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Appendix to “FreCaS: Efficient Higher-Resolution Image
Generation via Frequency-aware Cascaded Sampling”

In this appendix, we provide the following materials:

A Details of timestep shifting in the transition process (referring to Sec. 3.2 in the main paper);
B The detailed settings of FreCaS on ×4 and ×16 generation for SD2.1, SDXL and SD3 (referring

to Sec. 4.1 in the main paper);
C Results of user studies and non-reference image quality assessment (NR-IQA) (referring to Sec.

4.1 in the main paper);
D Comparison with training-based methods and super-resolution methods (referring to Sec. 4.2 in

the main paper);
E More visual results and visual comparisons (referring to Sec. 4.2 in the main paper);
F Experimental results of generation of SD3 (referring to Sec. 4.3 in the main paper);
G Ablation studies on individual components of FreCaS and inference schedule (referring to Sec.

4.4 in the main paper).

A SHIFTING TIMESTEP IN THE TRANSITION PROCESS

As mentioned in Sec. 3.2 of the main paper, FreCaS employs a five-step transition process to trans-
form the last latent in the current stage z

si−1

L to the first latent in the next stage zsi
F . In addition

to changing the resolution, we adjust the timestep from L to F to ensure that the signal-to-noise
ratio (SNR) (Kingma et al., 2021) could be a constant in the transition process. Given a state zt
=
√
αtz0 +

√
1− αtϵ at timestep t, the SNR is defined as SNR(zt) = αt

1−αt
, where α1, . . . , αT

represent the noise schedule, and ϵ is Gaussian noise. It has been found (Hoogeboom et al., 2023;
Chen, 2023) that the SNR maintains a consistent ratio across resolutions for diffusion models using
the same noise schedule:

SNR(zs
t ) = SNR(zŝ

t ) ·
(s
ŝ

)γ

,

where s and ŝ denote different resolutions. The value of γ is typically set to 2.

Teng et al. (2024) and Gu et al. (2023) proposed to redesign the noise schedule to keep SNR con-
sistent when changing the resolutions of intermediate states. Since the pre-trained diffusion models
have fixed noise schedules, in this paper we adjust the timestep, instead of the noise schedule, to
ensure consistent SNR between z

si−1

L and zsi
F :

SNR(zsi−1

L ) = SNR(zsi
F ) ⇒ F = α−1


(

si−1

si

)γ

· αL

1 +
((

si−1

si

)γ

− 1
)
· αL

 , (1)

where α−1 is the inverse function of αt. Proper adjustment of γ can yield additional improvements.

Besides, SD3 (Esser et al., 2024) employs a similar formula to shift the timestep when varying
resolutions:

F =

√
si

si−1
· L

1 + (
√

si
si−1

− 1) · L
. (2)

B EXPERIMENTAL SETTING DETAILS

The experimental setting details of our FreCaS are listed in Table 1.

C RESULTS OF USER STUDIES AND NR-IQA METRICS

We have (a) conducted user studies and (b) employed non-reference image quality assessment (NR-
IQA) metrics to further assess the performance of FreCaS and its competing methods.
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Table 1: Detailed settings of FreCaS on the experiments. N denotes the count of additional stages.
“Steps” presents the sampling steps in each stage. L presents the timestep of last latent in each stage
except for the final one. γ denotes the SNR ratio in the transition process. wl, wh and wc are the
hyper-parameters of the proposed FA-CFG and CA-maps re-utilization.

N + 1 Steps L γ wl wh wc

SD2.1
×4 2 40,10 100 3.0 7.5 45.0 0.6

×16 3 30,10,10 200,200 3.0 7.5 35.0 0.4

SDXL
×4 2 40,10 200 1.5 7.5 35.0 0.6

×16 3 30,5,15 400,200 2.0 7.5 35.0 0.6

SD3 ×4 2 20,8 50 - 7.0 35.0 0.5

Figure 1: User study results on ×4 generation of SDXL.

Table 2: NR-IQA metrics on ×4 and ×16 generation of SDXL.

Methods
×4 ×16

clipiqa↑ niqe↓ musiq↑ clipiqa↑ niqe↓ musiq↑
DirectInference 0.522 4.167 53.98 0.469 4.370 29.00

AttnEntropy 0.547 4.210 54.87 0.528 4.614 27.98
ScaleCrafter 0.664 3.577 61.12 0.618 3.783 36.00
FouriScale 0.662 3.580 60.77 0.612 3.791 35.52
HiDiffusion 0.690 4.049 61.69 0.574 7.348 36.71

AccDiffusion 0.627 3.641 57.02 0.626 3.587 31.83
DemoFusion 0.651 3.410 58.98 0.637 3.376 33.46

Ours 0.668 3.391 63.10 0.646 3.367 37.33

C.1 USER STUDIES

For the user studies, we compare FreCaS with ScaleCrafter, FouriScale, HiDiffusion, DemoFusion,
and AccDiffusion on 2048×2048 image generation using SDXL. We randomly selected 30 prompts
and generated one image per method for each prompt, creating 30 sets of images. Ten volunteers
participated in the test, and they were asked to select the image with the best details and reasonable
semantic layout from each set. The results are shown in Figure 1. We can see that FreCaS signifi-
cantly outperforms other methods, with 60% votes as the best method. DemoFusion, AccDiffusion,
and HiDiffusion perform similarly, with each having about 10% of the votes. In contrast, FouriScale
and ScaleCrafter have the fewest votes, about 5% each.

C.2 NR-IQA METRICS

For the NR-IQA metrics, we employ CLIPIQA (Wang et al., 2023), NIQE (Mittal et al., 2012), and
MUSIQ (Ke et al., 2021) on ×4 and ×16 image generations with SDXL. The results are presented in
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Figure 2: Visual comparison with training-based methods and super-resolution methods on ×4 gen-
eration of SDXL.

Table 2. Our FreCaS consistently outperforms all the other methods. For example, on ×4 generation,
FreCaS achieves a CLIPIQA score of 0.668, a NIQE score of 3.391, and a MUSIQ score of 63.10,
compared to 0.651, 3.410, and 58.98 for DemoFusion. On ×16 generation, FreCaS achieved a
CLIPIQA score of 0.646, a NIQE score of 3.367, and a MUSIQ score of 37.33, compared to 0.626,
3.587, and 31.83 for AccuDiffusion. Notably, FreCaS only lags behind HiDiffusion on the CLIPIQA
metric in ×4 image generation.

D COMPARISON WITH TRAINING-BASED METHODS AND
SUPER-RESOLUTION METHODS

We conducted additional experiments comparing FreCaS with training-based methods (Pixart-
Sigma (Chen et al., 2024) and UltraPixel (Ren et al., 2024)) and super-resolution methods (ESR-
GAN (Wang et al., 2021) and SUPIR (Yu et al., 2024)). To ensure fair comparisons, we set the model
precision to fp16 (bf16 for UltraPixel, as recommended by the authors) and use the DDIM sampler
for diffusion-based methods. For Pixart-Sigma, we can only report its results for 2048×2048 image
generation since its 4K model is not available. The quantitative results are summarized in Table 3.

From Table 3, we can see that FreCaS outperforms Pixart-Sigma and UltraPixel in most metrics. For
example, FreCaS achieves an FID score of 16.48 and an IS score of 17.18, compared to 26.1 and
14.44 of Pixart-Sigma, and 25.56 and 17.11 of UltraPixel on the ×4 image generation task. This
is because Pixart-Sigma, as acknowledged by the authors, heavily relies on the advanced samplers
(see https://github.com/PixArt-alpha/PixArt-sigma/issues/65) so that the results are not very stable.
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Table 3: Comparison with training-based methods and super-resolution methods on ×4 and ×16
generation of SDXL.

Methods FID↓ FIDp↓ IS↑ ISp↑
CLIP

SCORE↑ Latency(s)↓
×

4
Pixart-Sigma 26.11 38.58 14.44 14.45 28.10 71.45

UltraPixel 25.56 19.95 17.11 17.10 33.17 41.70
SDXL+ESRGAN 13.03 18.10 17.30 16.58 34.13 6.36

SDXL+SUPIR 12.08 17.31 17.57 17.12 34.16 105.5
Ours 16.48 17.91 17.18 17.31 33.28 13.84

×
16

UltraPixel 51.43 45.88 12.48 13.73 33.07 162.4
SDXL+ESRGAN 45.86 43.10 12.94 13.48 33.44 7.25

SDXL+SUPIR 43.94 39.35 13.22 14.37 33.49 512.4
Ours 42.75 39.82 12.68 14.16 33.03 85.87

UltraPixel, while achieving comparable performance to DemoFusion, still lags behind FreCaS in
most metrics. Besides, the two methods are much slower than our FreCaS.

For SR-based methods, FreCaS may have lower FID, IS, and CLIP scores than SDXL+ESRGAN.
This is because SR methods are designed to strictly adhere to low-resolution inputs, while these met-
rics (FID, IS, and CLIP) evaluate images by downsampling them to low resolution, which cannot
well reflect the quality of generated high-resolution images. However, FreCaS significantly outper-
forms SDXL+ESRGAN in FIDp and ISp. Specifically, FreCaS achieves an FIDp score of 39.82 and
an ISp score of 14.16, compared to 43.10 and 13.48 of SDXL+ESRGAN on ×16 image genera-
tion. This indicates its superior ability to generate high-resolution local details. This observation
is consistent with the findings in the DemoFusion paper. Additionally, SDXL+SUPIR outperforms
FreCaS in FIDp and ISp, but at the cost of much longer inference latency (85.87 seconds for FreCaS
vs. 512.4 seconds for SDXL+SUPIR on ×16 image generations).

We have provided some visual comparisons in Figure 2. One can see that FreCaS demonstrates better
visual quality than either training-based or SR-based methods in high-resolution image generation,
such as the more vivid and clearer flowers, hairs and the more natural color of lips.

E MORE VISUAL RESULTS

E.1 MORE VISUAL RESULTS

Figure 3 illustrates more visual results of FreCaS, including those with varying aspect ratios. From
top to bottom, and left to right, the prompts used in examples are: 1. “Beautiful winter wallpapers.”
2. “A regal queen adorned with jewels.” 3. “A majestic phoenix, wings ablaze, rising from ashes,
the flames casting a warm glow.” 4. “Lady in Red oil portrait painting won the John Singer Sargent
People’s award.” 5. “Star of the day – Actress Evelyn Laye - 1917.” 6. “Photograph - Clouds Over
Daicey Pond by Rick Berk.” 7. “little-boy-with-large-bulldog-in-a-garden-france.” 8. “03-Brussels-
Maja-Wronska-Travels-Architecture-Paintings.”, 9. “Red Fox Pup Print by William H. Mullins.” 10.
“Lovely Illustrations Of Cityscapes Inspired By Southeast Asia Malaysian digital illustrator Chong
Fei Giap’s illustrations of cityscapes are lovely and inspiring. Fantasy Landscape, Landscape Art,
Illustrator, Japon Tokyo, Animation Background, Art Background, Matte Painting, Anime Scenery,
Jolie Photo.” 11. “A plate with creamy chicken and vegetables, a side of onion rings, a cup of coffee
and a slice of cheesecake.” 12. “Hyper-Realistic Portrait of Redhead Girl Drawn with Bic Pens.”

To further validate the performance of FreCaS in real-world application scenarios, we have provided
additional visual results in three categories:

• Simple scenes. These images typically contain a single object in a realistic style. We
display images of people, animals, landscapes, buildings, and other common objects. The
visual results for this group are presented in Figure 4.
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Figure 3: Visual results of FreCaS on SDXL. Please zoom-in for better view.

• Various styles. This group showcases images in different artistic styles, including oil paint-
ing, pencil sketch, ink wash, watercolor, and poster art. The results are shown in the first
two rows of Figure 5.
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Figure 4: More visual results on simple scenes.

• Complex scenes. These images contain multiple objects or have intricate textures. The
results are displayed in the bottom two rows of are presented in Figure 5.

From these visual results, it is evident that FreCaS consistently generates high-quality images across
various styles and contents, demonstrating the capability of FreCaS in real-world applications.

z

E.2 MORE VISUAL COMPARISONS

We show more visual comparisons in Figure 6. From top to bottom, the prompts used in the four
groups of examples are: 1. “A small den with a couch near the window.” 2. “A painting of a
candlestick holder with a candle, several pieces of fruit and a vase, with a gold frame around the
painting.” 3. “A noble knight, riding a white horse, the castle gates opening.” 4. “Mystical Landscape
Digital Art - Lonely Tree Idyllic Winterlandscape by Melanie Viola.”

We have provided more 4K visual comparisons under realistic scenes in Figure 7. As can be seen,
our FreCaS consistently delivers better results in both image layout and semantic details.
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Figure 5: More visual results of various styles (top two rows) and complex scenes (bottom two
rows).
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×
4

on
SD

2.
1

×
1
6

on
SD

2.
1

DirectInference MultiDiffusion AttnEntropy ScaleCrafter HiDiffusion FreCaS(ours)

DirectInference MultiDiffusion AttnEntropy ScaleCrafter HiDiffusion FreCaS(ours)

×
4

on
SD

X
L

×
1
6

on
SD

X
L

ScaleCrafter FouriScale HiDiffusion AccDiffusion DemoFusion FreCaS(ours)

ScaleCrafter FouriScale HiDiffusion AccDiffusion DemoFusion FreCaS(ours)

Figure 6: Visual comparisons on ×4 and ×16 experiments of SD2.1 and SDXL. Please zoom-in for
better view.

F EXPERIMENTS ON SD3

In this section, we present the results of the ×4 generation experiments on SD3. SD3 employs
a transformer-based denoising network. It eliminates all convolutional layers, thereby preventing
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Figure 7: More 4K comparisons in realistic styles. From top to bottom, the prompts are “Young
winston churchill.”, “Olive food photography.”, “Mountains in fog at beautiful night. Dreamy land-
scape with mountain peaks, stones, grass, blue sky with blurred low clouds, stars and moon. Rocks
at dusk.” and “Image Church Switzerland towers San Romerio Nature Mountains Scenery Made of
stone Tower mountain landscape photography.”
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Table 4: Experiments on ×4 generation of SD3.

Methods FIDb↓ FIDp↓ IS↑ ISp↑
CLIP

SCORE↑ Latency (s)↓ SpeedUP↑

DirectInference 35.68 45.35 12.52 12.60 31.45 38.53 1×
Demodiffusion 15.19 44.34 17.84 14.99 31.09 63.33 0.61×

Ours 9.76 26.62 17.83 16.72 31.17 15.94 2.42×

DirectInference DemoFusion FreCaS(ours) DirectInference DemoFusion FreCaS(ours)

DirectInference DemoFusion FreCaS(ours) DirectInference DemoFusion FreCaS(ours)

Figure 8: Visual comparison on ×4 experiments of SD3. From top to bottom, from left to right, the
prompts used in the four groups of examples are: 1. “Car Photograph - Ford In The Fog by Debra and
Dave Vanderlaan.” 2. “Rupert Young is Sir Leon in Merlin season 5 copy.” 3. “Watchtower, Shooting
Star & Milky Way, Gualala, CA.” 4. “Colorful Autumn in Mount Fuji, Japan - Lake Kawaguchiko
is one of the best places in Japan to enjoy Mount Fuji scenery of maple leaves changing color giving
image of those leaves framing Mount Fuji.”. Zoom-in for better view.

the application of many existing methods, such as ScaleCrafter and FouriScale. Besides, SD3 ex-
hibits fine details in the central region but shows corrupted textures in the surrounding regions (see
Figure 8). This issue with the image layout also significantly impacts the performance of other
methods, such as DemoFusion. Therefore, we only compare our FreCaS with DirectInference and
DemoFusion. Table 4 and Figure 8 present the quantitative and qualitative results, respectively.

From Table 4, it is evident that FreCaS achieves superior performance in terms of image quality
and inference speed. Specifically, FreCaS achieves the best results on FIDb, FIDp, IS, and ISp, and
only slightly lags behind DirectInference in terms of CLIP score. Moreover, FreCaS generates a
2048 × 2048 image in about 16 seconds, achieving a speed-up of 2.42× and 3.97× compared to
DirectInference and DemoFusion, respectively. Figure 8 illustrates the generated images. Directly
employing the pre-trained SD3 model to generate higher-resolution images, DirectInference leads
to unreasonable image layout with the surrounding parts being corrupted, such as the road and trees.
The results of DemoFusion exhibits strange artifacts, such as the car faces and eyes. In contrast, our
FreCaS successfully maintains the natural image structure while obtaining fine details.
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Table 5: Ablation studies on 2048× 2048 generation of SDXL.

Model cascaded
framework FA-CFG CA-reuse FID↓ FIDp ↓ IS↑ ISp ↑ CLIP

SCORE↑ Latency (s)

#1 39.14 29.71 11.52 14.60 32.51 34.10
#2 ✓ 17.62 20.49 17.01 16.54 33.24 13.71
#3 ✓ ✓ 16.62 17.91 17.16 16.82 33.34 13.74
#4 ✓ ✓ ✓ 16.48 17.91 17.18 17.31 33.28 13.84

Table 6: Ablation studies on N in FreCaS.

N resolutions FIDb↓ FIDp↓
0 2048 43.83 29.71
1 1024 → 2048 12.63 17.91
2 1024 → 1536 → 2048 41.36 28.68

Table 7: Ablation studies on L in FreCaS.

L FIDb↓ FIDp↓
0 12.57 18.20

100 12.69 18.10
200 12.63 17.91
300 13.30 18.57
400 13.34 18.62

G ABLATION STUDIES ON INDIVIDUAL COMPONENTS AND INFERENCE
SCHEDULE

We further conduct ablation studies to verify the effectiveness of each components and the settings
of inference schedule of our FreCaS.

G.1 EFFECTIVENESS OF EACH COMPONENT

To better verify the effectiveness of each component of FreCaS, we conducted more ablation studies
on our proposed cascaded framework, FA-CFG, and CA-reuse strategies. The results are shown
in Table 5. One can see that our cascaded framework significantly outperforms the baseline, with a
decrease of 22.52 in the FID score and a reduction of 20.39 seconds in latency. This demonstrates the
high efficiency of our proposed cascaded framework. Our FA-CFG strategy improves both FID and
IS scores and shows substantial improvement in FIDp, demonstrating its effectiveness in generating
realistic image details. The CA-reuse strategy further enhances ISp, indicating its effectiveness in
improving semantic appearance. Moreover, these strategies introduce minimal additional latency.

G.2 EXPERIMENTS ON INFERENCE SCHEDULE

In this section, we conduct experiments on the selection of N (number of additional stages) and
L (the timestep of last latent in each stage). The two factors are employed to adjust the inference
schedule of our FreCaS. We reports the scores of FIDb and FIDp by varying the two factors in
Table 6 and Table 7, respectively.

Choice of N . From Table 6, we see that N = 1 achieves an FIDb score of 12.63 and an FIDp

score of 17.91, significantly better than N = 0 and N = 2 in the ×4 generation task for SDXL.
This could be attributed to the fact that a larger value of N introduces more transition steps, which
can lead to much information loss. Conversely, a smaller value of N reduces the effectiveness of
FreCaS, degenerating it to the DirectInference method.
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Choice of L. From Table 7, we can see that a smaller L improves FIDb score but deteriorates FIDp.
This is because the details generated at lower resolutions conflict with those at higher resolutions.
Thus, we set L to 200 to avoid generating excessive unwanted details in the early stages.
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