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Problem Statement Our approach enables quick selection of best

We consider the problem of selecting best prompts and LLMs during prompts and LLMs during deployment.

deployment when a robot 1s deployed for LLM-informed object search | Leveraging Erior work by Paudel and Stein [2] on white-box selection,

tasks 1n partially_kngwn environments. our approach uses information collected during trial (e. % objects found
in explored containers) and the map to replay the robot behavior
informed by all other alternative prompts and LLMs, the outcomes of

Different prompts lead to different behavior during which are used for selection of best prompts and LLMs.
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Prompt Selection Results
Metric ideitolggh Num of Trials (k)
_ : PP k=20 k=50 k=100
» s D + B s [ = Avg.  UCB Selection 216.58A 212334 208.06
Prompt 3: P-MINIMAL Prompt 4: P-DIRECT Cost  Replay Selection (ours) 206.63A 199.38¢ 195.358
Target Object: ]/emol‘e COnl‘]/O l Cumul. UCB Selection 646.6 1470.5 2601.5
Regret Replay Selection (ours)  572.1A 1042.30 1544.7(]
Applying black-box model selection for selecting OB Sl
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prompts during deployment is too slow. : .
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Leve I"agin g pl"ior' work [2], we seek to enable white-box | Performance when deploying only one policy/prompt/LLM combination:

selection of prompts and LLMs during deployment. Policy / Prompt / LLM Avg. Cost
In trial k+1, policy &, with prompt-LLM pair 6 to be selected for deployment 1s L LM4+MODEL / P-CONTEXT-A / GPT-40 297 66
glven by: LLM+MODEL / P-CONTEXT-B / GPT-40 192.25
i) | - _ In k ' LLM+MODEL / P-MINIMAL / GPT-40 205.55
To ' = argmin | max ( Cr(mo) . Ci(mo) = ey [ s ) LLM-DIRECT / P-DIRECT / GPT-40 250.42
A - LLM+MODEL / P-CONTEXT-A / Gemini 186.69
Lower bound cost based on offline Lower bound cost based LLM+MODEL / P-CONTEXT-B / Gemini 188.11
replay of prompt-LLM pair 6 on UCB algorithm LLM+MODEL / P-MINIMAL / Gemini 225.49
LLM-DIRECT / P-DIRECT / Gemini 201.50
We use high-level action abstration and model-based planning OPTIMISTIC+GREEDY / —/ — 298.19
[3] for object search in partially known environments.
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