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ABSTRACT

In training-free Conditional Diffusion Models (CDMs), the sampling pro-
cess is steered by the gradient of the loss £(y, z, C.y), which assesses the
gap between the guidance y and the condition extracted from the interme-
diate outputs. Here the condition extraction network Ci(-), which could
be a segmentation or depth estimation network, is pre-trained for training-
free purpose. However, existing methods often require small guidance
steps, leading to longer sampling times. We introduce an alternative max-
imization framework to scrutinize training-free CDMs that tackles slow
sampling. Our framework pinpoints manifold deviation as the key factor
behind the sluggish sampling. More iterations are needed for the sampling
process to closely follow the image manifold and reach the target condi-
tions, as the loss gradient doesn’t provide sufficient guidance for larger
steps. To improve this, we suggest retraining the condition extraction net-
work Cy(+) to refine the loss’s guidance, thereby introducing our AccCtr.
This retraining process is simple, and integrating AccCtr into current CDMs
is a seamless task that does not impose a significant computational bur-
den. Extensive testing has demonstrated that AccCtr significantly boosts
performance, offering superior sample quality and faster generation times
across a variety of conditional generation tasks.

1 INTRODUCTION

Over the past few years, diffusion models (Sohl-Dickstein et al., 2015};|Song & Ermon, 2019;
Ho et al., 2020; [Song et al., 2021b) have achieved significant success in generative tasks
like image generation [Nichol & Dhariwal (2021);|Song & Ermon)| (2020); Song et al.| (2021a),
image inpainting [Chung et al.| (2023), super-resolution Saharia et al.| (2023), image editing
Choi et al.| (2021), thanks to their strong expressive and re-editing capabilities.

Conditional diffusion models generally employ two techniques: classifier-guided [Dhari-
wal & Nichol (2021) and classifier-free [Ho & Salimans| (2021a) diffusion models. Despite
their effectiveness, these methods encounter challenges related to learning cost and model
generality, as they require additional training and data for conditional generation. Recent
advances (Chung et al.| (2022); [Zhu et al|(2023); Yu et al.|(2023); Bansal et al.|(2024); Yang
et al,(2024b) have addressed these issues by developing training-free methods that leverage
the differential loss guidance during the denoising process.

These training-free methods, though they avoid extra training, demand fine-tuned guidance
steps for accuracy, which extends sampling times. This is mainly because the tangent space
defined by the differential loss can only approximate a local image manifold area. If
the starting point is remote from the target, multiple manifolds are needed to span the
gap. Thus, more iterations are crucial for the denoising process to navigate the manifold’s
curvature and reach the target condition effectively. Current approaches Chung et al.
(2023); [Yu et al.| (2023); [Bansal et al.| (2023) often use small loss-guided steps to ensure
precision, which can considerably slow down the process. However, Yang et al. (2024b) has
made significant progress by enabling larger guidance steps through optimization, thus
improving algorithm efficiency.
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Unlike Yang et al.| (2024b) using optimization to constrain the guidance steps to remain
within the boundaries of the intermediate data, we improve the efficiency with a alternative
maximization framework that simplifies the sampling in training-free CDMs to optimizing
two objectives: logp(zo) for unconditional generation and logp(y|zo) for the conditional
generation. Here, zg represents the denoised image of the diffusion model at time step 0.
We denote the image manifold consisting of zy as M. This new interpretation guides us to
streamline sampling by reducing the optimization steps necessary for each objective. Our
further study reveals that reducing the optimization steps for log p(zo) is straightforward,
but not so for log p(y|z¢). Taking the value of a well-trained model s(z;), we can estimate
the denoised image z|;, i.e. the projection of z; on the manifold My, in one step. However,
maximizing log py (zo|.) involves the gradient of £(y, zo|, Cy) and requires multiple steps
for gradient descent to reach the final outcome.

To reduce the maximization steps needed for log p(y|zo|:), we propose retaining the con-
dition extraction network Cy(-) to enhance its ability so that the gradient of £(y, zoj¢, Cy)
provides a more accurate direction for larger steps. Consequently, it is logical to retrain
the network Cy (-) with two distinct objectives. The first is to ensure that Cy(z|;) effec-
tively extracts the necessary conditions from z;. The second is to adjust the gradient of
E(y, 2o, Cy) so that it provides accurate guidance for larger steps.

In summary, our contributions are fourfold: 1. We introduce a novel maximization frame-
work that provides insights into the analysis of training-free CDMs. 2. We identify the key
bottleneck in the generation speed of current training-free CDMs using this framework. 3.
We propose a loss to retrain the condition extraction network to address this bottleneck. 4.
Our model outperforms previous models in efficiency and sample quality.

2 RELATED WORK

Conditional Diffusion Models (CDMs) are typically divided into two categories: training-
required and training-free. A key aspect of both types of models is the estimation of the
conditional score V,, logp(z;,y) or its component V,, log p(y|z.), which is derived from
the relationship V,, log p(z,y) = Vy, log p(z;) + V3, log p(y|2:)-

Training-required CDM:s are categorized into two branches. The first one is the classifier-
guided diffusion mode (Dhariwal & Nichol, 2021), training a time-dependent classifier
denoted as py(y|z:,t) to approximate the posterior probability p(y|z.). Consequently, we
have V,, log p(z¢,y) = Vy, log p(z:) + V,, log pe (y|2¢, t), where the first term represents the
unconditional score function, while the second term signifies the adjustment that converts
the unconditional score into a conditional one. The other one is the classifier-free diffusion
model (Ho & Salimans, 2021b). This approach employs a neural network to approximate
the conditional score V,, log p(z,y). Notable examples include Stable Diffusion (Rombach
et al., 2022b), ControlNet (Zhang et al., 2023), and ControlNet++ (Ming Li} [2024), Con-
trolNeXt (Peng et al., [2024), and AnyControl (Sun et al., 2024). These models are great at
creating realistic images but require more data and training time.

Training-free CDMs eliminates classifier training by defining a loss £(y, zo|¢, Cy) and
using its gradient to approximate the conditional score V,, logp(y|z:). In the litera-
ture, researchers devised various strategies to improve the conditional score estimation.
MCG (Chung et al| [2022) addresses solver deviations with a correction term. DPS (Chung
et al., [2023) integrates diffusion sampling with manifold constraints for better noise han-
dling. FreeDoM (Yu et al), 2023) uses a Time-Travel Strategy for robust generation.
UGD (Bansal et al,, [2024) and DiffPIR (Zhu et al) 2023) guide clean samples zy to in-
termediate manifolds z;. LGD (Song et al.,[2023)) uses Monte Carlo sampling for estimation
refinement. MPGD (He et al., [2024) and DSG (Yang et al., 2024b) apply guidance within
data manifolds, with DSG providing a closed-form solution. These approaches often re-
quire around 100 sampling steps for quality generation, contrasting with the typically less
than 20 steps needed by training-required CDMs.

We in this paper delve into the rationale behind the increased sampling steps required for
training-free CDMs and propose a strategy to enhance their efficiency.
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3  PRELIMINARIES

Diffusion models (Yang et al.,2024a) are understood through various lenses, such as the De-
noising Diffusion Probabilistic Model (DDPM) (Ho et al., 2020), Score-Matching Langevin
Dynamics (SMLD) (Song & Ermon),2019), and Stochastic Differential Equations (SDE) (Song
et al.,[2021b). This section offers essential background into DDPM related to our method.

3.1 DirrusioN AND MAXIMIZATION

Diffusion models are represented as: pg(z¢) = f pe(zo.1) dz1.7, where z1, . ..,z are latent
variables of the same dimension as the data zg ~ ¢(z¢). The joint distribution pg(zo.7) is
defined by a Markov chain with Gaussian transitions starting from z; ~ N (z7;0, I):

pe(zo:r) = p(zr) Hthl po(zi—1lzt), po(zi-1|2) = N(zi—1; po(ze,t), To(z, 1)) (1)

The forward diffusion process, gradually introducing Gaussian noise to the data, is defined
by a Markov chain with a predetermined variance schedule 31, ..., Sr:

amrrlio) = [[_ atwla ), alulo) =N V1- Bz fd) @

Let M, represent the image manifold generated by the diffusion model. This process allows
for sampling z; at any time step ¢ and deriving its projection onto M) in closed form:

q(2e|20) = N (245 Vauzo, (1 — ay)I), where & = Hthl s, =1—f @3)
& 7zt = Vauzo + /(1 — a;)e, where €~ N(0,1) 4)
o me—ta- (i/;”e(z,f) o w-—ta (1\/2“) (@) 6

Here €(z;) denote the noised contained in z; and the score function s(z;) := V,, log p(z)
satisfying e(z;) = —v/1 — &, s(z;) due to Tweedie’s formula (Efron} 2011). Let fi(z;,z0,t) :==

Vai_1fey, 4 \/E(lfat’l)zt and f3; == 1;?&:1 Bt, q(z¢—1|2+, 2¢) can be written as

1—aq 1—ay
q(z¢—1|2¢,20) = N(ze—1; 124, 20, 1), Be 1), (6)
 Va 1B Var(l — ag—1) /
< Zi1 = —a Zo + 1— G Z + (7)

By defining sg(z;) as the neural network designed to approximate the score function s(z;)
and substituting it into Equation , we obtain Zy;_;, an estimation for zy according to
Zi_1q.

V1B .y | Vol —ai1)
—7Zy + -
1 — ay 1— oy
. l—a .
Zojt—1 = \ﬁzt + ( rt) 0(2t) )
We thus confirm that 2|, is the projection of z; on the image manifold My, and the sequence

{20+ } maximizes log p(z|;). Hence, we view Equations @ as the solver for maximizing
log p(zo) on the manifold M), which includes all z; generated by the diffusion model.

2 +\/ Bre (8)

Zi—1 =

3.2 ConpitioNAL DiFrusioN

Conditional diffusion models employ the conditional score s(z;,y) = Vs, logp(z:,y) as a
substitute for s(z;) in Equation @I) enabling the generation of images conditioned on y. Th1s
function is articulated via Bayes’ theorem as follows: s(z;,y) = s(z;) + V, log p(y|z:).
sidestep training, a practical approach is to use an energy function, defined as: log p(y \zt)



Under review as a conference paper at ICLR 2025

Algorithm 1 Alternative Maximization Sampling

Require: The iteration number .J, the unconditional diffusion count N for solving p(z.)
and the conditional correction count M for solving p,(z¢). The time reversal step K.
. . . _ .
Ensure: z;y ~ N(O, I), and Zo|JN < VOJN (ZJN + (1 - aJN)Sg(ZJN))
1: forj=J,...,1do
2: forn=0,...,N —1do

3: t< jN —n

4: Zi_1 \/?i__altﬁt Zojs + \/a_t?__;:t_l)it + v/ Bre

5: Zoji—1 \/%it—l I %se(it—l)

6: end for

7.t (j—1)N

8: form=0,...,M —1do

9: iggllt) — \/dKiglrtL) ++/(1—ak)e > Adding noisy to i((f"z).
10: Zérlrtl) — \/%2%2 + (I_T\/?—KK)SQ(ZXTE) > Estimating a new ifﬂ).

~(m—+1 ~ ~

11: zé|t+ ) zgl? — )\Viér‘r;)g(%zéﬁ),czp)
12: end for
13: ZO\t — 20\1&
14: end for

—AE(Y, zop, Cyp), Where z, = Var (z¢+(1 — &;))se(z¢). In this expression, A is a positive
parameter. Consequently, Equations (8)(9) can be restructured accordingly.

rorary 1—a -
Zt = o }Btio\rﬁ- v 704,5 1)it+ pre (10)
1-— Qi 1— Qi
. 1 (I—ae1) .
Z6|t71 = ﬁztﬂ + ﬁse(zpﬂ (11)
. . 1—a;_ .
Zoji—1 = Zoj—1 — A%V@_lg(y, zt-1,Cly) (12)

Further, given Equation (EP, we have V;, E(y,2¢-1,Cy) = ./at_lv%we(y, 26|t—1’ Cy).

Putting this into Equation (12), we conclude that it operates as a gradient descent step for
&(y,2g);_1, Cy)- Incontrast, Equations serve as a solver to maximize p(z(,,). Essen-

tially, these equations alternately maximize the two objectives log p(z;) and log p(y|zo)
on the image manifold M, with each step focusing on one objective. Thus, the sequence
{i/O\t} maximizes log p(ig‘t), while the sequence {2, } maximizes log py (Zo|;).

4  ALTERNATIVE MaximizaTiON For ConDpiTioNAL DiFrFusioN

In this section, we frame the conditional diffusion process as an alternating maximization
of two objectives: p(z¢) and p(y|zo). This insight helps us understand why training-free
CDMs require more sampling steps and leads to a strategy for speeding up the process.

4.1 TuEe LocaL MAxIMA CHARACTERISTICS OF p(Zg) AND p(y|zo)

The marginal distribution p(zo) peaks at natural images, and the condition extraction
function C(-) is tailored for such images. The conditional distribution p(y|zo) reaches its
peak when y matches zo, with p(y|zo) > p(y|z) for neighboring images z # zo. Therefore,
p(y|zo) attains its maximum where p(z() is locally maximized. Consequently, the local
maxima of p(y|zo) form a subset of the local maxima of p(zg). In other words, wherever
p(2zo) is locally maximized, p(y|zo) is also likely to achieve a local maximum, provided
y describes zo. This relationship emphasizes the role of the conditional distribution in
guiding the generative process toward images that not only align with the natural image
distribution but also closely match the specified conditions.
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Experiment 1: J = 20, Experiment 2: J = 20, Experiment 3: J = 20, Experiment 4: J = 100,
and and and and
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Figure 1: Analysis of the Impact of Iteration Counts: Total J, Unconditional N and Condi-
tional M. From top to bottom, each row shows the outcomes of FreeDoM (Yu et al} [2023),
DSG 1Yang et al., 2024b), and UGD (Bansal et al.|, 2024) under conditions of edge, style,
and bounding box control. Four experiments were conducted in total. Observations reveal
that the first two setups failed to achieve the desired control, whereas the last two were
successful. This insight indicates that the total number of conditional iterations, J x M, is
crucial for control effectiveness, given that the first two experiments had a total of 20, while
the last two had 100. To achieve the desired results, a higher total count of conditional
correction seems to be necessary.

4.2 ALTERNATVE MAXIMIZATION

We shift focus from the probabilistic details of p(zo) and p(y|zo) in the following sections,
treating them as functions of z, under a given condition y. We refer to p(y|zo) as py(zo),
recognizing that the local maxima of py(z¢) are contained within those of p(zy). The
conditional generation aims to maximize log p(zo,y) by sequentially optimizing log p(zo)
and logpy(zo). This strategy, as outlined in the proposition [1} efficiently optimizes the
likelihood log p(zp,y).-

Proposition 1 (Convergence of Alternative Maximization). Let A(z) and B(z) be two functions
defined on the same domain. Suppose that: Sg, the local maxima point set of B(z), is a subset of S,
the local maxima point set of A(z). Then, the alternating maximization of A(z) and B(z) converges
to a local maximum of the function A(z) + B(z).

The detailed proof are reserved for Appendix@ Here, we provide an intuitive explanation
for why the proposition holds true: Since the local maxima of B(z) are a subset of those of
A(z), maximizing B(z) will not conflict with the maximization of A(z), as both functions
share the same maxima. In each step of alternating maximization, either A(z) or B(z) is
maximized, ensuring that the combined function A(z) + B(z) is always non-decreasing.
This process continually improves or maintains the value of A(z) + B(z), progressively
guiding the optimization towards the shared local maxima. Therefore, alternating maxi-
mization converges to a local maximum of the combined function.

Equations , along with Equation (12), serve as maximization solvers for log p(zo

and log py (zo). The alternative maximization sampling process is presented in Algorithm
Notably, lines 9, 10 and 11 of Algorithm (I ensure that the gradient ascent for log py (z) is
always performed on the natural image manifold M, defined by the diffusion model.

5 AccCtR: ACCELERATING TRAINING-FREE CONDITIONAL DIFFUSION

Algorithm[Tjoutlines our framework for training-free CDMs. We will examines the impact of
the total iterations J, the iterations /N for maximizing p(z,) (green), and M for maximizing
Py(zo) (yellow) in the algorithm. Understanding their effects is crucial, as the iteration
number significantly influence algorithm performance in training-free CDMs.
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Figure 2: Evolution of Extracted Conditions Across Intermediate Results iéﬁ) of Algorithm
at J = 16 step with N = 1. As the conditional correction count m increases from 2
to 12, the generated results in the first row progressively approximate the final outcome,
and the extracted conditions in the second row become more akin to the guidance image.
Correspondingly, the MSE plot in the last row exhibits a decreasing trend.

5.1 WHnyY TRANING-FREE CDMSs SAMPLING IS SLOW?

Accelerating the sampling speed requires reducing inference steps. The variation in sam-
pling methods often obscures the root causes of this slowness. Proposition [I|helps break
down the sampling process into two phases: maximizing log p(zg) via unconditional dif-
fusion and maximizing log py (z¢) through conditional correction. By integrating existing
algorithms into the framework detailed in Appendix[B} we can identify the phase that slows
down the sampling process.

As depicted in Figure1} we have conducted four experiments. The first section outlines the
condition y, with each row corresponding to a different CDMs and showing performance
under y. Four experiments were tested to ensure consistent behavior across methods.

Experiment 1: With J =20, N =1, and M = 1, 20 iterations were allocated to maximize
both log p(z¢|:) and log py (zo;). Results are in the first section of Figure

Experiment 2: Here, J = 20, N = 5, M = 1, with 100 maximization iterations for log p(zo‘t)
and 20 steps for log py (zo|;). Results are in the second section of Figure

Experiment 3: With J = 20, N = 1, M = 5, 20 iterations were allocated to maximize
log p(2o|;) and 100 steps to log py (zo¢). Results are in the third section of Figure

Experiment 4: Weset J = 100, N = 1, M = 1, resulting in 100 iterations for both log p(z.)
and log py (zo|;). Results are in the second section of Figure

Figureshows that the first two experiments lacked control, but the last two were successful.
A higher conditional correction iterations .J x M is key for control, with early experiments at
20 and later at 100. Reducing log p(z|;) iterations is okay, yet cutting log py (zo};) iterations
harms sample quality by lessening conditional control.

To clarify why reducing the maximization steps for log py (o) is inadvisable, we conducted
Experiment 5 monitors the progression of the extracted condition from the intermediate

outputs Zé’rz), as generated by Algorithm 1| for varying m. Figure [2| demonstrates that

with the increment of m, the extracted condition progressively aligns with the target.
Additionally, we employed MSE loss (Sara et al) 2019) to assess the divergence between
the intermediate edge condition and the target edge image. The bottom row of Figure ]
illustrates that the MSE diminishes with the growth of m, signifying improved conformity
to the guidance.
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These findings indicate that decreasing the conditional correction count M may result in
a loss of control over the final output, as the intermediate conditions could stray from the
target. The crux of the issue is the linear manifold assumption, where gradient descent uses
the tangent space to approximate the local image manifold. If the starting point is remote
from the target, additional linear manifolds are necessary to approximate the intervening
region. Therefore, increasing the number of iterations for conditional correction is crucial
for navigating the manifold’s curvature and obtaining a sample that closely matches the
target condition.

5.2 OuRr APPROACH

For pre-trained condition extraction networks C(-), our five experiments suggest that the
gradient descent algorithm requires more iterations. This is due to the fact that the gradient
V. £(¥ Zojt, Cy) may not provide accurate estimates for large steps. To reduce the number
of maximization steps needed for log py (z¢|;), we propose to refine the condition extraction
network Cy(-) to improve its accuracy, ensuring that the gradient of £(y, z, Cy) offers
a more precise direction for larger steps. Consequently, it is logical to retrain the network
Cy(-) with two distinct objectives:

The 1st term: Ly (y,zo¢, Cy) is to effectively extract necessary conditions from z;. Here,
zo|; represents the projection of z; onto the manifold M.

The 2st term: L»(y, zo, zoj¢, Cy) is to adjust the gradient of the first term so that it provides
accurate directional guidance for larger steps.

The first loss term can be constructed using two distinct strategies. The initial approach, em-
ployed by previous training-free CDMs, is defined as L1 (y, zo|:, Cy) = |ly — Cy (D(zo}1))||3-
Here, D is the decoder that converts z|; into an image, and C;, is the pre-defined network
for tasks like segmentation, depth mapping, or HED. Typically, these pre-defined networks
are substantial, leading to high fine-tuning costs. Moreover, MSE loss may not be suitable
for all types of losses; for instance, cross-entropy loss is more fitting for segmentation guid-
ance. In this paper, we propose shifting the similarity comparison from the pixel domain
to the latent domain, as shown in Equation (13} where E is the encoder that translates an
image into its latent representation. This approach offers two benefits: 1) it allows us to use
MSE loss for various guidance types, and 2) it enables us to leverage the same backbone
for different condition extraction tasks. Here, we utilize the U-Net architecture from stable
diffusion (Rombach et al.,2022a) to handle all guidance tasks.

[/l(yaz()|tvc'¢') = HE(Y> - Cw(zou)Hz (13)

The second loss term is crafted to fine-tune the gradient for larger steps, aiming to achieve
the final outcome in a single iteration. Incorporating &(y, zoj:, Cy) = || E(y) — Cy(2o1)/3,
we employ the conditional score function V,, log p(z;,y) = V;, logp(z,) + V,, log py (2:)
with Vy, log py(2:) = \/&: Vs, 10g py (20|¢) to replace the score function in Equation[5} This
adjustment ensures that the gradient is more accurately aligned for larger steps. Conse-
quently, we obtain:

7+ (1 — ay)s(z) 2

Ja

In this work, we adopt the two loss terms to retrain the condition extraction network Cy (),
which is subsequently integrated into Algorithm|I| Recognizing that z, is deducible from
z; through Equation and that z, is retrievable from z, via Equation |4} we can efficiently
train the condition extraction network C,(-) with the mere acquisition of the pair (y, z).

L (y, 20, 2o, Cyp) = ||20 — = A1 = @) Vy,, L1(¥: Zojt: Cop) (14)

2

6 EXPERIMENT

In this section, we conduct thorough experiments and comparisons to showcase the efficacy
and strengths of our AccCtr sampling approach, while also providing a detailed account of
the experimental configuration.
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Figure 3: Visual Quality Assessment of Generated Images Across Various Conditional
Correction Counts M and Guidances. The first column presents various guidances. The
second column lists the prompts. Columns three to seven display the generated images for
different values of M with J =20, N = 1.

Table 1: Quantitative Running Cost Comparison. We specify the unconditional diffusion
count N, conditional correction counts M, and sampling time in this table. It is clear that
our method provides the fastest outcomes.

UGD FreeDom DSG Ours

Unconditional Diffusion Count N (Times) 500 100 100 20
Conditional Correction Counts M (Times) 3000 90 90 20
Total Sampling Time (Second) 2357 83 53 8

6.1 IMPLEMENTATION DETAILS

We employed the SD-V1.5 model as the foundational backbone for our approach. Our
conditional control network closely aligns with the SD-V1.5 model in terms of parameter
configuration. To facilitate the training process, we selected the Adam optimizer and set its
learning rate to 1e — 5. With a batch size of 1, the model was subjected to 200, 000 training
steps, lasting roughly 60 hours. In our experiments, we relied on the extensive COCO2017
dataset , which encompasses approximately 110, 000 images, providing a
robust dataset for object detection and segmentation tasks.

6.2 ILLUSTRATING SAMPLING ACCELERATION

In this section, we explore the acceleration capabilities of AccCtr. Proposition |1 suggests
that training-free CDMs can be distilled into the optimization of two key objectives. Our
experimental results indicate that while the maximum number of iterations for the uncon-
ditional objective can be significantly reduced, the same cannot be said for the conditional
diffusion, which requires a higher number of iterations. To address this, AccCtr proposes
retraining the condition extraction networks Cy,(-) to decrease the number M of conditional
correction iterations needed for the conditional objective log py (zo|:)-

Figure 3] presents the visual quality of images generated by AccCtr for different values of
M. It's evident that our method can achieve satisfactory results even at M = 1, potentially
greatly enhancing the sampling speed for CDMs. When M = 0, the sampling process does
not incorporate conditional control, resulting in outputs that are unaffected by the guidance.
Therefore, setting M = 1 represents the quickest scenario for conditional generation. To
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Figure 4: Compatibility Demonstration of MSE Metric for Diverse Guidance Types Using
our Condition Extraction Network. We present 10 distinct guidances and their correspond-
ing generated results in this section. Regardless of the variance in guidance, we opt for the
same MSE metric to calculate the gradient of £(y, zg;, Cy).

Condition FreeDom DSG

Figure 5: Compatibility Demonstration of our Condition Extraction Network in Conditional
Generation Across Different Methods. We have replaced the pre-defined condition extrac-
tion networks used by UGD, FreeDoM, and DSG with our own networks. The resulting
generated images are displayed in the second row, while originals are in the first.

offer an overview of the acceleration capabilities of our method, we present a quantitative
comparison of the running costs in Table [ll We specifically evaluate our method against
FreeDoM (Yu et al., [2023), DSG (Yang et al}, 2024b ), and UGD (Bansal et al., 2024) with
respect to the iteration number N for unconditional diffusion, the iteration number M for

conditional correction, and the total sampling time. It can be observed that our method
incurs the lowest running costs in Table

6.3 INVESTIGATING THE COMPATIBILITY OF CONDITION EXTRACTION NETWORKS

In Section 5.2} we highlighted that our condition extraction network can assess the similarity
between the guidance and intermediate results using the MSE metric. This approach
is notably different from previous methods that employed different metrics for different
guidances. Figure [ displays the visualization results with different guidances, where the
similarity is consistently measured using MSE. The results substantiate the compatibility
of condition extraction networks for diverse guidances.

Replacing existing pre-defined condition extraction networks with ours is viable, as shown
in Figure [5] for FreeDoM , DSG (Yang et al 2024b), and UGD 'Bansa!
et al.,[2024). The first row shows original results, and the second row shows results wit
our networks. The sampling quality is comparable, proving our network’s compatibility.
More importantly, it is potential to accelerate sampling as our network could reduce the
conditional correction count M to 1.

—
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Table 2: Quantitative Comparison for Controllable Generation. We selected the depth,
canny, and segmentation conditions, which are universally provided by various methods.
The best results are highlighted in bold.

Depth Canny Segmentation
FID, CLIPt MSE| | FID] CLIPt SSIM{ | FID, CLIP{ mloUt

ControlNet | 19.3954 0.2793 90.1302 | 17.3429 0.2801 0.4138 | 22.1217 0.2795 0.4217
T2I-Adapter | 23.9216 0.2913 94.9317 | 17.6812 0.3011 0.3954 | 22.0173 0.2995 0.2564
ControlNet++ | 18.0139 0.2985 87.2173 | 20.1487 0.3024 0.5138 | 24.9371 0.2931 0.5438

UGD 23.0034 0.2921 86.6792 | 21.8452 0.3013 0.5037 | 23.5437 0.2992 0.4127
FreeDom 22,7825 0.2879 87.1242 | 21.9547 0.2987 0.4937 | 23.3619 0.2965 0.3931
DSG 23.2147 0.2856 87.5637 | 21.6153 0.2961 0.5011 | 23.0198 0.2938  0.3985
Our 224376 0.2932 86.0179 | 21.3846 0.3041 0.5217 | 22.9631 0.3011 0.4018

6.4 AsrLaTION STUDY FOR TRAINING LOSSs

Our training loss for the condition extrac-
tion networks Cy(-) is composed of two
key terms. In this section, we perform an
Ablation Study on these terms to evaluate
their individual importance, with the final
results presented in Figure |6 It is evident
that without L;, controllable generation is
possible but requires a greater number M
of conditional corrections. In the absence
of Ly, controllability is compromised, even
with a large number of conditional correc-
tions. In contrast, utilizing condition ex-
traction networks trained with both terms
results in more satisfactory outcomes.

Condition w/o Ly w/o Ly L1& Lo

Figure 6: Ablation Study For Training Loss.
Each row shows generated results for differ-
ent M. Each column displays the generated
results from condition extraction networks
trained with various loss configurations.

6.5 SampLING QuaLiTy COMPARISON

In this section, we conduct quantitative comparison for sampling quality comparison. Total

six methods including three training-free CMDs (FreeDoM 1 2023), DSG (Yang et al.
2024b), UGD (Bansal et al., 2024) ) and three training-required CMDs (ControlNet (Zhang

et al.,2023), T2I-Adapter (Mou et al. , ControlNet++ ) are compared.
The test is conducted on COCO2017 validation set with timesteps set to 20. For text
alignment, we evaluated the CLIP Scores (Radford et al.,[2021). For conditional consistency,
we measured MSE (Sara et al 2019E for depth maps, SSIM (Wang et al.,|2004) for edge maps,
and mloU (Rezatofighi et al., 2019) for segmentation maps. For conditions not originally
supported by training-free CDMs, we have integrated our condition extraction network
into their existing algorithms. It is evident that AccCtr leads among pioneering training-
free approaches in Table [2| and even when compared to training-required methods, our
approach remains competitive. For qualitative comparison, please refer to Appendix

6.6 CONCLUSION

Slow sampling is a common issue in current training-free CDMs. In this paper, we introduce
a novel framework that reformulates training-free CDMs into the maximization of two
distinct objectives. By meticulously counting the optimization steps for each objective,
we identify the phase that is the bottleneck for sampling speed and propose retraining the
condition extraction networks as a strategy to expedite conditional sampling. Our extensive
experiments confirm that AccCtr can significantly reduce the computational cost without
compromising sample quality. Most importantly, our method exhibits broad compatibility,
holding potential to accelerate a variety of other methods. This conclusion underscores
the versatility and efficacy of our approach in addressing the common challenge of slow
sampling speeds in training-free CDMs.
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A ArreNDIX: PROOF OF PROPOSITION 1

To prove that the alternating maximization of A(z) and B(z) converges to a local maximum
of the function A(z) + B(z), we proceed with the following steps and assumptions.
Assumptions:

Let z € R™ denote the variable defined over the domain of the functions A(z) and B(z). We
assume:

1. The set of local maxima of B(z), denoted Sp, is a subset of the set of local maxima
of A(z), denoted S4. Thatis: S C Sa4.

2. Both functions A(z) and B(z) are continuously differentiable, and their local max-
ima are isolated points.

3. The functions A(z) and B(z) have local maxima.

Alternating Maximization Algorithm:
The alternating maximization algorithm proceeds as follows:
¢ Begin with an initial point z,.
¢ In each odd iteration (step k), maximize A(z), holding B(z) fixed.

Zi11 = argmax A(z),
z

e In each even iteration (step k + 1), maximize B(z) holding A(z) fixed.

Z12 = arg max B(z),
z

Proof:

We aim to show that this alternating process converges to a local maximum of the combined
function A(z) + B(z).

Step 1: Local Maxima Relationship

Suppose at some iteration z, we have maximized A(z) so that:
Z, €54.

Since Sp C S, it follows that if zj, is also a local maximum of B(z), then:
z, € SB.

Thus, at this point, z is a local maximum of both A(z) and B(z).

Step 2: Behavior of Alternating Maximization

When we perform alternating maximization, we iterate between optimizing A(z) and B(z).
Given the assumption that Sp C S4, every point that is a local maximum of B(z) is also a
local maximum of A(z). Therefore, in each step, when we maximize B(z), the algorithm
remains within the set of local maxima of A(z).

As a result, as the algorithm iterates, the points z; produced by alternating maximization
will always belong to the set S4. Furthermore, the sequence of points {2z} is confined to
a finite set of local maxima (due to the assumption that both functions have finitely many
maxima), and the process converges to one of these maxima.

Step 3: Convergence to a Local Maximum of A(z) + B(z)

Once the alternating maximization has converged to a point z* € S4 N Sg, we know that:

e z* is a local maximum of A(z)

¢ z* is a local maximum of B(z)
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Because z* is a local maximum of both functions individually, it follows that it is also a local
maximum of their sum:

A(z) + B(z).
Thus, the alternating maximization process converges to a local maximum of the function
A(z) + B(z).

Conclusion

We have shown that the alternating maximization of A(z) and B(z), given the assumption
Sp C Sa, converges to a local maximum of the function A(z) + B(z).

QED.

B AprPENDIX: ALTERNATIVE MAXIMIZATION SAMPLING COUNTERPART FOR
FreeDoM, DSG anbp UGD

Proposition[|illustrates that conditional sampling is effectively an alternating maximization
of two objectives. In this section, we present the Alternative Maximization Sampling
framework, which is applied to FreeDoM, DSG, and UGD. The purpose of this framework
is to investigate the reasons behind the slow sampling process in training-free Conditional
Diffusion Models (CDMs). By leveraging the concept of alternating maximization, we
seek to enhance our understanding of the efficiency of these models during sampling.

Our analysis reveals that the key differences among these methods lie in their respective

~(m+1)

corrections for z . The efficacy of each approach is contingent upon how effectively they

oft
adjust the intermediate sample zglrt””l) to align with the desired conditional attributes. This

insight is pivotal for refining the sampling process and enhancing the overall effectiveness
of training-free CDMs. By supplying a more precise correction term, we can reduce the
number of optimization steps required.

Algorithm 2 Alternative Maximization Sampling For FreeDoM

Require: The iteration number .J, the unconditional diffusion count NV for solving p(z.)
and the conditional correction count M for solving p,(zo|:). The time reversal step K.

Ensure: iJN NN(O I) and iO|JN — \/@‘]Nil(ijj\/' + (1 - dJN)Sg(iJN))

1: forj = , 1 do
2: forn = 0 —1do
3: t < jN —n
D e s R
5: 20|t—1 <— ﬁzt 1 + (IVLI)SQ(Z,: 1)
6: end for
7: t+ (j— 1)]\7
8: form =0,. — 1 do
9: ZKlt <—\/ Z0|t (1—ag)e
. z(m) 1 ,(m) 1—a (m)
10: ay,) WZKh: + (\/%)SG(ZK“)
~(m+1
11: Z(()It+ ) — Z0|t — AV, (m)g(y7 Z)); ,C )
12: end for
13: i()‘t < io‘t
14: end for
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:? Algorithm 3 Alternative Maximization Sampling For DSG
812 Require: The iteration number .J, the unconditional diffusion count N for solving p(zj;)
813 and the conditional correction count M for solving p,(zo|.). The time reversal step K.

814 Ensure: z;y ~ N(O,I), and 20|JN — \/dJN_l(iJN + (]. - dJN)Sg(iJN))

815 1: forj=J,...,1do
816 2: t<—jN —n
817 3:
818 4:
oo 5: end for
20 6: t+ (j—1)N
821 7: form=0,....M — 1do
822 : 5 (m) ——(m) =
o 8: zf(h;(—,/ (ZO|)t + 4/ 1—aK(e)

. ~(m 1 s(m (1 ) m
824 9% By 4 e, + e se (ZK|t)
825 V,m 257 ,Cy)

10:  df «+ —/ny/ Ol

22‘; —Vav b IV, €GOl
828 11: dsample — Bt €
829 12: d,, — (sample + g, ( d* dsample)

. gl , o)
B 2y, Zoje + TYaaT
831 14: end for o
832 15 Zoj 4 2,
833
834
835 Algorithm 4 Alternative Maximization Sampling For UGD
836 Require: The iteration number J, the unconditional diffusion count N for solving p(zoj;)
837 and the conditional correction count M for solving p, (zo|;). The time reversal step K.

~ N — —1,4 _ ~

838 Ensure: ZJN NN(O I) andz0|JN — \JagN (ZJN+(1—aJN)89(ZJN))
839 1: forj = 1 do
840 2: for n — 0 —1do
841 3: t iN—n
842 4
843 5.
844 6.
845 : end for
846 7: t+ (j— 1)N
. 8: form =0,. —1do

. 5(m) /— (m) / =

. gl g (1 ) m
849 10: O|t \/— K|t + \/ﬂ{ 6( K|t)
850
- 11: Az(()lt) = argmmé’(y, 0|t ) A, Cy)
ROt 50 1) <—z(m) V,wE(y, 20V, Cy) — /2 AT
853 : Zo|t o[t 2y » 4ot 0 P ot
854 13: end for
855 14: Zojt iolt
856 15: end for
857
858
859 C AprpenDIX: QUALITATIVE COMPARISON
860
861
862
863
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Segmentation

ControlNet

trolnet-++ T2I-Adapter

FreeDom

Figure 7: Visual Quality Comparison. In each pair of columns, the first column showcases
the generated results, while the second column displays the extracted conditions from these
results. It is evident that our method adheres precisely to the guidance compared to other

methods.
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