
Published as a conference paper at ICLR 2024

A DETAILS OF LOCAL REPARAMETERIZATION TRICK

For the sake of completeness, we show the details of local reparameterization trick (LRT) here.
Initially, we examine the forward process of SSVI and determine the distribution of the outputs.
Through this, we introduce LRT, which leads to the same distribution with the naive implementation.
Subsequently, we highlight the disparities in the backward processes between the naive approach and
LRT, underscoring the importance of appropriate initialization.

Forward process Similar to the conventional VI, the term Eq� log p(X|✓) must be approximated
using Monte Carlo by drawing samples of ✓ from q�(✓). While it’s advantageous to draw distinct ✓
samples for various inputs within a batch, this approach complicates parallel computing operations.
To resolve this challenge, we employ the local reparameterization trick following (Kingma et al.,
2015; Molchanov et al., 2017). To elaborate, consider a single linear operation as an illustration.
Given inputs x 2 Rp⇥B , characterized by a feature dimension of p and a batch size of B, alongside
a randomly Gaussian distributed matrix A 2 Rp⇥q which is randomly sampled for each 1  b  B.
Here, the matrices µ and � 2 Rp⇥q delineate the mean and variance for each corresponding index of
A. Consequently, the corresponding output y also adheres to a Gaussian distribution, and for every
sample 1  b  B we have:

Ey:,b = EA · x:,b = µ · x:,b,

V ar(y:,b) = V ar(Ax:,b) = (� � �) · (x:,b � x:,b). (10)
Observe that µ and � � � are both irrelevant with b, which means the calculations for both Ey and
Var(y) can be carried out in parallel for all samples in the batch. This necessitates only two forward
processes, one for the mean and another for the variance, as opposed to the original method which
demands B separate forward processes for each sample. Consequently, this approach diminishes
computational demands remarkably.

Backward process The sampling procedure is non-differentiable. Traditional approaches to cir-
cumvent this involve the reparameterization trick, where noise, denoted as ", is sampled from a
standard normal distribution, N (0, 1). The forward process is then represented as µ+ �", facilitat-
ing the direct computation of gradients for both µ and �. Concretely in our case, for each sample in
the range 1  b  B, we generate a standard Gaussian matrix ⌘(b) 2 Rp⇥q and derive the respective
output:

y:,b = (µ+ � � ⌘(b))x:,b (11)
Different from (11), our approach to the local reparameterization trick retains the core concept but
diverges in its implementation. Initially, we calculate both the expected value Ey and the variance
Var(y). Subsequently, we sample a standard Gaussian matrix " 2 Rq⇥b and set:

y = µ · x+
p
(� � �) · (x� x)� ". (12)

As previously noted, equations (11) and (12) adhere to the same distribution, with (12) offering
substantial efficiency due to its parallel implementation. However, it is essential to highlight that,
although the forward processes of the two are equivalent, they yield different gradients with respect
to �. We show the different gradient updates in the following and emphasize their significant role in
influencing the updates of � in SSVI. The gradient for µ is the same for both (11) and (12). For �,
the gradient in (11) is:

@l

@�
=

@l

@y
·

BX

b=1

⌘(b) · x:,b

!
. (13)

And the gradient in (12) is:

@l

@�
=

@l

@y
·

� · (x� x)p
(� � �) · (x� x)

� "

!
. (14)

B DERIVATION FOR DROPPING CRITERIA

In the following, we omit the index i, and let ✓ ⇠ N (µ,�2).

13

Published as a conference paper at ICLR 2024

Derivation for Criteria 3: Eq� |✓| We have

Eq� |✓| =
Z 1

�1
|x| · 1p

2⇡�
exp

✓
� (x� µ)2

2�2

◆
dx.

Due to the symmetry of ✓, we can assume µ � 0 without loss of generality. Letting t = x�µ
� , we

have

Eq� |✓| =
Z 1

�1
|�t+ µ| · 1p

2⇡
exp

✓
� t2

2

◆
dt

= �
Z �µ

�

�1
(�t+ µ) · 1p

2⇡
exp

✓
� t2

2

◆
dt+

Z 1

�µ
�

(�t+ µ) · 1p
2⇡

exp

✓
� t2

2

◆
dt

= �

�
Z �µ

�

�1
t · 1p

2⇡
exp

✓
� t2

2

◆
dt+

Z 1

�µ
�

t · 1p
2⇡

exp

✓
� t2

2

◆
dt

!

+ µ

�
Z �µ

�

�1

1p
2⇡

exp

✓
� t2

2

◆
dt+

Z 1

�µ
�

1p
2⇡

exp

✓
� t2

2

◆
dt

!
.

Denote

�(x) :=

Z x

�1

1p
2⇡

exp

✓
�y2

2

◆
dy,

to be the Cumulative Distribution Function (CDF) of standard Gaussian distribution. We can easily
verify

�(x) + �(�x) = 1.

Hence, we have

Eq� |✓| = �

1p
2⇡

exp

✓
� t2

2

◆����
�µ

�

�1
� 1p

2⇡
exp

✓
� t2

2

◆����
1

�µ
�

!
+ µ

⇣
��

⇣
�µ

�

⌘
+ �

⇣µ
�

⌘⌘

= �

r
2

⇡
exp

✓
�µ2

�2

◆
+ µ

⇣
2�
⇣µ
�

⌘
� 1
⌘
. (15)

Hence, we get the explicit form of criteria 3.

Derivation for Criteria 5 and 6: Eq�e
�|✓|

and SNRq�(e
�|✓|) For � > 0, setting t = x�µ

� , we
have

Eq�e
�|✓| =

Z 1

�1
exp (�|x|) 1p

2⇡�
exp

✓
� (x� µ)2

2�2

◆
dx

=

Z 1

�1
exp (�|µ+ �t|) 1p

2⇡
exp

✓
� t2

2

◆
dt

=

Z �µ
�

�1
exp (��(µ+ �t))

1p
2⇡

exp

✓
� t2

2

◆
dt+

Z 1

�µ
�

exp (�(µ+ �t))
1p
2⇡

exp

✓
� t2

2

◆
dt

=

Z �µ
�

�1

1p
2⇡

exp


�
✓
t2

2
+ ��t+ �µ

◆�
dt+

Z 1

�µ
�

1p
2⇡

exp


�
✓
t2

2
� ��t� �µ

◆�
dt

=

Z �µ
�

�1

1p
2⇡

exp


� (t+ ��)2

2

�
dt · exp

✓
�2�2

2
� �µ

◆

+

Z 1

�µ
�

1p
2⇡

exp


� (t� ��)2

2

�
dt · exp

✓
�2�2

2
+ �µ

◆

= �
⇣
�µ

�
+ ��

⌘
e

�2�2

2 ��µ + �
⇣µ
�
+ ��

⌘
e

�2�2

2 +�µ. (16)

For SNRq�(e
�|✓|), notice that

Varq�e
�|✓| = Eq�(e

2�|✓|)�
⇣
Eq�e

�|✓|
⌘2

.

14

Published as a conference paper at ICLR 2024

Given that we already have the expectation Eq�e
�|✓|, we can readily compute the first term of

Varq�
�
e�|✓|

�
, by substituting � with 2�. This allows us to determine SNRq�(e

�|✓|), completing
the proof.

C TRAINING DETAILS

For training, we solve the optimization problem (3) following the procedure in Algorithm 1. For
a fair comparison, we train our algorithms for 200 epochs, with a batch size 128, SGD optimizer
with an initial learning rate of 0.01, and a Cosine annealing decay for learning rate following Kong
et al. (2023). Since we cannot determine the final sparsity of previous methods before training, we
conduct the training process with previous methods first, record the final sparsity achieved, and then
set a similar value for SSVI to ensure an equitable comparison.

D ADDITIONAL EXPERIMENTS

In this section, we undertake further experiments addressing two distinct types of distribution shift
challenges to show the ability of uncertainty. This encompasses standard assessments with Out-
of-Distribution (OOD) datasets and evaluations on datasets subjected to various corruptions. Addi-
tionally, we carry out additional ablation studies to examine the disparities among the five different
removal criteria proposed in Section 3.3.1.

D.1 MORE DISTRIBUTION SHIFT TASKS

OOD detection We train utilizing SSVI on CIFAR-10/100 and subsequently test on CIFAR-
100/10 and SVHN, in line with the methodologies established in prior research (Ritter et al., 2021).
We calculated both the area under the receiver operating characteristic (AUROC) and the area under
the precision-recall curve (AUPR) using our models. In this context, we employed the mBNN algo-
rithm (Kong et al., 2023), the strongest previous work, as our baseline, ensuring equal sparsity for a
fair and meaningful comparison.

Train set CIFAR-10 CIFAR-100
Test set CIFAR-100 SVHN CIFAR-10 SVHN
Metric AUROC AUPR AUROC AUPR AUROC AUPR AUROC AUPR

mBNN 0.84 0.81 0.89 0.94 0.76 0.72 0.78 0.88
SSVI (ours) 0.86 0.84 0.93 0.96 0.80 0.77 0.85 0.91

Table 3: Results for OOD detection. SSVI demonstrates superior performance across all metrics.

Corrupted datasets We evaluate our model, which has been trained using SSVI on CIFAR-
10/100, against their corrupted counterparts, CIFAR-10-C and CIFAR-100-C, as introduced by
Hendrycks & Dietterich (2019). These datasets feature 15 unique types of corruptions, each with 5
levels of severity. For each level of corruption, we calculate the average results across all 15 corrup-
tion types. The outcomes of this evaluation are presented in Figure 4. As a comparative standard,
we continue to use mBNN (Kong et al., 2023) as the baseline. The findings indicate that SSVI
consistently surpasses mBNN across all evaluated metrics.

D.2 ADDITIONAL ABLATION STUDIES

We introduce various criteria for weight removal in Section 3.3.1, which are utilized to identify the
top-Kt weights at each removal step t. To assess the differences among the first 5 criteria outlined
in Section 3.3.1, we calculate the ratio of intersection over union (IoU) for all 10 possible pairings
between these criteria. In Figure 5, we display the average IoU scores across these pairs over the
course of the removal steps. Our results show that although the criteria initially exhibit a high
degree of similarity, indicated by high IoU scores, they begin to diverge as the training advances.
This divergence is likely attributed to the increasing precision of uncertainty information, leading to
more refined outcomes.

15

Published as a conference paper at ICLR 2024

Figure 4: Performance analysis on CIFAR-10-C and CIFAR-100-C. SSVI shows consistently better
results across all metrics under corruption.

Figure 5: Average IoU of all 10 pairs between 5 different criteria.

For a detailed examination of the IoU scores among various pairs, we present a pair-wise matrix
of the five scores at the start, midpoint, and conclusion of the training in Table 4. This analysis
not only reinforces our earlier observations from Figure 5 but also highlights that traditional criteria,
specifically |µ| and SNRq�(✓), exhibit a persistent similarity during the entire training period. On the
other hand, the three novel criteria we introduced: Eq� |✓|, SNRq�(|✓|), and Eq�e

�|✓|, show a marked
deviation from these conventional metrics, emphasizing the innovative aspect of our methodology.

16

Published as a conference paper at ICLR 2024

Table 4: IoU matrices in different training stages.

|µ| SNRq�(✓) Eq� |✓| SNRq�(|✓|) Eq�e
�|✓|

|µ| 1.0000 0.9995 0.9122 0.9981 0.9122
SNRq�(✓) 0.9995 1.0000 0.9118 0.9985 0.9118
Eq� |✓| 0.9122 0.9118 1.0000 0.9118 0.9996

SNRq�(|✓|) 0.9981 0.9985 0.9118 1.0000 0.9118
Eq�e

�|✓| 0.9122 0.9118 0.9996 0.9118 1.0000
Table 5: IoU matrix at the beginning.

|µ| SNRq�(✓) Eq� |✓| SNRq�(|✓|) Eq�e
�|✓|

|µ| 1.0000 0.9999 0.7723 0.8177 0.7722
SNRq�(✓) 0.9999 1.0000 0.7722 0.8177 0.7722
Eq� |✓| 0.7723 0.7722 1.0000 0.6786 0.9895

SNRq�(|✓|) 0.8177 0.8177 0.6786 1.0000 0.6790
Eq�e

�|✓| 0.7722 0.7722 0.9895 0.6790 1.0000
Table 6: IoU matrix in the middle.

|µ| SNRq�(✓) Eq� |✓| SNRq�(|✓|) Eq�e
�|✓|

|µ| 1.0000 0.9998 0.1528 0.0829 0.1190
SNRq�(✓) 0.9998 1.0000 0.1528 0.0829 0.1190
Eq� |✓| 0.1528 0.1528 1.0000 0.0389 0.8501

SNRq�(|✓|) 0.0829 0.0829 0.0389 1.0000 0.0374
Eq�e

�|✓| 0.1190 0.1190 0.8501 0.0374 1.0000
Table 7: IoU matrix at the end.

17

	Introduction
	Related work

	Preliminary
	Sparse Subspace Variational Inference
	SSVI Formulation
	Alternative Optimization Procedure

	Update the variational parameter
	Update the sparse subspace
	Subspace Removal
	Subspace addition

	Experiments
	Main results
	Analysis and ablation studies

	Conclusion
	Details of Local Reparameterization Trick
	Derivation for dropping criteria
	Training Details
	Additional Experiments
	More distribution shift tasks
	Additional ablation studies

