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1 A probabilistic formulation of distributed learning1

1.1 Markov chain model2

Here we provide additional details to the learning model presented in Section 3 of the main text. To3

establish these results we consider the Markov chain model x → z1 → z2 → · · · → y of a DNN with4

inputs x, outputs y and intermediate representations zk at block k. To simplify the notation we will5

define the input z0 := x and output zN := y layers, and z = {zk}, 1 ≤ k < N , the auxiliary latent6

variables. A DNN NA suggests a conditional independence structure given by the fully factorized7

Markov chain of random variables zk8

p (y, z |x) = p (z1 . . . zN | z0) =

N∏
k=1

pk (zk | zk−1) . (S1)

The computation of messages αk comes naturally in a feed-forward neural network as the flow of9

information follows the canonical form, input → output. Every block of the network thus translates10

αk−1 → αk by outputting the statistical parameters of the conditional distribution p (zk |x) and11

takes p (zk−1 |x) as input. This interpretation is viable for a suitable split of any DNN into N blocks,12

that fulfils a mild set of conditions (see Section 1.3 for details). It is important to note that the random13

variables (z1, z2, . . . ) are only implicit. The network generates the parameters to the probability14

distribution and at no points needs to sample values for these random variables.15

1.2 Using latent representations to construct probabilistic block-local losses16

Many commonly used loss functions in deep learning have a probabilistic interpretation, e.g. the cross17

entropy loss of a binary classifier is identical to the Bernoulli log likelihood, and the mean squared18

error is up to a constant equivalent to the log-likelihood of a Gaussian with constant variance. In19

this formulation, the outputs of the DNN are interpreted as the statistical parameters to a conditional20

probability distribution (e.g. the mean of a Gaussian) and the loss function measures the support of21

observed data samples x and y.22

To introduce intermediate block-local representations zk in the network we consider an upper bound23

to the log-likelihood loss (Eq. 1 of the main text)24

L1 = − log p (y |x) + 1

N

N∑
k=1

DKL (qk | pk) , (S2)

where pk and qk are true and variational posterior distributions over latent variables p (zk |x,y) and25

q (zk |x,y), respectively. Using the Markov property (S1) assuming a fully factorized distribution,26

implies the conditional independence27

p (y, zk |x) = p (y | zk) p (zk |x) . (S3)
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Using this Eq. S2 becomes28

L1 = − log p (y |x) + 1

N

N∑
k=1

DKL (qk | pk)

=
1

N

N∑
k=1

〈
log

q (zk |x,y)
p (y, zk |x)

〉
qk

=
1

N

N∑
k=1

〈
log

q (zk |x,y)
p (zk |x)

− log p (y | zk)
〉

qk

=
1

N

N∑
k=1

DKL (ρk(x,y) |αk(x))−
〈
log p (y | zk)

〉
qk

. (S4)

Eq. S4 is an upper bound on log-likelihood loss L∗ = − log p (y |x) ≤ L1. Since L∗ is strictly29

positive, minimizing L1 to zeros implies that also L∗ becomes zero Mnih and Gregor [2014].30

1.3 General exponential family distribution31

To arrive at a result for the gradient of the first (KL-divergence) term in Eq. S4 we seek distributions32

for which the marginals can be computed in closed form. We assume forward messages α and33

posterior ρ be given by general exponential family distributions34

αk (zk) =
∏
j

αkj (zkj) =
∏
j

h(zkj)exp (T (zkj)ϕkj −A (ϕkj)) (S5)

ρk (zk) =
∏
j

ρkj (zkj) =
∏
j

h(zkj)exp (T (zkj) γkj −A (γkj)) (S6)

with base measure h, sufficient statistics T , log-partition function A, and natural parameters ϕkj and35

γkj . Using this the KL loss becomes36

L(k)
V = DKL (ρk |αk) =

∑
j

〈
T (zkj) (ϕkj − γkj)−A (ϕkj) +A (γkj)

〉
ρkj

, (S7)

and thus37

− ∂

∂θ
L(k)
V =

∑
j

(〈
T (zkj)

〉
ρkj

−
〈
T (zkj)

〉
αkj

)
∂

∂θ
ϕkj +(〈

T (zkj)
2
〉
ρkj

−
〈
T (zkj)

〉2
ρkj

)
︸ ︷︷ ︸

σ2(ρkj)

(ϕkj − γkj)
∂

∂θ
γkj , (S8)

which by defining µ (p) =
〈
T (zkj)

〉
p

can be written in the compact form38

− ∂

∂θ
L(k)
V =

∑
j

(µ (ρkj)− µ (αkj))
∂

∂θ
ϕkj + σ2 (ρkj) (ϕkj − γkj)

∂

∂θ
γkj .

This is the result Eq. (7) of the main text.39

1.3.1 Example: Bernoulli random variables40

For the example of a Bernoulli random variable we have T (zkj) = zkj , A (γ) = log (1 + eγ),41 〈
T (zkj)

〉
ρkj

= ρkj , and furthermore σ2 (ρkj) = ρkj (1− ρkj). We get42

− ∂

∂θ
L(k)
V =

∑
k,j

(ρkj − αkj)
∂

∂θ
ϕkj + ρkj (1− ρkj) (ϕkj − γkj)

∂

∂θ
γkj . (S9)
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Using the ansatz ϕkj = akj and γkj = akj + bkj , ρkj = S(akj + bkj) = p (zkj = 1 |x,y) with43

akj = fj(ak−1) and bkj = gj(bk+1) we further get44

− ∂

∂θ
L(k)
V =

∑
k,j

(ρkj − αkj)
∂

∂θ
akj − ρkj (1− ρkj) bkj

(
∂

∂θ
akj +

∂

∂θ
bkj

)
. (S10)

For the Bernoulli case it is also easy to verify that our approach is sound. Here, the natural parameters45

are given by the logg-odds akj = log
p(zkj=1 |x)
p(zkj=0 |x) and bkj = log

p(y | zkj=1)
p(y | zkj=0) . Plugging this into46

the expression for ρkj we get ρkj = S (akj + bkj) = S
(
log

p(zkj=1 |x)
p(zkj=0 |x) + log

p(y | zkj=1)
p(y | zkj=0)

)
=47

p (zkj = 1 |x,y).48

1.3.2 Example: Gaussian random variables with constant variance49

For the example of a Gaussian random variable with constant variance we have T (zkj) = zkj ,50 〈
T (zkj)

〉
ρkj

= ϕkj , and furthermore σ2 (ρkj) = σ2 (= const). We get51

− ∂

∂θ
L(k)
V =

∑
k,j

(γkj − ϕkj)
∂

∂θ
ϕkj + σ (ϕkj − γkj)

∂

∂θ
γkj (S11)

Using the ansatz ϕkj = akj and γkj = akj + bkj , we further get52

− ∂

∂θ
L(k)
V =

∑
k,j

(1− σ) bkj
∂

∂θ
akj − σ bkj

∂

∂θ
bkj . (S12)

1.3.3 Example: Poisson random variables53

For the example of a Poisson random variable we have T (zkj) = zkj , A (γ) = eγ ,
〈
T (zkj)

〉
ρkj

=54

eγkj , furthermore σ2 (ρkj) = ρkj = eγkj and αkj = eϕkj . Using again ϕkj = akj and γkj =55

akj + bkj , we get56

− ∂

∂θ
L(k)
V =

∑
k,j

(ρkj − αkj)
∂

∂θ
akj − ρkj bkj

(
∂

∂θ
akj +

∂

∂θ
bkj

)
. (S13)

1.3.4 Estimating the log-likelihood loss through posterior mixing57

Finally we show how the remaining term
〈
log p (y | zk)

〉
qk

in Eq. S4 can be estimated locally. First58

we note that the − log p (y | zk) is of the same form as the log-likelihood loss (Eq. (1) of the main59

text), i.e. the likelihood of the data labels y of the residual network zk → y. Thus treating zk as60

block-local input data and minimizing the augmented ELBO loss from layer zk → zN minimizes61

another lower bound on the global loss L∗. By inserting Eq. S4 recursively into itself we get62

L2 =
1

N

N∑
k=1

(
DKL (ρk(x,y) |αk(x)) +

1

N − k

N∑
l=k+1

(〈
DKL (ρl(zk,y) |αl(zk))

〉
qk

−
〈
log p (y | zl)

〉
qk→ql

))
, (S14)

where we used the short-hand notation
〈
f (zl)

〉
qk→ql

=

〈 〈
f (zl)

〉
ql

〉
qk

. Note that the forward63

network is able to compute this expression since each block computes the required marginal locally64

by Eq. (3). That is, the data is augmented by choosing a block k and instead of propagating αk into65

block k + 1 the posterior ρk is propagated forward. By iterating another recursion we get66

L3 =
1

N

N∑
k=1

(
DKL (ρk(x,y) |αk(x)) +

1

N − k

N∑
l=k+1

(〈
DKL (ρl(zk,y) |αl(zk))

〉
qk

+

=
1

N − l

N∑
l′=l+1

(〈
DKL (ρl(zk,y) |αl(zk))

〉
qk→ql

−
〈
log p (y | zl′)

〉
qk→ql→ql′

)))
.
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This result implies a hierarchy of loss functions 0 ≤ L∗ ≤ L1 ≤ L2 ≤ ..., where LN consists only67

of DKL-terms between forward messages α and posteriors ρ that were generated by propagating68

different paths qk → ql → ql′ → . . . through the network. While this posterior mixing would be69

computable in principle in our model, it turns out to be quite expensive since exponentially many70

(exponential in the number of blocks N ) such paths have to be considered.71

We therefore used a different approach by introducing the mixing parameter m in Eq. 8 to redefine72

the posterior ρkj = S (akj +mbkj), and replacing in Eq. S10. Note that in the limit m → 0 we73

have ρkj = αkj and therefore the posterior mixing described above can be omitted. We therefore74

used small values m and only include it in the loss as described in Eq. 8 of the main text. We found75

that combining a suitable schedule that slowly anneals the mixing parameter m towards zero during76

training gives good results in practice. We used m = (1 + τ M)
−1 in our experiments, where M77

is the index of the current epoch and τ is a scaling parameter that was set to τ = 0.5 if not stated78

otherwise. In the transformer example in Fig. 3 we used a constant mixing m = 0.01 throughout79

training.80

2 Experimental procedure81

2.1 Forward-backward networks as autoencoder82

For the convolutional autoencoder in Section 3.3 of the main text we used a convolutional neural net-83

work with 2 layers with leaky ReLu activation function for decoder and encoder. Batch normalization84

was used after the convolution/deconvolution layers. Encoder network in addition used max-pooling85

after each convolution layer. The bottleneck layer (y) had 128 channels. Fashion MNIST images were86

augmented with 28x28 pixel images as targets for the uncertainty outputs, giving a total input/target87

size of 56x28. Uncertainty inputs/targets were set to a constant of 0.2 during training for all channels88

and training samples.89

Network output images were also split into 2 28x28 patches corresponding to training mean and90

uncertainty channels. Let µ∗
n and s∗n denote mean and uncertainty channels of training sample n,91

respectively, and let µn and sn be the corresponding network outputs. For training and testing we92

used the Gaussian Kullback-Leibler divergence loss93

LKL =
1

2M

M∑
n=1

(
sn − s∗n +

es
∗
n + (µ∗

n − µn)
2

esn
− 1

)
, (S15)

where M is here the number of training samples and sn corresponding to log variances. The Adam94

optimizer with learning rate of 0.001 was used for training. For validation to further assess the95

mismatch between estimated and true prediction errors in Fig. 2 of the main text, we also used the96

MSE matching loss97

LMM =
1

M

M∑
n=1

(
(µ∗

n − µn)
2 − esn

)2
, (S16)

that estimates the distance between the empirical MSE of predictions, and the MSE estimator loss98

LME =
1

M

M∑
n=1

sn , (S17)

that is a global uncertainty estimator (mean variance predicted by the network). Uncertainty outputs99

in Fig. 2B were clipped to min and maximum range for the 5 examples given and presented as100

grayscale images.101

2.2 Block-local learning with vision benchmark tasks102

BLL Architectures used in Section 4 were adapted from ResNet-18 and ResNet-50 architectures.103

Batch normalization was used after the convolution layers as is standard for ResNet architectures.104

These networks were split into 4 blocks that were trained locally. Backward twin networks were105

constructed using the same network in reverse order, again split into 4 blocks to provide intermediate106

losses. The ResNet-18, for example, with its group sizes (4,5,4,5) was reversed into a group sizes107

of (5,4,5,4). Any convolution in the forward network with a stride more that 1 (i.e, Downsampling)108

was appended with an Upsampling layer of same stride in the backward network. Gradients were109

blocked after every layer in forward and backward networks and auxiliary losses (Eq. (8) of the main110

text) added for block local learning. For CIFAR10 experiments, additional tests were conducted with111

stopping gradients only after every two neighboring blocks.112
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MNIST
test-1 test-3 train-1

(mean±std) (mean±std) (mean±std)

ResNet-18 + BP 99.5±0.1 99.9±0.01 99.9±0.03
ResNet-50 + BP 99.5±0.06 99.9±0.0 99.9±0.1
ResNet-18 + FA 98.5±0.1 99.9±0.03 99.6±0.1
ResNet-50 + FA 98.9±0.06 99.9±0.03 100±0.0

ResNet-18 + BLL 99.3±0.1 100±0.0 99.5±0.3
ResNet-50 + BLL 99.1±0.4 99.9±0.1 99.2±0.2

Table 1: Classification accuracy (% correct) for 5 runs on MNIST vision tasks. BP: end-to-end
backprop, FA: feedback alignment, BLL: block local learning. Test-1, test-3 and train-1 represent the
top-1, top-3 test accuracy and top-1 training accuracy respectively.

Fahion-MNIST
test-1 test-3 train-1

(mean±std) (mean±std) (mean±std)

ResNet-18 + BP 92.7±0.1 99.2±0.7 99.3±0.1
ResNet-50 + BP 92.3±0.3 99.3±0.1 99.0±0.1
ResNet-18 + FA 88.2±0.3 98.7±0.2 94.3±0.8
ResNet-50 + FA 86.6±0.7 98.6±0.1 91.1±2.2

ResNet-18 + BLL 90.0±1.2 99.0±0.2 90.7±2.9
ResNet-50 + BLL 86.9±1.3 98.4±0.4 85.9±1.1

Table 2: As in Table 1. Classification accuracy (% correct) for 5 runs on FashionMNIST vision tasks.

2.2.1 MNIST and FashionMNIST vision tasks113

MNIST images were pre-processed by normalization to mean 0 and stds 1. FashionMNIST images114

were in addition augmented with random horizontal flips. MNIST is a freely available dataset115

consisting of 60,000 + 10,000 (train + test) grayscale images of handwritten digits published under116

the GNU General Public License v3.0. FashionMNIST is a freely available dataset consisting of117

60,000 + 10,000 (train + test) grayscale images of fashion items published under the MIT License118

(MIT) [Xiao et al., 2017]. After the submission of the main paper we ran additional trials with FA119

that gave better results on Fashion-MNIST and CIFAR10, which were included in Table 2 and will120

be added in the main paper after the revision. Overall we found the trial-by-trial variability of FA121

high compared to other methods analyzed.122

2.2.2 CIFAR10 vision task123

The BLL networks for CIFAR10 experiments also used the ResNet architectures as described in124

Section 2.2. However the gradients were propagated in between two neighbouring blocks instead125

of single block. This resulted in slightly better performance in our experiments, see Table 3. We126

used SGD optimizer with a learning rate of 0.002 and a momentum of 0.9. Additionally, we used127

a Cosine annealing learning rate scheduler [Loshchilov and Hutter, 2017] with max iterations set128

to 140. The batch size was chosen to be 128 to maximize GPU utilization. We performed minimal129

hyperparameter ( Learning rate, LR scheduler Tmax) tuning to obtain current results.130

2.2.3 Feedback alignment131

Resnet-18 and Resnet-50 architectures were also adapted for training with Feedback Alignment132

Lillicrap et al. [2014], for comparison. To do so, random and fixed kernels B, were used during133

backpropagation, while different ones, W, were used during the forward pass. Only W were134

updated and learned. Both kernels were of the same dimensionality (output_channel, input_channel,135

Kernel_Width, Kernel_Height) at each layer. Kernels were uniformly initialised using the Kaiming136

He et al. [2015] initialisation method. The bias term was set to one.137

2.3 Hardware and software details138

Most of our experiments were run on NVIDIA A100 GPUs and some initial evaluations and the139

MINST experiments were conducted on NVIDIA V100 and Quadro RTX 5000 GPUs. In total we140

used about 90,000 computational hours for training and hyper-parameter searches. ResNet18 and141

5



CIFAR-10
test-1 test-3 train-1

(mean±std) (mean±std) (mean±std)

ResNet-18 + BP 92.5±1.5 98.3±0.3 99.1±0.1
ResNet-50 + BP 91.1±1.1 98.7±0.2 98.1±0.9
ResNet-18 + FA 72.0±0.6 92.8±0.1 81.2±2.2
ResNet-50 + FA 62.5±0.4 88.2±0.2 66.9±1.1

ResNet-18 + BLL (1) 61.3±0.89 88.0±0.45 62.5±0.09
ResNet-50 + BLL (1) 59.9±1.02 87.8±0.27 62.6±1.07
ResNet-18 + BLL (2) 72.2±0.14 93.0±0.09 98.8±0.14
ResNet-50 + BLL (2) 73.4±0.47 92.7±0.28 99.7±0.06

Table 3: As in Table 1. Classification accuracy (% correct) for 5 runs on CIFAR10 task. BLL (x):
block local learning with gradients propagated between x neighbouring blocks.

ResNet50 models and experiments were implemented in PyTorch [Paszke et al., 2019]. Transformer142

model for sequence-to-sequence learning was implemented in JAX [Bradbury et al., 2018].143
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