
A Additional Discussions

A.1 Additional Discussions on Related Works

Our work is related to a recent study by Tang and Zeng [36] who study the bidders’ problem of
committing to a fake type distribution in auctions and acting consistently as if the bidder’s type
were from the fake type distribution. This is similar in spirit to our buyer’s commitment to an
imitative value function. However, there are two key differences between our work and [36]. First,
the seller in our model (realistically) has production cost where as the auction setting of [36] does not
have production cost. This is an important difference because with 0 production cost, the optimal
manipulation in our case is trivial, i.e. the buyer will imitate a value function of 0. However, this
trivial solution does not arise in the model of [36] because in their setup there are multiple buyers
(bidders) and the competition among bidders increases the auctioneer’s revenue despite bidders’
imitative or faking behaviors. This is the second key difference between our work and [36]. Therefore,
our work illustrates how the production cost can affect the buyer’s strategic manipulation and the
seller’s revenue whereas the work of Tang and Zeng [36] sheds light on how the bidders’ competition
affect the auctioneer’s mechanism design and ultimate revenue. Though these two aspects are not
comparable, we believe they are both interesting for a deep understanding.

Another very relevant literature is learning the optimal prices or optimizing aggregated total revenue
by repeatedly interacting with a single buyer [4, 5, 26, 27, 38]. Similar to us, they also consider
the buyer’s strategic behavior that potentially tricks the seller’s learning algorithm. However, these
previous works all focus on designing learning algorithms that can handle strategic data sources.
Our work can be viewed as a complement to this literature. Instead of proposing new algorithms,
we focus on understanding the limits of what learning algorithms can achieve by analyzing a basic
model which is a variant of the textbook-style optimal pricing model. Moreover, the setups of these
previous works are also different from us, which make them not comparable to us. For example,
some of these models [4, 5, 27] assume that the buyer’s values for goods are drawn from distributions
(a.k.a., demand distribution) and consequently his best responses to seller prices are stochastic with
randomness inherited from his value distribution. However, our model assumes that the buyer has an
unknown but fixed value function that drives his purchase responses. Such a response is the solution
to buyer’s optimization problem while not from a random distribution. There have also been models
that consider unknown but fixed buyer values like us [26, 38]. However, these works have focused on
a single indivisible good with discrete agent utilities whereas our model has multiple divisible goods
with continuous agent utilities.

There have also been studies on learning the optimal prices from truthful revealed preferences, i.e.,
assuming the buyer will honestly best respond to seller prices [8, 39, 6, 42, 3, 33, 32]. Our works
try to understand if the assumption of truthful revealed preferences does not hold and if the buyer
will strategically respond to the seller’s learning, what learning outcome could be expected when the
buyer simply imitates a different value function that is optimally chosen. From this perspective, these
works serve as a key motivation for the present paper.

More generally, our work subscribes to the general line of research on learning from strategic data
sources. Strategic classification has been studied in other different settings or domains or for different
purposes, including spam filtering [11], classification under incentive-compatibility constraints [43],
online learning [17, 12], and understanding the social implications [1, 25, 21]. Finally, going beyond
classification, strategic behaviors in machine learning has received significant recent attentions,
including in regression problems [31, 15, 13], distinguishing distributions [40, 41].

A.2 Additional Discussion on Buyer’s Commitment

The buyer’s ability of making such a commitment fundamentally comes from the fact that the seller
has no prior knowledge about the buyer’s true value function v(x), i.e., has to “price in the dark”.6
To find a good pricing scheme, the seller may interact with the buyer to learn the his value function
[39, 8, 6], or learn the optimal pricing scheme [33], or directly optimize the aggregated revenue

6By convention, all value functions are assumed to be concave. This can be equivalently viewed as a
restriction to the buyer’s manipulation imposed by the seller’s (very limited) prior knowledge about concavity
of buyer values. Later, we will also briefly discuss how the absence of this prior knowledge may lead to worst
seller revenue.
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during repeated interactions [4, 5, 26, 27, 38]. However, regardless what algorithm the seller may
adopt, the buyer can always choose to consistently behave according to a carefully crafted different
value function u(x), i.e., the commitment. For example, suppose the seller tries to apply any machine
learning algorithm, the buyer may respond by directly announcing his imitative value function u(x)
even before the learning starts and then behave consistently. In such scenarios, learning is even not
needed since the best a seller can do is to respond with the optimal pricing against u(x). Similarly, if
the seller adopts any dynamic pricing mechanism, the buyer may respond similarly by announcing her
value function u(x). Since the seller lacks knowledge about the buyer’s value, such imitative buyer
behavior makes him indistinguishable from a buyer who truly has value function u(x). Therefore,
our equilibrium characterization in later sections will help to understand what the optimal imitative
value function for the buyer is and what revenue the seller can possibly achieve when pricing against
such a strategic buyer in the dark, i.e., without any prior knowledge.

We remark that though the imitative strategy may not always be the absolutely best possible strategy
for the buyer, but it enjoys many advantages. First of all, as we will prove later, this strategy does lead
to significant improvement to the buyer’s utility7 and, in fact, is provably the best possible (among all
possible strategic behaviors that the buyer may adopt) in certain circumstances, e.g., when the seller’s
production cost function c(x) is concave. Second, this imitative strategy is easy to adopt in practice
and requires no knowledge about the seller pricing scheme. For example, this imitative strategy works
equally well for any price learning algorithm so long as it can effectively learn the optimal price from
the buyer. Third, it also has good long term effect since the seller cannot distinguish whether the
buyer truly has value function u(x) or not, and may just have to use the same learned price for future
purchases from this buyer. However, we show later that any buyer behavior that is not consistently
imitating a value function can be easily identified by the seller. In such situations, even though the
seller ended up with some prices, she knows that it is not the truly optimal price for this buyer and
may take this into account in future interactions.

B Technical Background: Concave/Convex Functions and
Super/Sub-Gradients

Let f(x) : X → R be any function where X ⊂ Rd is the domain of f . A vector p ∈ Rd is called
a super-gradient for f at x ∈ X if for any z ∈ X we have f(z) ≤ f(x) + p · (z − x). Function
f is called concave if for any x, z ∈ Rd and any α ∈ [0, 1] we have αf(x) + (1 − α)f(z) ≤
f(αx + (1− α)z). Super-gradients do not always exist. However, a concave function has at least
one super-gradient at any x ∈ X . For a differentiable concave function f , its gradient ∇f(x) is
the only super-gradient at x for any x ∈ X . If f is concave but not differentiable, it may have
multiple super-gradients at some x. In this case, we use ∂f(x) to denote the set of all super-gradients
of f at x. Among all super-gradients in ∂f(x), of our particular interest is the following one:
∇maxf(x) = argmaxp∈∂f(x)[x · p]. This is the super-gradient that maximize linear function p · x.
When f is differentiable,∇maxf(x) = ∇f(x) is the (only) super-gradient.

Function f is called convex if −f is concave. For convenience of stating our results, we will mostly
work with differentiable convex functions in this paper. A useful distance notion for differentiable
convex function f is the Bregman divergence:

Df (z,x) = f(z)− f(x)−∇f(x) · [z − x].

Df (z,x) is always non-negative for convex functions and strictly positive for strictly convex functions
when z 6= x. However, Bregman divergence is asymmetric among variables, i.e., Df (z,x) 6=
Df (x, z) in general.

C Proof of Theorem 1

Theorem 1. In the equilibrium of PADD under linear pricing, the optimal buyer imitative value
function u∗ can w.l.o.g. be written as the following concave function parameterized by production
amount x∗ ∈ X and a real value p∗ ∈ R+:

u∗(x) = p∗ ·min{x1
x∗1
, · · · xd

x∗d
, 1} (3)

7It is never worse since the buyer can always at least behave truthfully by letting u(x) = v(x).
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where

x∗ = arg max
x∈X

[
v(x)− sup

α∈[0,1)

c(x)− c(αx)

1− α
]

and p∗ = sup
α∈[0,1)

c(x∗)− c(αx∗)
1− α

(4)

Moreover, under imitative value function u∗(x),

1. For any vector λ ∈ ∆d in the d-dimensional simplex, the linear pricing scheme with price
vector p∗ = (λ1

p∗

x∗1
, λ2

p∗

x∗2
, · · · , λd p

∗

x∗d
) is optimal for u∗.

2. In any of the above optimal linear pricing schemes, the buyer’s optimal bundle response is
always x∗ and the buyer payment will always equal p∗.

3. At equilibrium, the buyer surplus is [v(x∗)− p∗] and the seller revenue is [p∗ − c(x∗)].

We start with a useful lemma that characterizes the relation between optimal seller price pu and
optimal buyer bundle xu for any concave buyer utility function u(x). A similar result has been
proved in [33]. The only difference here is that we allow any concave buyer utility function whereas
the buyer utility function in [33] is assumed to be strictly concave and differentiable. Nevertheless,
the proof remains similar and thus is omitted due to space limit.
Lemma 3. For any concave buyer value function u(x) : Rd+ → R+ reported by the buyer, let pu be
the optimal price vector for the seller and xu be the resultant buyer optimal bundle for purchase,
then the following relation holds:

pu = ∇maxu(xu). (8)
where∇maxu(x) = argmaxp∈∂u(x)[x · p].8

A crucial intermediate step in our proof is the following characterization for a slightly simpler version
of the question. That is, fixing any bundle x ∈ X , which imitative value function u(x) will maximize
the utility of the buyer with true value function v(x), subject to that the optimal buyer purchase
response under u(x) is x? If we can find a succinct characterization for this simpler question, what
remains is just to search for the best bundle x. That will be a (variable) optimization problem, which
is suitable for standard optimization techniques to solve. Fortunately, the above question does admit
a succinct characterization.
Lemma 4. [Lemma 1 restated] For any bundle x ∈ X , the optimal buyer imitative value function
u(x), subject to that the resultant optimal buyer purchase response is bundle x, can without loss of
generality have the following piece-wise linear concave function format, parameterized by a real
number p ∈ R:

u(x) = p ·min{x1
x1
, · · · xd

xd
, 1} (9)

where p is the solution to the following linear program (LP):
maximize v(x)− p
subject to p− c(x) ≥ α · p− c(αx), for α ∈ [0, 1].

(10)

Moreover, under imitative value function u(x), we have

1. For any convex coefficients λ ∈ ∆d, the linear pricing scheme with unit price vector
(λ1 · px1

, λ2 · px2
, · · · , λd · pxd

) will be optimal.

2. In any of the above optimal linear pricing schemes, the buyer’s optimal bundle response
will always be x and the buyer payment will equal p.

Proof of Lemma 4. From the buyer’s perspective, with a fixed bundle x in mind, his problem is to
come up with an imitative value function u(x) such that its corresponding price ∇maxu(x) as from
Lemma 3 maximizes his revenue at bundle x. This results in the following functional optimization
problem (FOP) for the buyer with functional variable u.

maximize v(x)− x · ∇maxu(x)
subject to ∇maxu(x) · x− c(x) ≥ ∇maxu(x′) · x′ − c(x′), for x′ ∈ X.

u is concave
(11)

8The “max" comes from the fact that the seller will pick the profit-maximizing price if multiple prices result
in the same optimal buyer purchase.
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where the first constraint means the seller’s optimal price for value function u(x) is∇maxu(x) and
thus the buyer best response bundle is indeed x.

The lemma states that the u(x) defined in Equation (9) is an optimal solution to FOP (11). To analyze
FOP (11), we first simplify the class of concave function u that we need to consider. In particular, we
claim that there always exists an optimal solution to FOP (11) such that u(x) has the following form:

u(x) = p ·min{x1
x1
, · · · xd

xd
, 1} (12)

where the only parameter p ∈ R is the coefficient vector. To prove this, let u∗(x) be any optimal
solution to FOP (11). Construct another concave value function u(x) as follows:

u(x) = p ·min{x1
x1
, · · · xd

xd
, 1}, where p = ∇maxu

∗(x) · x (13)

Note that p is precisely the payment for a buyer with value function u∗ when his optimal bundle
amount is x. We show that this new value function will result in the same optimal buyer bundle x and
payment p. It thus does not change either of the agent’s utilities and remains optimal for the buyer.

First, we argue that the constructed u is still feasible to FOP (11). Concavity of u is evident since it is
the minimum of a set of linear functions. By Lemma 3, we have∇maxu(x) = 0 if x is element-wise
strictly greater than x. Otherwise, let i∗ = argmin{i|xi≤xi}

xi

xi
,9 we have [∇maxu(x)]i∗ = p

xi∗

which is the i∗’th element of ∇maxu(x), while all the other gradient entries of ∇maxu(x) are 0.
Therefore, we have∇maxu(x) · x = p · xi∗

xi∗
. Specifically,∇maxu(x) · x = p which equals precisely

the buyer payment ∇maxu
∗(x) · x under utility u∗.

We now verify that the constraints in FOP (11) still holds for u. We start from verifying for special
x′s where there exists α ∈ [0, 1] such that x′ = α · x. In this case, we have

∇maxu(x) · x− c(x) = ∇maxu
∗(x) · x− c(x) (since∇maxu(x) · x = p = ∇maxu

∗(x) · x)

≥ ∇maxu
∗(x′) · x′ − c(x′) (by feasibility of u∗ )

≥ ∇maxu
∗(x) · x′ − c(x′) (by concavity of u∗)

= α · p− c(x′) (since x′ = α · x and p = ∇maxu
∗(x) · x)

= ∇maxu(x′) · x′ − c(x′). (by definition of u and x′ = α · x)

Specifically, the second inequality holds because∇maxu
∗(αx) ·x/|x| is the directional derivative of

u∗ at αx in the direction of x, which is non-increasing with respect to α due to the concavity of u∗.
The above argument also implies∇maxu(x) · x− c(x) ≥ 0 by instantiating x′ = 0.

Next, we consider the case when x′ 6= α · x for α ∈ [0, 1]. There will be two possible situations to
consider:

1. If x′ is element-wise greater than x, then∇maxu(x′) = 0. Thus, we have∇maxu(x) · x−
c(x) ≥ 0 > ∇maxu(x′) · x′ − c(x′) = 0− c(x′).

2. If x′ is not element-wise greater than x, let i∗ = argmin{i|x′i≤xi}
x′i
xi

and α∗ =

min{i|x′i≤xi}
x′i
xi

. Then we have [∇maxu(x′)]i∗ = p
xi∗

which is the i∗’th element
of ∇maxu(x′), while all the other elements of ∇maxu(x′) are 0. In addition, denote
x̂′ = α∗ · x. Note that for x′, we have ∇maxu(x′) · x′ = α∗ · p = ∇maxu(x̂′) · x̂′.
However, we have c(x̂′) ≤ c(x′) because x̂′ is element-wise less than or equal to x′.
Thus, we have ∇maxu(x̂′) · x̂′ − c(x̂′) ≥ ∇maxu(x′) · x′ − c(x′) by monotonicity of
c(x). Our previous derivation for the special case x′ = αx with α ∈ [0, 1] implies
∇maxu(x) · x − c(x) ≥ ∇maxu(α · x) · (α · x) − c(α · x),∀α ∈ [0, 1]. These together
imply

∇maxu(x) · x− c(x) ≥ ∇maxu(x̂′) · x̂′ − c(x̂′) ≥ ∇maxu(x′) · x′ − c(x′).
9If there are multiple i that all minimize xi

xi
, the proof is valid by picking any of them.
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As a result, the constructed u(x) is feasible to FOP (11) because∇maxu(x)·x−c(x) ≥ ∇maxu(x′)·
x′ − c(x′) for any x′ ∈ X .

Next, we argue that u(x) achieves the same buyer utility, and thus must also be optimal. This is
simply because the feasibility of u(x) implies that the optimal buyer bundle will still be x and
payment will still be p = ∇maxu

∗(x) · x. As a result, buyer achieves the same utility when using
u(x) and u∗(x), yielding the optimality of u(x).

So far we showed that there always exists an optimal u(x) of Form (9). Therefore, to solve FOP (11),
we can without loss of generality focus on functions of the Form (9), which is parameterized p. By
plugging in Form (9) into FOP (11), we obtain the following LP with variable p ∈ R.

maximize v(x)− p
subject to p− c(x) ≥ α · p− c(x′), for x′ = α · x, α ∈ [0, 1].

p− c(x) ≥ 0− c(x′), for x′ element-wise greater than x.

p− c(x) ≥ min{i|x′i≤xi}
x′i
xi
· p− c(x′), for other x′ ∈ X.

p ≥ 0
(14)

We now further simplify the above LP to become LP (10). That is, we argue that only the first
constraint is needed and thus the other constraints can be omitted. When the first constraint is
instantiated with x′ = 0, it implies p − c(x) ≥ 0. This immediately implies the second and the
last constraint. By the proof above, we know that for any x′ 6= α · x and x′ is not element-wise
greater than x either, there must exist x̂′ = α∗ · x (α∗ ∈ [0, 1]) such that∇maxu(x̂′) · x̂′ − c(x̂′) ≥
∇maxu(x′) · x′ − c(x′). Therefore, the third constraint is guaranteed to be satisfied as long as the
first constraint is satisfied. As a result, the above LP can be further simplified to LP (10).

The constraint of LP (10) guarantee that the seller will maximize revenue at bundle x. Since at
x = x, any i will minimize the term xi

xi
. Lemma 3 then implies the optimal prices at x can be any

convex combination of pricing vectors (0, · · · , 0, pxi
, 0, · · · , 0),∀i . The total payment will always

be p under any of these optimal pricing schemes. This completes the proof.

Theorem (1) then follows from Lemma 4. We first observe that constraint in linear program (10) can
be re-written as p ≥ c(x)−c(αx)

1−α for α ∈ [0, 1) (the constraint is trivial for α = 1). Since the objective

of LP (10) is equivalent to minimizing p, we thus have the optimal p equals maxα∈[0,1)
[ c(x)−c(αx)

1−α
]
.

We have now characterized the optimal imitative value function for any fixed x. To compute the
globally optimal imitative value function u∗, we only need to pick the x that maximizes the buyer’s
surplus. By viewing x as a variable x, we obtain the desired form of x∗ as in Equation (3). Finally,
the buyer surplus and seller revenue follow directly from the fact that purchase happens at bundle x∗

with payment p∗. These conclude the proof of Theorem 1.

D Omitted Proofs in Section 5

D.1 Proof of Theorem 2

Theorem 2. When c is convex and differentiable, the piece-wise linear concave value function u∗(x)
defined by Equation (3), with p∗ = x∗ · ∇c(x∗) and x∗ = arg maxx∈X [v(x)− x · ∇c(x)], is an
optimal buyer imitative value function.

Under u∗(x), the trade happens at bundle x∗ with payment p∗ = x∗ · ∇c(x∗). The seller revenue
[x∗ · ∇c(x∗)− c(x∗)] is precisely the Bregman divergence Dc(0,x

∗) between 0 and x∗. The buyer
surplus is [v(x∗)− x∗ · ∇c(x∗)].

Proof. Suppose c(x) is convex and differentiable. Fix any x = x. Consider the function c(αx)
with variable α ∈ [0, 1). This is a one-dimensional convex non-decreasing function. Due to
convexity, the supremum of c(x)−c(αx)1−α over α ∈ [0, 1) equals precisely the derivative of c(α · x) at
α = 1, which is x · ∇c(x). To find the x that maximizes the buyer’s revenue, the buyer will pick
x∗ = arg maxx∈X [v(x)− x · ∇c(x)]. Given the above characterization, the theorem conclusion
follows from Theorem 1.
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D.2 Proof of Theorem 3

Theorem 3. When c(x) is concave, the piece-wise linear concave value function u∗(x) defined by
Equation (3), with p∗ = c(x∗) and x∗ = arg maxx∈X [v(x)− c(x)], is an optimal buyer imitative
value function.

Under u∗(x), the trade happens at bundle x∗ with payment p∗ = c(x∗). The seller revenue will be 0.
The buyer extracts the maximum possible surplus maxx∈X [v(x)− c(x)].

Proof. Suppose c(x) is concave and differentiable. Fix any x = x. Consider the function c(αx) with
variable α ∈ [0, 1). This is a one-dimensional concave non-decreasing function. Due to concavity,
the supremum of c(x)−c(αx)

1−α over α ∈ [0, 1) is achieved at α = 0. The supremum thus equals

precisely c(x)−c(0·x)
1−0 = c(x). To find the x that maximizes the buyer’s revenue, the buyer will pick

x∗ = arg maxx∈X [v(x)− c(x)]. Given the above characterization, the theorem conclusion follows
from Theorem 1. Specifically, the buyer payment p∗ = c(x∗), leading to seller revenue 0.

D.3 Proof of Theorem 4

Theorem 4. [Intractability of Equilibrium] It is NP-hard to approximate the buyer equilibrium
surplus in PADD games to be within ratio 1/d1−ε for any ε > 0. This hardness result holds even when
the production cost function c(x) is concave and the buyer’s true value function v(x) is simply the
linear function

∑d
i=1 xi.

Proof. As stated in the theorem, we consider the case where the buyer’s true value function is
v(x) =

∑d
i=1 xi and the seller’s production cost function c(x) is a concave function that we will

construct. Theorem 3 shows in this case, the buyer’s optimal surplus is maxx∈X [
∑d
i=1 xi − c(x)].

Next, we show that this optimization problem is NP-hard to be approximated within any meaningful
ratio, as described by the theorem. Our reduction is from the independent set problem. For any
connected graph G = (V,E) with d nodes, let node set V = [d] = {1, 2, · · · , d}. A set I is an
independent set of G if and only if any i, j ∈ I are not adjacent in G. The problem of finding the
largest independent set problem is NP-hard, and cannot be approximated within ratio 1/d1−ε for any
constant ε > 0.

Given any instance graph G = (V,E) of the Independent set problem, we construct the following
concave production cost function:

c(x) =

d∑
i=1

min(

d∑
j=1

ajixj , xi), where aji = 1 if (j, i) ∈ E and aji = 0 otherwise.

Moreover, the set of feasible bundles is X = [0, 1]d. Note that c(x) is a concave function because
the minimum of two linear functions is concave and the sum of concave functions remains concave.
Moreover, c(x) is monotone non-decreasing and c(0) = 0. So c(x) is indeed a valid cost function
for our setting. Under this construction, the maximum possible buyer surplus is the optimal objective
of the following optimization problem (OP):

max
x∈[0,1]d

U(x) =

d∑
i=1

xi − c(x) =

d∑
i=1

[
xi −min(

d∑
j=1

xjaji, xi)

]
. (15)

We now show via a reduction from the largest independent set problem that it is NP-hard to approxi-
mate OP (15) to be within ratio 1/d1−ε for any ε > 0. Let I ⊆ V be the maximum independent set.
We claim that the optimal objective value of the above optimization problem equals precisely |I|, the
size of the maximum independent set. For convenience, let term Ui(x) = xi −min(

∑d
j=1 xjaji, xi)

and thus U(x) =
∑d
i=1 Ui(x). Note that Ui(x) ≤ 1 for any i ∈ V .

First, we show that the optimal objective value of OP (15) is at least |I|. To see this, consider x
such that xi = 1 if i ∈ I and xi = 0 if i 6∈ I . We argue that for any i ∈ I , Ui(x) = 1. This is
because xjaji = 0 for any j — for any xj = 1, we must have aji = 0 as the two nodes i, j are
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both in the independent set and thus cannot have an edge between them (i.e., aji = 0). Therefore,∑d
j=1 xjaji = 0 and thus min(

∑d
j=1 xjaji, xi) = 0. As a consequence, for any i ∈ I , Ui(x) = 1

and thus the objective of (15) at x is at least |I|.
Next, we show the reverse direction, i.e., maxx∈[0,1]d U(x) is at most |I|. Note that U(x) is a
convex function. So it must achieve the maximum at some vertex x∗ of the feasible region, which is
a binary vector. Let S∗ ⊆ [d] denote the set of the indexes of non-zero values in x∗. First of all, for
any i 6∈ S∗, Ui(x∗) ≤ x∗i = 0. Second, for any i ∈ S∗, if there exists j ∈ S∗ such that (i, j) ∈ E is
an edge, then x∗jaji = 1 and thus min(

∑d
j=1 x

∗
jaji, x

∗
i ) = 1. This implies Ui(x∗) = 0. Similarly,

Uj(x
∗) = 0 as well. Finally, for any i ∈ S∗ without any neighbor included in S∗, it is easy to see

that Ui(x∗) = 1. To sum up, only the node i ∈ S∗ that does not have any neighbor included in S∗
can have Ui(x∗) = 1 whereas any other node i has Ui(x∗) = 0. Therefore, U(x∗) is at most the size
of the number of independent nodes in S∗, which is at most the size of the maximum independent set
for G, as desired.

So far we have shown that the optimal objective value of OP (15) equals precisely the size of the
maximum independent set of G. However, we are not done yet to prove the inapproximability of
maximizing U(x). This is because U(x) takes fractional variables as input. The fact that it is hard to
find an independent set to approximate the size of the maximum independent set does not imply the
hardness of finding a fractional variable x ∈ X to approximate maxU(x).

To prove the inapproximability of the continuous OP (15), we show that any α-approximation to OP
(15) can be efficiently turned into an α-approximation to the largest independent set problem, using
ideas from de-randomization. Since it is NP-hard to approximate the largest independent set problem
to be within 1/d1−ε for any ε > 0, this will conclude the proof of the proposition.

Specifically, let x ∈ [0, 1]d be any α-approximation to OP (15). We construct a random binary vector
X as follows: Pr(Xi = 1) = xi and Pr(Xi = 0) = 1− xi for each i independently. By convexity
of U(x), we have E[U(X)] ≥ U(E[X]) = U(x). In other words, if we pick the random solution X ,
the expected objective is at least U(x). By a standard de-randomization procedure (up to an additive
ε difference due to Monte-Carlo sampling),10 we can efficiently find a binary vector x′ whose value
is also at least U(x). By a similar argument above, we know that all the independent nodes in x′

form an independent set whose size is at least U(x), as desired.

E Omitted Proofs in Section 6

E.1 Proof of Lemma 2

Lemma 2. The following concave function is optimal to FOP (6):

u(x) = p ·min{x1
x1
, · · · xd

xd
, 1}, where p = sup

α∈[0,1)

c(x)− c(αx)

1− α
. (7)

Proof of Lemma 2. We first prove the a function of the following format, parameterized by variable
p, is optimal to FOP (6):

u(x) = p ·min{x1
x1
, · · · xd

xd
, 1} (16)

To prove this, let u∗ be any optimal solution to (6). We now construct another concave value function
u(x) as follows:

u(x) = u∗(x) ·min{x1
x1
, · · · xd

xd
, 1} (17)

10Specifically, EX [U(X)] = xi EX [U(X|Xi = 1)] + (1 − xi)EX [U(X|Xi = 0)] for each i. To de-
randomize, we simply calculate EX [U(X|Xi = 1)] and EX [U(X|Xi = 0)] through Monte-Carlo sampling,
and then pick the larger one.
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Next, we first argue that the constructed u is still feasible to FOP (6). First, for any x′ = αx where
α ∈ [0, 1], we have

u(x)− c(x) = u∗(x)− c(x) (by definition of u) (18)

≥ u∗(x′)− c(x′) (by feasibility of u∗ ) (19)

≥ α · u∗(x)− c(x′) (By concavity of u∗, and x′ = αx) (20)

= u(x′)− c(x′). (by definition of u) (21)

Note the last inequality is by concavity of u∗, we have (1− α) · u∗(0) + α · u∗(x) ≤ u∗(αx) where
we have u∗(0) = 0. Thus, we have α · u∗(x) ≤ u∗(αx) = u∗(x′).

Then we consider the case x′ 6= αx . There will be two possible situations if x′ 6= αx:

1. If x′ is element-wise greater than x, then u(x′) = u∗(x) · min{x
′
1

x1
, · · · x

′
d

xd
, 1} = u(x).

Thus, we have u(x)− c(x) ≥ u(x′)− c(x′) by the monotonicity of c(x).

2. If x′ is not element-wise greater than x, let i∗ = argmin{i|x′i≤xi}
x′i
xi

and α∗ =

min{i|x′i≤xi}
x′i
xi

. Then we have u(x′) = u∗(x) ·min{x
′
1

x1
, · · · x

′
d

xd
, 1} = α∗ u∗(x). In addi-

tion, denote x̂′ = α∗x. Note that for x̂′, we also have u(x̂′) = u∗(x)·min{ x̂
′
1

x1
, · · · x̂

′
d

xd
, 1} =

α∗ u∗(x) = u(x′). However, we have c(x̂′) ≤ c(x′) because x̂′ is element-wise less than or
equal to x′. Thus, we have u(x̂′)−c(x̂′) ≥ u(x′)−c(x′) by monotonicity of c(x). By equa-
tions (18)-(21), we have u(x)− c(x) ≥ u(αx)− c(αx),∀α ∈ [0, 1]. On the other hand, for
any x′ 6= αx which is not element-wise greater than x, there must exist a x̂′ = α∗x where
α∗ = min{i|x′i≤xi}

x′i
xi
∈ [0, 1] such that u(x′)− c(x′) ≤ u(x̂′)− c(x̂′) ≤ u(x)− c(x).

As a result, the constructed u(x) is feasible to FOP (6) because u(x)− c(x) ≥ u(x′)− c(x′) for
any x′ ∈ X .

Next, we argue that u achieves the same buyer utility, and thus must also be optimal. This is because:
(1) the feasiblity of u implies that the optimal price will be u(x) = u∗(x); (2) the optimal buyer
amount will then be x by breaking ties rule. As a result, buyer achieves the same utility when using
u and u∗, yielding the optimality of u.

So far we showed that there always exists an optimal u of Form (16), which is parameterized
p ∈ R≥0. We then return to the situation of linear pricing since a linear pricing scheme with unit
price (λ1 · px1

, λ2 · px2
, · · · , λd · pxd

) where
∑
i λi = 1 is optimal for such a u among all concave

pricing schemes. The characterization then follows from Theorem 1.

E.2 Proof of Proposition 1

Proposition 1. For the instance in Example 1, there exists pricing scheme class P with PL ⊂ P ⊂
PC such that when the seller changes from linear pricing class PL to the richer class P , the seller’s
revenue strictly decreases and the buyer’s surplus strictly increases at the equilibrium of PADD.

Proof. We first analyze the situation of linear pricing. By the characterization in Theorem 2, we
know that the optimal purchase bundle satisfies x∗ = argmaxx∈X [v(x)− x · ∇c(x)]. Given v(x)
and c(x) in Example 1, this solves for x∗ = 0.81 in the linear pricing setting. Furthermore, this gives
p∗ = x∗ · ∇c(x∗) = 1.3122 and optimal imitative value function u∗ = 1.3122 · min{x/0.81, 1}.
The seller revenue in this case is p∗ − c(x∗) = 0.6561.

Next, we show that the seller’s revenue will strictly decrease at equilibrium when using pricing
class P = PL ∪ {p̃} that augments linear pricing class PL with the following additional choice of a
concave pricing function

p̃(x) = min(
√
x,

5

9
x+

9

20
− ε)

where ε = 0.05 is a small constant.
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Consider the imitative value function u∗(x) =
√
x and a particular linear pricing response p > 0.

In this case, the buyer will purchase an amount x′ = argmaxx∈X [u∗(x)− p · x], implying 1
2
√
x

=
du∗(x′)
dx = p. Solving for x′ gives x′ = 1

4p2 . Now, we solve for the linear pricing response pL that
maximizes the seller revenue.

pL = argmax
p∈L

[p · x′ − c(x′)]

= argmax
p∈L

[p · 1

4p2
− 1

(4p2)2
]

= argmax
p∈L

[
1

4p
− 1

16p4
]

= 1

Thus, the optimal linear pricing response to u∗(x) =
√
x is pL = 1. The buyer will purchase

x′ = 0.25, giving the seller a revenue of 1 · 0.25 − 0.252 = 0.1875. Finally, consider the pricing
function p̃(x) for the buyer’s imitative value function u∗(x) =

√
x. We observe that d

dx ( 5
9x+ 9

20 −
ε) = 5

9 = 1
2
√
0.81

= d
dx (u∗(0.81)), meaning argmaxx∈X [u∗(x) − p∗(x)] = 0.81. Thus, the buyer

can purchase x = 0.81 and the seller will get revenue 0.2439− ε = 0.1939. This is strictly larger
than the seller’s revenue 0.1875 from the optimal linear pricing scheme. Thus the seller’s optimal
pricing scheme from P is p̃(x).

Finally, note that argmaxx∈X [v(x) − p̃(x)] = 0.81, meaning the optimal bundle for the buyer to
purchase when the seller responds with p̃ is x = 0.81. In this case the buyer surplus is v(0.81) −
p̃(0.81) = 8.1 − 0.9 + ε > 8.1 − 1.3122 = v(0.81) − pL · 0.81, meaning the optimal true buyer
surplus given pricing function p̃(x) is greater than the optimal true buyer surplus given any linear
pricing response. Thus, u∗(x) is an optimal imitative function under pricing class P and the seller
revenue of 0.2439−ε = 0.1939 is strictly lower than the seller revenue of 0.6561 under linear pricing
class PL.
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