
Appendix

Roadmap. We provide supplementary materials for our work. Section A introduces the prelim-
inary notations and definitions, Section B introduces the LSH data structure in detail for MaxIP,
Section C presents our sublinear Frank-Wolfe algorithm, Section D presents the convergence anal-
ysis for sublinear Frank-Wolfe, Section E provides the algorithm and analysis on sublinear cost
Herding algorithm, Section F provides the algorithm and analysis on sublinear cost policy gradient
approach, Section G shows how to handle adaptive queries in MaxIP.

A Preliminary

A.1 Notations

We use Pr[] and E[] for probability and expectation. We denote max{a, b} as the maximum between
a and b. We denote min{a, b} (resp. max{a, b}) as the minimum (reps. maximum) between a
and b. For a vector x, we denote ‖x‖2 := (

∑n
i=1 x

2
i)

1/2 as its `2 norm. We denote ‖x‖p :=

(
∑n
i=1 |xi|p)1/p as its `p norm. For a square matrix A, we denote tr[A] as the trace of matrix A.

A.2 LSH and MaxIP

We start with the defining the Approximate Nearest Neighbor (ANN) problem [62, 46, 47, 63, 64,
65, 66, 67, 68, 69, 70] as:

Definition A.1 (Approximate Nearest Neighbor (ANN)). Let c > 1 and r ∈ (0, 2) denote two pa-
rameters. Given an n-vector set Y ⊂ Sd−1 on a unit sphere, the objective of the (c, r)-Approximate
Nearest Neighbor (ANN) is to construct a data structure that, for any query x ∈ Sd−1 such that
miny∈Y ‖y − x‖2 ≤ r, it returns a vector z from Y that satisfies ‖z − x‖2 ≤ c · r.

The ANN problem can be solved via locality sensitive hashing (LSH) [46, 47, 66]. In this paper, we
use the standard definitions of LSH (see Indyk and Motwani [46]).

Definition A.2 (Locality Sensitive Hashing). Let c > 1 denote a parameter. Let p1, p2 ∈ (0, 1)
denote two parameters and p1 > p2. We say a function family H is (r, c · r, p1, p2)-sensitive if and
only if, for any vectors x, y ∈ Rd, for any h chosen uniformly at random fromH, we have:

• if ‖x− y‖2 ≤ r, then Prh∼H[h(x) = h(y)] ≥ p1,

• if ‖x− y‖2 ≥ c · r, then Prh∼H[h(x) = h(y)] ≤ p2.

Next, we show that LSH solves ANN problem with sublinear query time complexity.

Theorem A.3 (Andoni, Laarhoven, Razenshteyn and Waingarten [67]). Let c > 1 and r ∈ (0, 2)
denote two parameters. One can solve (c, r)-ANN on a unit sphere in query time O(d · nρ) using
preprocessing time O(dn1+o(1)) and space O(n1+o(1) + dn), where ρ = 2

c2
− 1

c4
+ o(1).

Here we write o(1) is equivalent to O(1/
√

log n). Note that we could reduce d to no(1) with John-
son–Lindenstrauss Lemma [72]. Besides, we could achieve better ρ using LSH in [65] if we allowed
to have more proprocessing time.

In this work, we focus on a well-known problem in computational complexity: approximate MaxIP.
In this work, we follow the standard notation in [73] and define the approximate MaxIP problem as
follows:

Definition A.4 (Approximate MaxIP). Let c ∈ (0, 1) and τ ∈ (0, 1) denote two parameters. Given
an n-vector dataset Y ⊂ Sd−1 on a unit sphere, the objective of the (c, τ)-MaxIP is to construct a
data structure that, given a query x ∈ Sd−1 such that maxy∈Y 〈x, y〉 ≥ τ , it retrieves a vector z
from Y that satisfies 〈x, z〉 ≥ c ·maxy∈Y 〈x, y〉.

In many applications, it is more convenient to doing inner product search in a transformed/projected
space compared to doing inner product search in the original space. Thus, we propose the following
definitions (Definition A.5 and Definition A.6)

15

Definition A.5 (Projected MaxIP). Let φ, ψ : Rd → Rk denote two transforms. Given a data set
Y ⊆ Rd and a point x ∈ Rd, we define (φ, ψ)-MaxIP as follows:

(φ, ψ)-MaxIP(x, Y) := max
y∈Y
〈φ(x), ψ(y)〉

Definition A.6 (Projected approximate MaxIP). Let φ, ψ : Rd → Rk denote two transforms. Given
an n-vector dataset Y ⊂ Rd so that ψ(Y) ⊂ Sk−1, the goal of the (c, φ, ψ, τ)-MaxIP is to construct
a data structure that, given a query x ∈ Rd and φ(x) ∈ Sk−1 such that maxy∈Y 〈φ(x), ψ(y)〉 ≥ τ ,
it retrieves a vector z ∈ Y that satisfies 〈φ(x), ψ(z)〉 ≥ c · (φ, ψ)-MaxIP(x, Y).

Besides MaxIP, We also define a version of the minimum inner product search problem.

Definition A.7 (Regularized Min-IP). Given a data set Y ⊆ Rd and a point x ∈ Rd. Let φ : Rd →
Rd denote a mapping. Given a constant α, we define regularized Min-IP as follows:

(φ, α)-Min-IP(x, Y) := min
y∈Y
〈y − x, φ(x)〉+ α‖x− y‖.

A.3 Definitions and Properties for Optimization

We start with listing definitions for optimization.

Definition A.8 (Convex hull and its diameter). Given a setA = {xi}i∈[n] ⊂ Rd, we define its convex
hull B(A) to be the collection of all finite linear combinations y that satisfies y =

∑
i∈[n] ai · xi

where ai ∈ [0, 1] for all i ∈ [n] and
∑
i∈[n] ai = 1. Let Dmax denote the maximum square of

diameter of B(A) so that ‖x− y‖2 ≤ Dmax for all (x, y) ∈ B(A).

Definition A.9 (Smoothness). We say L is β-smooth if

L(y) ≤ L(x) + 〈∇L(x), y − x〉+
β

2
‖y − x‖22

Definition A.10 (Convex). We say function L is convex if

L(x) ≥ L(y) + 〈∇L(y), x− y〉

Next, we list properties for optimization.

Corollary A.11. For a set A = {xi}i∈[n] ⊂ Rd, and its convex hull B(A), given a query q ∈ Rd, if
x∗ = arg maxx∈A q

>x. Then, q>y ≤ q>x∗ for all y ∈ B(A).

Proof. We can upper bound q>y as follows:

q>y = q>(
∑
i∈[n]

ai · xi)

=
∑
i∈[n]

ai · q>xi

≤
∑
i∈[n]

ai · q>x∗

≤ q>x∗

where the first step follows from the definition of convex hull in Definition A.8, the second step is
an reorganization, the third step follows the fact that ai ∈ [0, 1] for all i ∈ [n] and q>xi ≤ q>x∗ for
all xi ∈ A, the last step follows that

∑
i∈[n] ai = 1.

Lemma A.12 (MaxIP condition). Let g : Rd → R denote a convex function. Let S ⊂ Rd denote a
set of points. Given a vector x ∈ B(S), we have

min
s∈S
〈∇g(x), s− x〉 ≤ 0, ∀x ∈ B(S).

16

Proof. Let smin = arg mins∈S〈∇g(x), s〉. Then, we upper bound 〈∇g(x), smin − x〉 as

〈∇g(x), smin − x〉 = 〈∇g(x), smin −
∑
s∈S

ai · s〉

≤ 〈∇g(x),
∑
s∈S

ai(smin − si)〉

=
∑
si∈S

ai〈∇g(x), smin − si〉

=
∑
si∈S

ai(〈∇g(x), smin〉 − 〈∇g(x), si〉)

≤ 0 (9)

where the first step follows from the definition of convex hull in Definition A.8, the second and third
steps are reorganizations, the final steps follows that 〈∇g(x), s0〉 ≤ 〈∇g(x), s〉 for all s ∈ S.

Next, we upper bound mins∈S〈∇g(x), s− x〉 ≤ 0, ∀x ∈ B(S) as

min
s∈S
〈∇g(x), s− x〉 ≤ 〈∇g(x), s0 − x〉 ≤ 0

where the first step follows from the definition of function min and the second step follows from
Eq (9).

B Data Structures

In this section, we present a formal statement that solves (c, τ)-MaxIP problem on unit sphere using
LSH for (c, r)-ANN.

Corollary B.1 (Formal statement of Corollary 4.4). Let c ∈ (0, 1) and τ ∈ (0, 1). Given a set of n-
vector set Y ⊂ Sd−1 on the unit sphere, there exists a data structure with O(dn1+o(1)) preprocess-
ing time andO(n1+o(1)+dn) space so that for any query x ∈ Sd−1, we takeO(d ·nρ) query time to
retrieve the (c, τ)-MaxIP of x in Y with probability at least 0.9i, where ρ := 2(1−τ)2

(1−cτ)2−
(1−τ)4
(1−cτ)4 +o(1)

Proof. We know that ‖x − y‖22 = 2 − 2〈x, y〉 for all x, y ∈ Sd−1. In this way, if we have a LSH
data-structure for (c, r)-ANN. It could be used to solve (c, τ)-MaxIP with τ = 1 − 0.5r2 and
c = 1−0.5c2r2

1−0.5r2 . Next, we write c2 as

c2 =
1− c(1− 0.5r2)

0.5r2
=

1− cτ
1− τ

.

Next, we show that if the LSH is initialized following Theorem A.3, it takes query time O(d · nρ),
space O(n1+o(1) + dn) and preprocessing time O(dn1+o(1)) to solve (c, τ)-MaxIP through solving
(c, r)-ANN, where

ρ =
2

c2
− 1

c4
+ o(1) =

2(1− τ)2

(1− cτ)2
− (1− τ)4

(1− cτ)4
+ o(1).

In practice, c is increasing as we set parameter τ close to MaxIP(x, Y). There is also another
LSH data structure [65] with longer preprocessing time and larger space that could solve the (c, τ)-
MaxIP with similar query time complexity. We refer readers to Section 8.2 in [74] for more details.
Moreover, Corrolary B.1 could be applied to projected MaxIP problem.

iIt is obvious to boost probability from constant to δ by repeating the data structure log(1/δ) times.

17

Corollary B.2. Let c ∈ (0, 1) and τ ∈ (0, 1). Let φ, ψ : Rd → Rk denote two transforms.
Let Tφ denote the time to compute φ(x) and Tψ denote the time to compute ψ(y). Given a set
of n-points Y ∈ Rd with ψ(Y) ⊂ Sk−1 on the sphere, one can construct a data structure with
O(dn1+o(1) + Tψn) preprocessing time and O(n1+o(1) + dn) space so that for any query x ∈ Rd
with φ(x) ∈ Sk−1, we take query time complexity O(d · nρ + Tφ) to solve (c, φ, ψ, τ)-MaxIP with

respect to (x, Y) with probability at least 0.9, where ρ := 2(1−τ)2
(1−cτ)2 −

(1−τ)4
(1−cτ)4 + o(1).

Proof. The preprocessing phase can be decomposed in two parts.

• It takes O(Tψn) time to transform every y ∈ Y into ψ(y).

• It takes O(O(dn1+o(1)) time and O(dn1+o(1) + dn) to index every ψ(y) into LSH using
Corrolary B.1.

The query phase can be decomposed in two parts.

• It takes O(Tφ) time to transform every x ∈ Rd into φ(x).

• It takes O(d · nρ) time perform query for φ(x) in LSH using Corrolary B.1.

C Algorithms

C.1 Problem Formulation

In this section, we show how to use Frank-Wolfe Algorithm to solve the Problem C.1.

Problem C.1.

min
w∈B

g(w) (10)

We have the following assumptions:

• g : Rd → R is a differentiable function.

• S ⊂ Rd is a finite feasible set. |S| = n.

• B = B(S) ⊂ Rd is the convex hull of the finite set S ⊂ Rd defined in Definition A.8.

• Dmax is the maximum diameter of B(S) defined in Definition A.8.

In Problem C.1, function g could have different proprieties about convexity and smoothness.

To solve this problem, we introduce a Frank-Wolfe Algorithm shown in Algorithm 1.

Algorithm 1 Frank-Wolf algorithm for Problem C.1

1: procedure FRANKWOLFE(S ⊂ Rd)
2: T ← O(

βD2
max

ε), ∀t ∈ [T]

3: η ← 2
t+2

4: Start with w0 ∈ B. . B = B(S)(see Definition A.8).
5: for t = 1→ T − 1 do
6: st ← arg mins∈S〈∇g(wt), s〉
7: wt+1 ← (1− ηt)wt + ηts

t

8: end for
9: return wT

10: end procedure

18

One of the major computational bottleneck of Algorithm 1 is the cost paid in each iteration. Al-
gorithm 1 has to linear scan all the s ∈ S in each iteration. To tackle this issue, we propose a
Frank-Wolfe Algorithm with sublinear cost in each iteration.

C.2 Sublinear Frank-Wolfe Algorithm

In this section, we present the Frank-Wolfe algorithm with sublinear cost per iteration using LSH.
The first step is to formulate the line 6 in Algorithm 1 as a projected MaxIP problem defined in
Definition A.5. To achieve this, we present a general MaxIP transform.

Proposition C.2 (MaxIP transform). Let φ1, ψ1 : Rd → Rk1 and φ2, ψ2 : Rd → Rk2 to be the
projection functions. Given the polynomial function p(z) =

∑D
i=0 aiz

i, we show that

〈φ1(x), ψ1(y)〉+ p(‖φ2(x)− ψ2(y)‖22) = 〈φ(x), ψ(y)〉 (11)

where φ, ψ : Rd → Rk1+k2(D+1)2 is the decomposition function.

Proof. Because φ2(x), ψ2(y) ∈ Rk2 , ‖φ2(x)− ψ2(y)‖2i2 =
∑k2
j=1(φ2(x)j − ψ2(y)j)

2i. This is the
sum over dimensions. Then, we have

p(‖φ2(x)− ψ2(y)‖22) =

D∑
i=0

ai‖φ2(x)− ψ2(y)‖2i2

=

D∑
i=0

ai

k2∑
j=1

(φ2(x)j − ψ2(y)j)
2i

where the first follows from definition of polynomial p, and the second step follows from definition
of `2 norm.

Here φ2(x)j means the jth entry of φ2(x). Using the binomial theorem, we decompose (φ2(x)j −
ψ2(y)j)

2i as:

(φ2(x)j − ψ2(y)j)
2i

=

2i∑
l=0

(
2i
l

)
φ2(x)2i−lj ψ2(y)lj

= 〈[φ2(x)2ij , · · · , φ2(x)2i−lj , · · · , φ2(x)j , 1]︸ ︷︷ ︸
uj

, [1, ψ2(y)j , · · · , ψ2(y)lj , · · · , ψ2(y)2ij]︸ ︷︷ ︸
vj

〉

Then, we generate two vectors ui ∈ Rk2(2i+1) and vi ∈ Rk2(2i+1)

ui = [u1 · · · uj · · · uk2] uj =
[
φ2(x)2ij · · · φ2(x)2i−lj · · · φ2(x)j 1

]>
vi = [v1 · · · vj · · · vk2] vj =

[
1 ψ2(y)j · · · ψ2(y)lj · · · ψ2(y)2ij

]>
Thus,

∑k2
j=1(φ2(x)j − ψ2(y)j)

2i can be rewrite with inner product by concatenating all the uj
together and then concatenating all the vj .

k2∑
j=1

(φ2(x)j − ψ2(y)j)
2i = 〈ui, vi〉.

We make vectors b ∈ Rk2(D+1)2 and c ∈ Rk2(D+1)2 such as

b = [u0 · · · , ui, · · · , uD]

c = [a0v
0, · · · , aivi, · · · , aDvD]

19

So that
D∑
i=0

ai

k2∑
j=1

(φ2(x)j − ψ2(y)j)
2i =

D∑
i=0

ai〈ui, vi〉 =

D∑
i=0

〈ui, aivi〉 = 〈b, c〉

Finally, we have

〈φ1(x), ψ1(y)〉+ p(‖φ2(x)− ψ2(y)‖22) = 〈φ1(x), ψ1(y)〉+ 〈b, c〉
= 〈[φ1(x), b], [ψ1(y), c]〉
= 〈φ(x), ψ(y)〉

Total projected dimension:

k1 +

D∑
i=0

k2(2i+ 1) = k1 + (D + 1)k2 + 2k2

D∑
i=1

i

= k1 + (D + 1)k2 + 2k2 ·
D(D + 1)

2

= k1 + k2(D + 1)2

Therefore, any binary function with format 〈φ1(x), ψ1(y)〉+p(‖φ2(x)−ψ2(y)‖22) defined in Propo-
sition C.2 can be transformed as a inner product.

Next, we show that a modified version of line 6 in Algorithm 1 can be formulated as a projected
MaxIP problem.
Corollary C.3 (Equivalence between projected MaxIP and Min-IP). Let g be a differential function
defined on convex set K ⊂ Rd. Given η ∈ (0, 1) and x, y ∈ K, we define φ, ψ : Rd → Rd+3 as
follows:

φ(x) :=
[
φ0(x)

>

Dx
0
√

1− ‖φ0(x)‖22
D2
x

]>
ψ(y) :=

[
ψ0(y)

>

Dy

√
1− ‖ψ0(y)‖22

D2
y

0

]>
where

φ0(x) :=[∇g(x)>, x>∇g(x)]> ψ0(y) := [−y>, 1]>

,Dx is the maximum diameter of φ0(x) and Dy is the maximum diameter of ψ0(y).

Then, for all x, y ∈ Rd, we transform them into unit vector φ(x) and ψ(y) on Sd+2. Moreover, we
have

〈y − x,∇g(x)〉 = −DxDy〈φ(x), ψ(y)〉

Further, the (φ, ψ)-MaxIP (Definition A.5) is equivalent to the (∇g, 0)-Min-IP (Definition A.7).

arg max
y∈K
〈φ(x), ψ(y)〉 = arg min

y∈K
〈y − x,∇g(x)〉

In addition, let Tψ denote the time of evaluating at any point y ∈ Rd for function ψ, then we have
Tψ = O(1).

Let Tφ denote the time of evaluating at any point x ∈ Rd for function φ, then we have Tφ =
T∇g +O(d), where the T∇g denote the time of evaluating function∇g at any point x ∈ Rd.

Proof. We start with showing that ‖φ(x)‖2 = ‖ψ(y)‖2 = 1. Next, we show that

〈φ(x), ψ(y)〉 =
〈φ0(x), ψ0(y)〉

DxDy

=
〈−y,∇g(x)〉+ 〈x,∇g(x)〉

DxDy

20

= − 〈y − x,∇g(x)〉
DxDy

where the first step follows from definition of φ and ψ, the second step follows from definition of
φ0 and ψ0, the last step is a reorganization.

Based on the results above,

arg max
y∈K
〈φ(x), ψ(y)〉 = arg min

y∈K
〈y − x,∇g(x)〉

Using Corollary C.3, the direction search in Frank-Wolfe algorithm iteration is equivalent to a
(φ, ψ)-MaxIP problem. In this way, we propose Algorithm 2, an Frank-Wolfe algorithm with sub-
linear cost per iteration using LSH.

Algorithm 2 Sublinear Frank-Wolfe for Problem C.1

1: data structure LSH . Corollary B.2
2: INIT(S ⊂ Rd, n ∈ N, d ∈ N, c ∈ (0, 1))
3: . |S| = n, c ∈ (0, 1) is LSH parameter, and d is the dimension of data
4: QUERY(x ∈ Rd, τ ∈ (0, 1)) . τ ∈ (0, 1) is LSH parameter
5: end data structure
6:
7: procedure SUBLINEARFRANKWOLFE(S ⊂ Rd, n ∈ N, d ∈ N, c ∈ (0, 1), τ ∈ (0, 1)) .

Theorem D.1
8: Construct φ, ψ : Rd → Rd+1 as Corollary C.3
9: static LSH LSH

10: LSH.INIT(ψ(S), n, d+ 3, c)
11: Start with w0 ∈ B. . B = B(S)(see Definition A.8).
12: T ← O(

βD2
max

c2ε)

13: η ← 2
c(t+2) , ∀t ∈ [T]

14: for t = 1→ T − 1 do
15: /* Query with wt and retrieve its (c, φ, ψ, τ)-MaxIP st ∈ S from LSH data structure */
16: st ← LSH.QUERY(φ(wt), τ)
17: /* Update wt in the chosen direction*/
18: wt+1 ← (1− ηt) · wt + ηt · st
19: end for
20: return wT
21: end procedure

D Convergence Analysis

In this Section D, analyze the convergence of our Sublinear Frank-Wolfe algorithm in Algorithm 2
when g is convex (see Definition A.10) and β-smooth (see Definition A.9). Moreover, we compare
our sublinear Frank-Wolfe algorithm with Frank-Wolfe algorithm in Algorithm 1 in terms of number
of iterations and cost per iteration.

D.1 Summary

We first show the comparsion results in Table 2. We list the statement, preprocessing time, number
of iterations and cost per iteration for our algorithm and original Frank-Wolfe algorithm to converge.
As shown in the table, withO(dn1+o(1)·κ) preprocessing time, Algorithm 2 achievesO(dnρ ·κ+Tg)
cost per iteration with 1

c2 more iterations.

D.2 Convergence of Sublinear Frank-Wolfe Algorithm

The goal of this section is to prove Theorem D.1.

21

Algorithm Statement Preprocessing #iters cost per iter
Algorithm 1 [9] 0 O(βD2

max/ε) O(dn+ Tg)
Algorithm 2 Theorem D.1 O(dn1+o(1) · κ) O(c−2βD2

max/ε) O(dnρ · κ+ Tg)
Table 2: Comparison between original Frank-Wolfe algorithm and our sublinear Frank-Wolfe al-
gorithm. Here Tg denotes the time for computing gradient of g, c ∈ (0, 1) is the approximation
factor of LSH. We let κ := Θ(log(T/δ)) where T is the number of iterations and δ is the failure
probability. ρ ∈ (0, 1) is a fixed parameter determined by LSH.

Theorem D.1 (Convergence result of Sublinear Frank-Wolfe, a formal version of Theorem 3.1).
Let g : Rd → R denote a convex (see Definition A.10) and β-smooth function (see Definition A.9).
Let the complexity of calculating ∇g(x) to be Tg . Let φ, ψ : Rd → Rk denote two transforms
in Corollary C.3. Let S ⊂ Rd denote a set of points with |S| = n, and B ⊂ Rd is the convex
hull of S (see Definition A.8). For any parameters ε, δ, there is an iterative algorithm with that
takes O(dn1+o(1) · κ) preprocessing time and O((n1+o(1) + dn) · κ) space, takes T = O(

βD2
max

ε)

iterations and O(dnρ · κ+ Tg) cost per iteration, starts from a random w0 from B as initialization
point, updates the w in each iteration as follows:

st ← (c, φ, ψ, τ)-MaxIP of wt with respect to S

wt+1 ← wt + η · (st − wt)

and outputs wT ∈ Rd from B such that

g(wT)−min
w∈B

g(w) ≤ ε,

holds with probability at least 1− δ. Here κ := Θ(log(T/δ)) and ρ := 2(1−τ)2
(1−cτ)2 −

(1−τ)4
(1−cτ)4 + o(1).

Proof. Convergence.

Let t denote some fixed iteration. We consider two cases:

• Case 1. τ > maxs∈S〈ψ(s), φ(wt)〉;

• Case 2. τ ≤ maxs∈S〈ψ(s), φ(wt)〉.

Case 1. In this case, we can show that

τ ≥ max
s∈S
〈ψ(s), φ(wt)〉

≥ 〈ψ(w∗), φ(wt)〉
DxDy

=
〈wt − w∗,∇g(wt)〉

DxDy

≥ g(wt)− g(w∗)

DxDy
,

where the first step follows from Corollary C.3, the second step follows from the Corollary A.11,
the third step is a reorganization, the last step follows the convexity of g (see Definition A.10).

Thus, as long as τ ≥ DxDyε, then we have

g(wt)− g(w∗) ≤ ε.

This means we already converges to the ε-optimal solution.

Case 2. We start with the upper bounding 〈st − wt,∇g(wt)〉 as

〈st − wt,∇g(wt)〉 = −DxDy〈ψ(st), φ(wt)〉

22

≤ − c ·DxDy max
s∈S
〈ψ(s), φ(wt)〉

≤ − c ·DxDy〈ψ(w∗), φ(wt)〉
= c〈w∗ − wt,∇g(wt)〉 (12)

where the first step follows from Corollary C.3, the second step follows from Corollary B.2 and
MaxIP condition in Lemma A.12, the third step follows from Corollary A.11.

For convenient of the proof, for each t, we define ht as follows:

ht = g(wt)− g(w∗). (13)

Next, we upper bound ht+1 as

ht+1 = g(wt+1)− g(w∗)

= g((1− ηt)wt + ηts
t)− g(w∗)

≤ g(wt) + ηt〈st − wt,∇g(wt)〉+
β

2
η2t ‖st − wt‖22 − g(w∗)

≤ g(wt) + ηt〈st − wt,∇g(wt)〉+
βD2

max

2
η2t − g(w∗)

≤ g(wt) + cηt〈w∗ − wt,∇g(wt)〉+
βD2

max

2
η2t − g(w∗)

= (1− ηt)g(wt) + cηt
(
g(wt) + 〈w∗ − wt,∇g(wt)〉

)
+
βD2

max

2
η2t − g(w∗)

≤ (1− ηt)g(wt) + cηtg(w∗) +
βD2

max

2
η2t − g(w∗)

≤ (1− cηt)g(wt)− (1− cηt)g(w∗) +
βD2

max

2
η2t

≤ (1− cηt)ht +
βD2

max

2
η2t

(14)

where the first step follows from definition of ht+1 (see Eq. (13)), the second step follows from
the update rule of Frank-Wolfe, the third step follows from the definition of β-smoothness in Def-
inition A.9, the forth step follows from the definition of maximum diameter in Definition A.8, the
fifth step follows the Eq (12), the sixth step is a reorganization, the seventh step follows from the
definition of convexity (see Definition A.10), the eighth step follows from merging the coefficient
of g(w∗), and the last step follows from definition of ht (see Eq. (13)).

Let et = Atht, At is a parameter and we will decide it later. we have:

et+1 − et = At+1

(
(1− cηt)ht +

βD2
max

2
η2t

)
−Atht

= (At+1(1− cηt)−At)ht + σ +
βD2

max

2
At+1η

2
t (15)

Let At = t(t+1)
2 , cηt = 2

t+2 . In this way we rewrite At+1(1− ηt)−At and At+1
η2t
2 as

• At+1(1− ηt)−At = 0

• At+1
η2t
2 = t+1

(t+2)c2 < c−2

Next, we upper bound et+1 − et as:

et+1 − et < 0 + c−2
t+ 1

t+ 2
βD2

max

< c−2βD2
max (16)

23

where the first step follows from At+1(1 − ηt) − At = 0 and At+1
η2t
2 = t+1

(t+2)c2 . The second step
follows from t+1

t+2 < 1

Based on Eq (16), we upper bound et using induction and have

et < c−2tβD2
max (17)

Using the definition of et, we have

ht =
et
At

<
2βD2

max

c2(t+ 1)
(18)

To make ht ≤ ε, t should be in O(
βD2

max

c2ε). Thus, we complete the proof.

Preprocessing time According to Corrollary B.2, can construct κ = Θ(log(T/δ)) LSH data struc-
tures for (c, φ, ψ, τ)-MaxIP with φ, ψ defined in Corollary C.3. As transforming every s ∈ S into
ψ(s) takes O(dn). Therefore, the total the preprocessing time complexity is O(dn1+o(1) · κ).

Cost per iteration Given each wt, compute ∇g(wt) takes Tg . Next, it takes O(d) time to generate
φ(wt) according to Corollary C.3 based on g(wt) and ∇g(wt). Next, according to Corrollary B.2,
it takes O(dnρ · κ) to retrieve st from κ = Θ(log(T/δ)) LSH data structures. After we select st, it
takes O(d) time to update the wt+1. Combining the time for gradient calculation, LSH query and
wt update, the total complexity is O(dnρ · κ+ Tg) with ρ := 2(1−τ)2

(1−cτ)2 −
(1−τ)4
(1−cτ)4 + o(1).

24

E Herding Algorithm

E.1 Problem Formulation

In this section, we focus on the Herding algorithm a specific example of Problem C.1. We consider
a finite set X ⊂ Rd and a mapping Φ : Rd → Rk. Given a distribution p(x) over X , we denote
µ ∈ Rk as

µ = E
x∼p(x)

[Φ(x)] (19)

The goal of Herding algorithm [58] is to find T elements {x1, x2, · · · , xT } ⊆ X such that ‖µ −∑T
t=1 vtΦ(xt)‖2 is minimized. Where vt is a non-negative weight. The algorithm generates samples

by the following:

xt+1 = arg max
x∈X
〈wt,Φ(x)〉

wt+1 = wt + µ− Φ(xt+1) (20)

Let B denote the convex hull of X . [1] show that the recursive algorithm in Eq (20) is equivalent to
a Frank-Wolfe algorithm Problem E.1.

Problem E.1 (Herding).

min
w∈B

1

2
‖w − µ‖22

We have the following assumptions:

• S = Φ(X) ⊂ Rd is a finite feasible set. |S| = n.

• B = B(S) ⊂ Rd is the convex hull of the finite set S ⊂ Rd defined in Definition A.8.

• Dmax is the maximum diameter of B(S) defined in Definition A.8

Therefore, a frank-Wolfe algorithm [1] for Herding is proposed as

Algorithm 3 Herding Algorithm

1: procedure HERDING(S ⊂ Rk)
2: T ← O(

D2
max

ε), ∀t ∈ [T]

3: η ← 2
t+2

4: Start with w0 ∈ B.
5: for t = 1→ T − 1 do
6: st ← arg maxs∈S〈wt − µ, s〉
7: wt+1 ← (1− η)wt + ηst

8: end for
9: return wT

10: end procedure

Algorithm 3 takes O(nd) cost per iteration.

To improve the efficiency of Algorithm 3, we propose a Herding algorithm with sublinear cost per
iteration using LSH.

25

Algorithm 4 Sublinear Herding Algorithm

1: data structure LSH . Corollary B.2
2: INIT(S ⊂ Rd, n ∈ N, d ∈ N, c ∈ (0, 1))
3: . |S| = n, c ∈ (0, 1) is LSH parameter, and d is the dimension of data
4: QUERY(x ∈ Rd, τ ∈ (0, 1)) . τ ∈ (0, 1) is LSH parameter
5: end data structure
6:
7: procedure SUBLINEARHERDING(S ⊂ Rd, n ∈ N, d ∈ N,c ∈ (0, 1) ,τ ∈ (0, 1))
8: . Theorem E.3
9: Construct φ, ψ : Rd → Rd+1 as Corollary C.3

10: static LSH LSH
11: LSH.INIT(ψ(S), n, d+ 3, c)
12: Start with w0 ∈ B. . B = B(S)(see Definition A.8).
13: T ← O(

βD2
max

c2ε), ∀t ∈ [T]

14: η ← 2
c(t+2)

15: for t = 1→ T − 1 do
16: /* Query with wt and retrieve its (c, φ, ψ)-MaxIP st ∈ S from LSH data structure */
17: st ← LSH.QUERY(φ(wt), τ)
18: /* Update wt in the chosen direction*/
19: wt+1 ← (1− ηt) · wt + ηt · st
20: end for
21: return wT
22: end procedure

E.2 Convergence Analysis

The goal of this section is to show the convergence analysis of our Algorithm 4 compare it with
Algorithm 3 for Herding.

We first show the comparison results in Table 3. In this table, we list the statement, preprocessing
time, number of iterations and cost per iteration for our algorithm and original Herding algorithm to
converge.

Algorithm Statement Preprocessing #iters cost per iter
Algorithm 3 [1] 0 O(D2

max/ε) O(dn)

Algorithm 4 Theorem E.3 O(dn1+o(1) · κ) O(c−2D2
max/ε) O(dnρ · κ)

Table 3: Comparison between Algorithm 4 and Algorithm 3

Next, we analyze the smoothness of 1
2‖w − µ‖

2
2.

Lemma E.2. We show that g(w) = 1
2‖w

T − µ‖22 is a convex and 1-smooth function.

Proof.

g(x) + 〈∇g(x), y − x〉+
1

2
‖y − x‖22 =

1

2
‖x− µ‖22 + 〈x− µ, y − x〉+

1

2
‖y − x‖22

=
1

2
(x>x− 2x>µ+ µ>µ) + (x>y − y>µ

=
1

2
y>y − y>µ+

1

2
µ>µ

=
1

2
‖y − µ‖22

= g(y) (21)

where all the steps except the last step are reorganizations. The last step follows g(y) = 1
2‖y − µ‖

2
2

26

Rewrite the Eq (21) above, we have

g(y) = g(x) + 〈∇g(x), y − x〉+
1

2
‖y − x‖22 (22)

≥ g(x) + 〈∇g(x), y − x〉 (23)

g(x) = 1
2‖x− µ‖

2
2 is a convex function.

Rewrite the Eq (21) above again, we have

g(y) = g(x) + 〈∇g(x), y − x〉+
1

2
‖y − x‖22 (24)

≤ g(x) + 〈∇g(x), y − x〉+
1

2
‖y − x‖22 (25)

g(x) = 1
2‖x− µ‖

2
2 is a 1-smooth convex function.

Next, we show the convergence results of Algorithm 4.
Theorem E.3 (Convergence result of Sublinear Herding, a formal version of Theorem 3.2). For any
parameters ε, δ, there is an iterative algorithm (Algorithm 4) for Problem E.1 that takesO(dn1+o(1) ·
κ) time in pre-processing and O((n1+o(1) + dn) · κ) space, takes T = O(

D2
max

c2ε) iterations and
O(dnρ · κ) cost per iteration, starts from a random w0 from B as initialization point, updates the w
in each iteration and outputs wT ∈ Rd from B such that

1

2
‖wT − µ‖22 −min

w∈B

1

2
‖w − µ‖22 ≤ ε,

holds with probability at least 1− δ. Here ρ := 2(1−τ)2
(1−cτ)2 −

(1−τ)4
(1−cτ)4 + o(1) and κ := Θ(log(T/δ)).

Proof. First, we show that g(w) = 1
2‖w

T − µ‖22 is a convex and 1-smooth function. using
Lemma E.2. Then, we could prove the theorem using Theorem E.3. Following the fact that the
computation of gradient is O(d), we could also provide the query time, preprocesisng time and
space complexities.

E.3 Discussion

We show that our sublinear Frank-Wolfe algorithm demonstrated in Algorithm 4 breaks the lin-
ear cost per iteration of current Frank-Wolfe algorithm in Algorithm 3 in the Herding algorithm.
Meanwhile, the extra number of iterations Algorithm 4 pay is affordable.

Our results show the connection between the extra number of iterations and the cost reduction at
each iteration. It represents a formal combination of LSH data structures and Herding algorithm.
We hope that this demonstration would provide insights for more applications of LSH in kernel
methods and graphical models.

F Policy Gradient Optimization

We present the our results on policy gradient in this section.

F.1 Problem Formulation

In this paper, we focus on the action-constrained Markov Decision Process (ACMDP). In this setting,
we are provided with a state S ∈ Rk and action spaceA ∈ Rd, which is the convex hull of n-vector.
However, at each step t ∈ N, we could only access a finite subset of actions C(s) ⊂ A with
cardinality n. Let us assume the C(s) remains the same in each step. Let us denote Dmax as the
maximum diameter of A.

27

When you play with this ACMDP, the policy you choose is defined as πθ(s) : S → Awith parameter
θ. Meanwhile, there exists a reward function r : S × A ∈ [0, 1]. Next, we define the Q function as
below,

Q(s, a|πθ) = E
[∞∑
t=0

γtr(st, at)|s0 = s, a0 = a, πθ

]
.

where γ ∈ (0, 1) is a discount factor.

Given a state distribution µ, the objective of policy gradient is to maximize the expected value
J(µ, πθ) = Es∼µ,a∼πθ [Q(s, a|πθ)] via policy gradient [59] denoted as:

∇θJ(µ, πθ) = E
s∼dπµ

[
∇θπθ(s)∇aQ(s, πθ(s)|πθ)|

]
.

[5] propose an iterative algorithm that perform MaxIP at each iteration k over actions to find

gk(s) = max
a∈C(s)

〈aks − πkθ (s),∇aQ(s, πkθ (s)|πkθ))〉. (26)

Moreover, [5] also have the following statement

Lemma F.1 ([5]). Given a ACMDP and the gap gk(s) in Eq.(26), we show that

J(µ, πk+1
θ) ≥ J(µ, πkθ (s)) +

(1− γ)2µ2
min

2LD2
max

∑
s∈S

gk(s)2

Therefore, [5] maximize the expected value via minimizing gk(s).

In this work, we accelerate Eq. (6) using (c, φ, ψ, τ)-MaxIP. Here define φ : S × Rd → Rd+2 and
ψ : Rd → Rd+3 as follows:

Corollary F.2 (Transformation for policy gradient). Let g be a differential function defined on con-
vex set K ⊂ Rd with maximum diameter DK. For any x, y ∈ K, we define φ, ψ : Rd → Rd+3 as
follows:

φ(x) :=
[
φ0(x)

>

Dx
0
√

1− ‖φ0(x)‖22
D2
x

]>
ψ(y) :=

[
ψ0(y)

>

Dy

√
1− ‖ψ0(y)‖22

D2
y

0

]>
where

φ0(s, πkθ) := [∇aQ(s, πkθ (s)|πkθ)>, (πkθ)>Q(s, πkθ (s)|πkθ)]>

ψ0(a) = [a>,−1]>

and Dx is the maximum diameter of φ0(x) and Dy is the maximum diameter of ψ0(y).

Then, for all x, y ∈ K we have gk(s) = DxDy〈φ(s, πkθ), ψ(a)〉. Moreover, φ(x) and ψ(y) are unit
vectors with norm 1.

Proof. We show that

〈φ(s, πkθ), ψ(a)〉 = D−1x D−1y 〈∇aQ(s, πkθ (s)|πkθ), a〉 − 〈∇aQ(s, πkθ (s)|πkθ), πkθ 〉
= D−1x D−1y 〈aks − πkθ (s),∇aQ(s, πkθ (s)|πkθ))〉

where the first step follows the definition of φ and ψ, the second step is an reorganization.

In this way, we propose a sublinear iteration cost algorithm for policy gradient in Algorithm 5.

28

Algorithm 5 Sublinear Frank-Wolfe Policy Optimization (SFWPO)

1: data structure LSH . Corollary B.2
2: INIT(S ⊂ Rd, n ∈ N, d ∈ N, c ∈ (0, 1))
3: . |S| = n, c ∈ (0, 1) is LSH parameter, and d is the dimension of data
4: QUERY(x ∈ Rd, τ ∈ (0, 1)) . τ ∈ (0, 1) is LSH parameter
5: end data structure
6:
7: procedure SFWPO(S ⊂ Rk, c ∈ (0, 1),τ ∈ (0, 1))
8: . Theorem F.3
9: Input: Initialize the policy parameters as θ0 ∈ Rl that satisfies π0

θ(s) ∈ C(s) for all s ∈ S
10: for each State s ∈ S do
11: Construct φ, ψ : Rd → Rd+1 as Corollary F.2
12: static LSH LSHs
13: LSHs INIT(ψ(C(s), n, d+ 3, c)
14: end for
15: T ← O(

c−2LD2
max

ε2(1−γ)3µ2
min

16: for each iteration k = 0, 1, · · · , T do
17: for each State s ∈ S do
18: Use policy πkθ and obtain Q(s, πkθ (s)|πkθ)
19: end for
20: for each State s ∈ S do
21: âks ← LSHs.QUERY(φ(s, πkθ (s), τ))

22: ĝk(s) = 〈âks − πkθ (s),∇aQ(s, πkθ (s)|πkθ))〉
23: αk(s) = (1−γ)µmin

LD2
s

ĝk(s)

24: πk+1
θ (s) = πkθ (s) + αk(s)(âks − πkθ (s))

25: end for
26: end for
27: return πTθ (s)
28: end procedure

F.2 Convergence Analysis

The goal of this section is to show the convergence analysis of of Algorithm 5 compare it with [5].We
first show the comparison results in Table 4.

Algorithm Statement Preprocessing #iters cost per iter
[5] [5] 0 O(

βD2
max

ε2(1−γ)3µ2
min

) O(dn+ TQ)

Algorithm 5 Theorem F.3 O(dn1+o(1) · κ) O(
c−2βD2

max

ε2(1−γ)3µ2
min

) O(dnρ · κ+ TQ)

Table 4: Comparison between our sublinear policy gradient (Algorithm 5) and [5].

The goal of this section is to prove Theorem F.3.
Theorem F.3 (Sublinear Frank-Wolfe Policy Optimization (SFWPO), a formal version of Theo-
rem 3.3). Let TQ denote the time for computing the policy graident. Let Dmax denote the maximum
diameter of action space and β is a constant. Let γ ∈ (0, 1). Let ρ ∈ (0, 1) denote a fixed parameter.
Let µmin denote the minimal density of states in S. There is an iterative algorithm (Algorithm 5) that
spendsO(dn1+o(1)·κ) time in preprocessing andO((n1+o(1)+dn)·κ) space, takesO(

βD2
max

ε2(1−γ)3µ2
min

)

iterations and O(dnρ · κ + TQ) cost per iterations, start from a random point π0
θ as initial point,

and output policy πTθ that is have average gap
√∑

s∈S gT (s)2 < ε holds with probability at least
1− 1/ poly(n), where gT (s) is defined in Eq. (26) and κ := Θ(log(T/δ)).

Proof. Let âks denote the action retrieved by LSH. Note that similar to Case 1 of Theorem D.1,
the algorithms convergences if parameter τ is greater than maximum inner product. Therefore, we

29

could direct focus on Case 2 and lower bound ĝk(s) as

ĝk(s) = 〈âks − πkθ (s),∇aQ(s, πkθ (s)|πkθ))〉

= DxDy〈φ(s, πkθ), ψ(âks)〉
≥ cDxDy max

a∈C(a)
〈φ(s, πkθ), ψ(a)〉

= c〈aks ,∇aQ(s, πkθ (s)|πkθ))〉 − c〈πkθ (s),∇aQ(s, πkθ (s)|πkθ))〉
= cgk(s) (27)

where the first step follows from the line 22 in Algorithm 5, the second step follows from Corol-
lary F.2, the third step follows from Corollary B.2, the forth step follows from Corollary F.2 and the
last step is a reorganization.

Next, we upper bound J(µ, πk+1
θ) as

J(µ, πk+1
θ) ≥ J(µ, πkθ (s)) +

(1− γ)2µ2
min

2LD2
max

∑
s∈S

ĝk(s)2

≥ J(µ, πkθ (s)) +
c2(1− γ)2µ2

min

2LD2
max

∑
s∈S

gk(s)2

(28)

where the first step follows from Lemma F.1, the second step follows from Eq. (27)

Using induction from 1 to T , we have

J(µ, πTθ) = J(µ, π1
θ) +

c2(1− γ)2µ2
min

2LD2
max

T∑
k=0

∑
s∈S

gk(s)2 (29)

Let G =
∑T
k=0

∑
s∈S gk(s)2, we upper bound G as

G ≤ 2LD2
max

c2(1− γ)2µ2
min

(J(µ, πTθ)− J(µ, π0
θ))

≤ 2LD2
max

c2(1− γ)2µ2
min

J(µ, π∗θ))

≤ 2LD2
max

c2(1− γ)3µ2
min

(30)

where the first step follows from Eq (29), the second step follows from J(µ, π∗θ) ≥ J(µ, πTθ), last
step follows from J(µ, π∗θ) ≤ (1− γ)−1.

Therefore, we upper bound
∑
s∈S gT (s)2 as∑
s∈S

gT (s)2 ≤ 1

T + 1
G

≤ 1

T + 1

2LD2
max

c2(1− γ)3µ2
min

(31)

where the first step is a reorganization, the second step follows that
∑
s∈S gT (s)2 is non-increasing,

the second step follows from Eq (30).

If we want
∑
s∈S gT (s)2 < ε2, T should be O(

c−2LD2
max

ε2(1−γ)3µ2
min

)

Preprocessing time According to Corrollary B.2, can construct κ = Θ(log(T/δ)) LSH data struc-
tures for (c, φ, ψ, τ)-MaxIP with φ, ψ defined in Corollary F.2. As transforming every a ∈ A into
ψ(a) takes O(dn). Therefore, the total the preprocessing time complexity is O(dn1+o(1) · κ).

30

Cost per iteration Given each wt, compute the policy gradient takes TQ. Next, it takes O(d)
time to generate φ(s, πkθ) according to Corollary C.3 based on policy gradient. Next, according to
Corrollary B.2, it takes O(dnρ · κ) to retrieve action from κ = Θ(log(T/δ)) LSH data structures.
After we select action, it takes O(d) time to compute the gap the update the value. Thus, the total
complexity is O(dnρ · κ+ TQ) with ρ := 2(1−τ)2

(1−cτ)2 −
(1−τ)4
(1−cτ)4 + o(1).

F.3 Discussion

We show that our sublinear Frank-Wolfe based policy gradient algorithm demonstrated in Algo-
rithm 5 breaks the linear cost per iteration of current Frank-Wolfe based policy gradient algorithm
algorithm. Meanwhile, the extra number of iterations Algorithm 5 pay is affordable.

Our results extends the LSH to policy gradient optimization and characterize the relationship be-
tween the more iterations we paid and the cost we save at each iteration. These results indicates a
formal combination of LSH data structures and policy gradient optimization with theoretical guran-
tee. We hope that this demonstration would provide new research directions for more applications
of LSH in robotics and planning.

G More Data Structures: Adaptive MaxIP Queries

In optimization, the gradient at each iteration is not independent from the previous gradient. There-
fore, it becomes a new setting for using (c, τ)-MaxIP. If we take the gradient as query and the
feasible set as the data set, the queries in each step forms an adaptive sequence. In this way, the
failure probability of LSH or other (c, τ)-MaxIP data-structures could not be union bounded. To
extend (c, τ)-MaxIP data-structures such as LSH and graphs into this new setting, we use a query
quantization method. This method is standard in various machine learning tasks [56, 74].

We start with relaxing the (c, τ)-MaxIP with a inner product error.

Definition G.1 (Relaxed approximate MaxIP). Let approximate factor c ∈ (0, 1) and threshold
τ ∈ (0, 1). Let λ ≥ 0 denote an additive error. Given an n-vector set Y ⊂ Sd−1, the objective
of (c, τ, λ)-MaxIP is to construct a data-structure that, for a query x ∈ Sd−1 with conditions that
maxy∈Y 〈x, y〉 ≥ τ , it retrieves vector z ∈ Y that 〈x, z〉 ≥ c ·maxy∈Y 〈x, y〉 − λ.

Then, we present a query quantization approach to solve (c, τ, λ)-MaxIP for adaptive queries. We
assume that the Q is the convex hull of all queries. For any query x ∈ Q, we perform a quantization
on it and locate it to the nearest lattice with center q̂ ∈ Q. Here the lattice has maximum diameter
2λ. Then, we query q̂ on data-structures e.g., LSH, graphs, alias tables. This would generate a
λ additive error to the inner product. Because the lattice centers are independent, the cumulative
failure probability for adaptive query sequence could be union bounded. Formally, we present the
corollary as

Corollary G.2 (A query quantization version of Corollary B.1). Let approximate factor c ∈ (0, 1)
and threshold τ ∈ (0, 1). Given a n-vector set Y ⊂ Sd−1, there exits a data-structure with
O(dn1+o(1) ·κ) preprocessing time and O((n1+o(1) + dn) ·κ) space so that for every query x in an
adaptive sequence X = {x1, x2, · · · , xT } ⊂ Sd−1, we take O(dnρ ·κ) query time to solve (c, τ, λ)-
MaxIP with respect to (x, Y) with probability at least 1− δ, where ρ = 2(1−τ)2

(1−cτ)2 −
(1−τ)4
(1−cτ)4 + o(1),

κ := d log(ndDX/(λδ)) and DX is the maximum diameter of all queries in X .

Proof. The probability that at least one query x ∈ X fails is equivalent to the probability that at
least one query q̂ ∈ Q̂ fails. Therefore, we could union bound the probability as:

Pr[∃q̂ ∈ Q̂ s.t all (c, τ)-MaxIP(q, Q̂) fail] = n · (dDX/λ)d · (1/10)κ ≤ δ

where the second step follows from κ := d log(ndDX/(λδ)).

The results of q̂ has a λ additive error to the original query. Thus, our results is a (c, τ, λ)-MaxIP
solution. The time and space complexty is obtained via Corollary B.1. Thus we finish the proof.

31

Definition G.3 (Quantized projected approximate MaxIP). Let approximate factor c ∈ (0, 1) and
threshold τ ∈ (0, 1). Let λ ≥ 0 denote an additive error. Let φ, ψ : Rd → Rk denote two trans-
forms. Given an n-point dataset Y ⊂ Rd so that ψ(Y) ⊂ Sk−1, the goal of the (c, φ, ψ, τ, λ)-
MaxIP is to build a data structure that, given a query x ∈ Rd and φ(x) ∈ Sk−1 with the
promise that maxy∈Y 〈φ(x), ψ(y)〉 ≥ τ − λ, it retrieves a vector z ∈ Y with 〈φ(x), ψ(z)〉 ≥
c · (φ, ψ)-MaxIP(x, Y).

Next, we extend Corollary G.2 to adaptive queries.

Corollary G.4. Let c ∈ (0, 1), τ ∈ (0, 1), λ ≥ 0 and δ ≥ 0. Let φ, ψ : Rd → Rk denote
two transforms. Let Tφ denote the time to compute φ(x) and Tψ denote the time to compute ψ(y).
Given a set of n-points Y ∈ Rd with ψ(Y) ⊂ Sk−1 on the sphere, there exists a data structure
with O(dn1+o(1) · κ + Tψn) preprocessing time and O((dn1+o(1) + dn) · κ) space so that for any
query x ∈ Rd with φ(x) ∈ Sk−1, we take O(dnρ · κ + Tφ) query time to solve (c, φ, ψ, τ, λ)-

MaxIP with respect to (x, Y) with probability at least 1− δ, where ρ := 2(1−τ)2
(1−cτ)2 −

(1−τ)4
(1−cτ)4 + o(1),

κ := d log(ndDX/(λδ)) and DX is the maximum diameter of all queries in X .

Finally, we present a modified version of Theorem D.1.

Theorem G.5 (Convergence result of Frank-Wolfe via LSH with adaptive input). Let g : Rd → R
denote a convex (see Definition A.10) and β-smooth function (see Definition A.9). Let the complexity
of calculating ∇g(x) to be Tg . Let S ⊂ Rd denote a set of points with |S| = n, and B ⊂ Rd is the
convex hull of S defined in Definition A.8. For any parameters ε, δ, there is an iterative algorithm
with (c, φ, ψ, τ, c−2ε/4)-MaxIP data structure that takes O(dn1+o(1) · κ) preprocessing time and
O((n1+o(1) +dn) ·κ) space, takes T = O(

βD2
max

ε) iterations andO(dnρ ·κ+Tg) cost per iteration,
starts from a random w0 from B as initialization point, updates the w in each iteration as follows:

st ← (c, φ, ψ, τ, c−2ε/4)-MaxIP of wt with respect to S

wt+1 ← wt + η · (st − wt)

and outputs wT ∈ Rd from B such that

g(wT)−min
w∈B

g(w) ≤ ε,

holds with probability at least 1− δ. Here κ := d log(ndDX/(λδ)) and ρ := 2(1−τ)2
(1−cτ)2 −

(1−τ)4
(1−cτ)4 +

o(1).

Proof. Convergence.

We start with modifying Eq. (14) with additive MaxIP error λ and get

ht+1 = (1− cηt)ht +
βD2

max

2
η2t + ηtλ

Let et = Atht with At = t(t+1)
2 . Let ηt = 2

c(t+2) . Let λ =
βD2

max

T+1 Following the proof in
Theorem D.1, we upper bound et+1 − et as

et+1 − et ≤ (At+1(1− cηt)−At)ht +
βD2

max

2
At+1η

2
t +At+1ηtλ (32)

where

• At+1(1− ηt)−At = 0

• At+1
η2t
2 = t+1

(t+2)c2 < c−2

• At+1ηtλ = (t+ 1)λ < βD2
max.

32

Therefore,

et+1 − et < 2c−2βD2
max (33)

Based on Eq (33), we upper bound et using induction and have

et < 2c−2tβD2
max (34)

Using the definition of et, we have

ht =
et
At

<
4βD2

max

c2(t+ 1)
(35)

To make hT ≤ ε, T should be in O(
βD2

max

c2ε). Moreover, λ =
βD2

max

T+1 = ε
4c2 .

Preprocessing time According to Corrollary G.4, can construct κ = d log(ndDX/(λδ) LSH data
structures for (c, φ, ψ, τ, c−2ε/4)-MaxIP with φ, ψ defined in Corollary C.3. As transforming every
s ∈ S into ψ(s) takesO(dn). Therefore, the total the preprocessing time complexity isO(dn1+o(1) ·
κ) and space complexity is O((n1+o(1) + dn) · κ).

Cost per iteration Given each wt, compute ∇g(wt) takes Tg . Next, it takes O(d) time to generate
φ(wt) according to Corollary C.3 based on g(wt) and ∇g(wt). Next, according to Corrollary G.4,
it takesO(dnρ ·κ) to retrieve st from κ LSH data structures. After we select st, it takesO(d) time to
update the wt+1. Combining the time for gradient calculation, LSH query and wt update, the total
complexity is O(dnρ · κ+ Tg) with ρ := 2(1−τ)2

(1−cτ)2 −
(1−τ)4
(1−cτ)4 + o(1).

Similarly, we could extend the results to statements of Herding algorithm and policy gradient.
Theorem G.6 (Modified result of Sublinear Herding). For any parameters ε, δ, there is an iterative
algorithm (Algorithm 4) for Problem E.1 with c−2ε/4 query quantization that takes O(dn1+o(1) ·κ)

time in pre-processing andO((n1+o(1)+dn)·κ) space, takes T = O(
D2

max

c2ε) iterations andO(dnρ·κ)

cost per iteration, starts from a random w0 from B as initialization point, updates the w in each
iteration based on Algorithm 4 and outputs wT ∈ Rd from B such that

1

2
‖wT − µ‖22 −min

w∈B

1

2
‖w − µ‖22 ≤ ε,

holds with probability at least 1 − δ. Here ρ := 2(1−τ)2
(1−cτ)2 −

(1−τ)4
(1−cτ)4 + o(1) and κ :=

d log(ndDX/(λδ)).

Theorem G.7 (Modified result of Sublinear Frank-Wolfe Policy Optimization (SFWPO)). Let TQ
denote the time for computing the policy graident. LetDmax denote the maximum diameter of action
space and β is a constant. Let γ ∈ (0, 1). Let ρ ∈ (0, 1) denote a fixed parameter. Let µmin denote
the minimal density of sates in S. There is an iterative algorithm (Algorithm 5) with c−2ε/4 query
quantization that spends O(dn1+o(1) · κ) time in preprocessing and O((n1+o(1) + dn) · κ) space,
takes O(

βD2
max

ε2(1−γ)3µ2
min

) iterations and O(dnρ · κ + TQ) cost per iterations, start from a random

point π0
θ as initial point, and output policy πTθ that has average gap

√∑
s∈S gT (s)2 < ε holds with

probability at least 1−1/poly(n), where gT (s) is defined in Eq. (26) and κ := d log(ndDX/(λδ)).

33

