=1

d2i (5)

and the MAE as:577

MAE =
1

N

N∑

i=1

di (6)

A.4 Prompts578

This section shows the system prompts employed and the full configurations used (incl. signatures579

and LLM configurations) to extract the data presented in this work.580

Filtering papers581

582

Prompt

Analyze the following text and answer the questions in JSON format:
{chunk}
Questions:
1. Does it contain a material synthesis recipe?

(Answer with true or false)
2. If yes, what is the material name?

(Answer with the material name or "N/A" if no recipe)
3. If yes, which category of materials does it belong to?

(Answer with the specific material type or "N/A" if no recipe)
List of material categories:
Metals, Ceramics, Semiconductors, Superconductors, Composites,
Biomaterials, Nanomaterials, Polymers, Magnetic, Textiles, Chemicals, Other
Format your response as a JSON object with the following structure:
{{
"contains_recipe": true/false,
"material_name": "material name or N/A",
"material_category": "material category or N/A"
}}

583
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Material extraction584

585

Prompt

You are a helpful assistant that extracts ONLY the final synthesized materials
from scientific papers.ω→

Your task is to identify ONLY the materials that are the final products of
synthesis procedures described in the paper.ω→

IMPORTANT GUIDELINES:
- ONLY include materials that are the final synthesized products
- DO NOT include starting materials, precursors, supports, gases, solvents, or

other chemicals used in synthesisω→
- DO NOT include materials that are just mentioned or characterized but not

synthesizedω→
- Focus on the main target materials that are actually synthesized

EXAMPLES OF WHAT TO INCLUDE:
- "Ni/Al2O3" (if Ni is deposited on Al2O3)
- "Ir/SiO2" (if Ir is supported on SiO2)
- "LiFePO4 nanoparticles" (if LiFePO4 is synthesized)
- "Co-doped LiFePO4" (if this specific material is synthesized)

EXAMPLES OF WHAT TO EXCLUDE:
- "Ni", "Ir", "Ru" (if these are just precursors)
- "H-ZSM-5", "Al2O3", "SiO2" (if these are just supports)
- "Ammonia", "Argon", "Hydrogen" (gases)
- "Deionized water" (solvents)
- "Ammonium hydroxide" (reagents)

Return a simple comma-separated list of ONLY the final synthesized materials.

If no materials are synthesized in the paper, return "No materials
synthesized".ω→

Keep the output simple and clean — just the final synthesized material names
separated by commas.ω→

586

Configuration (YAML)

architecture:
_target_: llm_synthesis.transformers.material_extraction.dspy_extraction.Dsp ↑

yTextExtractorω→
signature:

_target_: llm_synthesis.transformers.material_extraction.dspy_extraction.m ↑
ake_dspy_text_extractor_signatureω→

signature_name: "TextToMaterials"
instructions: "Extract ONLY the final synthesized materials from the

publication text."ω→
input_description: "The publication text to extract the final synthesized

materials from."ω→
output_name: "materials"
output_description: "The final synthesized materials as a comma-separated

list."ω→
lm:

_target_: llm_synthesis.utils.dspy_utils.get_llm_from_name
llm_name: "gemini-2.0-flash"
model_kwargs:

temperature: 0.0
system_prompt:

587
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_target_: llm_synthesis.utils.read_prompt_str_from_txt
prompt_path: "examples/system_prompts/material_extraction/default.txt"

588

Synthesis extraction589

590

Prompt

You are a helpful assistant that extracts the structured synthesis for a
specific material from the paper text.ω→

Focus ONLY on the synthesis procedure for the specified material. Search
through the entire paper text to find the synthesis procedure that
describes how this specific material is made.

ω→
ω→

IMPORTANT: You must output ONLY a valid JSON object with a
"structured_synthesis" field. Do not include any reasoning, explanations,
or markdown formatting.

ω→
ω→

If you cannot find a synthesis procedure for the specified material, return a
minimal structure with the material name and an empty synthesis.ω→

The JSON output must follow this exact structure:
{

"structured_synthesis": {
"target_compound": "string (required) - should match the specified material

name",ω→
"target_compound_type": "string (required) - choose from: 'metals &

alloys', 'ceramics & glasses', 'polymers & soft matter', 'composites',
'semiconductors & electronic', 'nanomaterials', 'two-dimensional
materials', 'framework & porous materials', 'biomaterials &
biological', 'liquid materials', 'hybrid & organic-inorganic',
'functional materials', 'energy & sustainability', 'smart & responsive
materials', 'emerging & quantum materials', 'other'",

ω→
ω→
ω→
ω→
ω→
ω→
"synthesis_method": "string (required) - choose from: 'PVD', 'CVD', 'arc

discharge', 'ball milling', 'spray pyrolysis', 'electrospinning',
'sol-gel', 'hydrothermal', 'solvothermal', 'precipitation',
coprecipitation', 'combustion', 'microwave-assisted', 'sonochemical',
'template-directed', 'solid-state', 'flux growth', 'float zone &
Bridgman', 'arc melting & induction melting', 'spark plasma sintering',
'electrochemical deposition', 'chemical bath deposition', 'liquid-phase
epitaxy', 'self-assembly', 'atomic layer deposition', 'molecular beam
epitaxy', 'pulsed laser deposition', 'ion implantation', 'lithographic
patterning', 'wet impregnation', 'incipient wetness impregnation',
'mechanical mixing', 'other'

ω→
ω→
ω→
ω→
ω→
ω→
ω→
ω→
ω→
ω→
"starting_materials": [{"name": "string", "amount": "number or null",

"unit": "string or null", "purity": "string or null", "vendor": "string
or null"}],

ω→
ω→
"steps": [{"step_number": "integer", "action": "string", "description":

"string or null", "materials": [{"name": "string", "amount": "number or
null", "unit": "string or null", "purity": "string or null", "vendor":
"string or null"}], "equipment": [{"name": "string",
"instrument_vendor": "string or null", "settings": "string or null"}],
"conditions": {"temperature": "number or null", "temp_unit": "string or
null", "duration": "number or null", "time_unit": "string or null",
"pressure": "number or null", "pressure_unit": "string or null",
"atmosphere": "string or null", "stirring": "boolean or null",
"stirring_speed": "number or null", "ph": "number or null"}}],

ω→
ω→
ω→
ω→
ω→
ω→
ω→
ω→
ω→
"equipment": [{"name": "string", "instrument_vendor": "string or null",

"settings": "string or null"}],ω→
"notes": "string or null"

591
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}
}

Do not include any text before or after the JSON object. Output only the JSON.
592

Configuration (YAML)

architecture:
_target_: llm_synthesis.transformers.synthesis_extraction.dspy_synthesis_ext ↑

raction.DspySynthesisExtractorω→
signature:

_target_: llm_synthesis.transformers.synthesis_extraction.dspy_synthesis_e ↑
xtraction.make_dspy_synthesis_extractor_signatureω→

signature_name: "SynthesisSignature"
instructions: "Extract the structured synthesis for a specific material

from the paper text."ω→
paper_text_description: "The complete paper text to search for the

material's synthesis procedure."ω→
material_name_description: "The name of the specific material to extract

synthesis for."ω→
output_name: "structured_synthesis"
output_description: "The extracted structured synthesis for the specific

material."ω→
lm:

_target_: llm_synthesis.utils.dspy_utils.get_llm_from_name
llm_name: "gemini-2.0-flash"
model_kwargs:

temperature: 0.0
max_tokens: 8000
max_retries: 3

system_prompt:
_target_: llm_synthesis.utils.read_prompt_str_from_txt
prompt_path: "examples/system_prompts/synthesis_extraction/default.txt"

593

Figure extraction594

For figure extraction, we do not provide a separate DSPy configuration. Unlike material and synthesis595

extraction (which are wrapped with DSPy signatures and explicit input/output schemas), the figure596

extraction pipeline directly leverages the system prompt together with a Claude API client. In this597

setup, the model is invoked with the raw prompt and image data, and the parsing into structured598

objects (ExtractedLinePlotData) happens entirely within the custom transformer implementation.599

Because no DSPy signature or schema mediation is involved, there is no corresponding YAML600

configuration block to display. Instead, the logic is captured in the prompt (shown below) and the601

Python implementation excerpted below.602

Prompt

LINE_CHART_PROMPT = """
You will be provided with a line chart. The chart may not be chunked very well,
so you may need to read only the plot in the center of the image.
In the chart, there will be several lines representing different data series.

1. Identify the different lines by their colors and labels.
2. For each line, extract the coordinates of the points that make up the line.

Do not include any points that are not part of the line.
3. If the chart has metadata such as a title, x-axis label, y-axis labels,

or units, extract that information as well.
Keep the scientific terms in Markdown format.

4. Output the data in the specified format:

Name_of_Line_1: [[x1, y1], [x2, y2], ...]
603
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title:
x_axis_label:
x_axis_unit:
y_left_axis_label:
y_left_axis_unit:

Do not output any other text, just the data in the format above.
"""

604

Implementation excerpt (Python)

class ClaudeLinePlotDataExtractor(LinePlotDataExtractorInterface):
def __init__(self, model_name: str,

prompt: str = resources.LINE_CHART_PROMPT,
max_tokens: int = 1024,
temperature: float = 0.0):

super().__init__()
self.claude_client = ClaudeAPIClient(model_name)
self.prompt = prompt
self.max_tokens = max_tokens
self.temperature = temperature

def forward(self, input: FigureInfoWithPaper) -> ExtractedLinePlotData:
figure_base64 = input.base64_data
self.claude_client.reset_cost()
claude_response_obj = self.claude_client.vision_model_api_call(

figure_base64=figure_base64,
prompt=self.prompt,
max_tokens=self.max_tokens,
temperature=self.temperature,

)
return self._parse_into_pydantic(claude_response_obj)

def _parse_into_pydantic(self, response: str) -> ExtractedLinePlotData:
"""Parse text into Pydantic object with regex pattern matching"""
...

605

Synthesis evaluation606

In this case, the evaluation logic is fully captured within the DSPy configuration itself, so we do not607

provide a standalone prompt block. Both the task instructions and the system prompt are directly608

embedded inside the configuration file rather than stored separately. The complete configuration is609

shown below:610

Configuration (YAML)

architecture:
_target_: llm_synthesis.metrics.judge.general_synthesis_judge.DspyGeneralSyn ↑

thesisJudgeω→
signature:

_target_: llm_synthesis.metrics.judge.general_synthesis_judge.make_general ↑
_synthesis_judge_signatureω→

signature_name: "GeneralSynthesisJudgeSignature"
instructions: >

You are an expert materials scientist and data extraction specialist with
extensive experience in:ω→

- Synthesis procedure analysis and documentation
- Structured data extraction from scientific literature
- Materials science ontology design and terminology standardization
- Quality assessment of automated scientific information extraction

systemsω→

Evaluate how well the GeneralSynthesisOntology extraction captures
synthesis information fromω→

the provided source text.

611
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IMPORTANT: Do NOT penalize the extraction system for failing to include
information that isω→

not present in the original paper. Missing elements should only be
considered errors if theyω→

were clearly stated in the source but were not extracted. If an element
is absent in both theω→

source and the extraction, and is correctly left blank or omitted, this
should be consideredω→

correct and scored highly.

ASSESSMENT FOCUS:
- Completeness: All synthesis components present in the source are

capturedω→
- Accuracy: Correct values, units, and classifications based on the

textω→
- Structure: Proper organization and logical sequencing of elements
- Semantic Preservation: Scientific meaning and intent faithfully

maintainedω→
- Schema Compliance: Conforms to the expected ontology format and data

typesω→

EVALUATION CRITERIA (Score 1-5 for each):
1. Structural Completeness - Extraction of all relevant synthesis

components from the source (materials, steps, equipment,
conditions)

ω→
ω→
2. Material Extraction - Correct names, quantities, units, purities as

specified in the paperω→
3. Process Steps - Accurate step order and correct action

classificationω→
4. Equipment Extraction - Proper identification of all equipment

explicitly mentionedω→
5. Conditions Extraction - Accurate recording of parameters such as

temperature, time, atmosphere, pressure, etc.ω→
6. Semantic Accuracy - Faithful preservation of scientific meaning

without misinterpretationω→
7. Format Compliance - Adherence to ontology schema, data types, and

field structureω→

For each criterion:
- Assign a score between 1 and 5
- Provide detailed technical reasoning for the assigned score
- Offer specific, constructive recommendations for improvement, if

applicableω→

lm:
_target_: llm_synthesis.utils.dspy_utils.get_llm_from_name
llm_name: "gemini-2.0-flash"
model_kwargs:

temperature: 0.1
max_tokens: 4096

system_prompt: >
You are a senior materials scientist and data extraction expert with deep

expertise in:ω→
- Inorganic and organic synthesis methodologies
- Laboratory instrumentation and experimental workflows
- Chemical nomenclature, stoichiometry, and unit conventions
- Optimization of synthesis conditions and reaction parameters
- Structured data modeling and materials science ontology design
- Evaluation methodologies for automated information extraction systems

Your assessments should reflect best practices in synthesis reporting and
uphold the highestω→

612
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standards of scientific accuracy, reproducibility, and structured data
quality.ω→

When evaluating extracted synthesis data:
- Rely on your domain expertise to assess technical correctness,

semantic fidelity, and structural organizationω→
- Emphasize clarity, precision, and alignment with real-world

experimental protocolsω→
- Consider the intended schema and use context to assess compliance and

completenessω→
- Do not penalize the extraction system for omitting elements that were

not explicitly present in the source textω→

Your evaluation should be technically rigorous, yet fair, grounded in
both materials science principles and data extraction best practices.ω→

enable_reasoning_traces: true
confidence_threshold: 0.7

613
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