
A Technical details

A.1 Datasets

Details of the datasets we introduce are presented in this section. Specific details about generation
as well as statistics from the resulting datasets are delineated for each one below. The datasets can
all be downloaded from https://github.com/aks2203/easy-to-hard-data [Schwarzschild
et al., 2021].

A.1.1 Prefix sum data

Binary string inputs of length n are generated by selecting a random integer in [0, 2n) and expressing
its binary representation with n digits. Datasets are produced by repeating this random process
10,000 times without replacement. Because the number of possible points increases exponentially as
a function of n and the size of the generated dataset is fixed, it is important to note that the dataset
becomes sparser in its ambient hypercube as n increases. Moreover, we are limited to datasets with
binary strings of length n > 13 to avoid duplicate data points.

A.1.2 Maze data

The maze data is generated using a depth first search algorithm. A grid is initialized with walls at
every cell boundary. Then, using depth first search from a starting cell, every cell is visited at least
once, removing walls along the path. The algorithm is available in the attached code. The resulting
dataset has non-uniformly distributed path lengths. Also, this process does lead to duplicates, but
fewer than 0.5% of points are duplicated and so this is ignored in our study.

Figure 10: Example of small (left) and large(right) maze inputs and targets. The target is a binary
classification label for each pixel indicating on/off the optimal path.

A.1.3 Chess puzzle data

Starting position data from the Lichess database in FEN form are transformed into 8⇥ 8⇥ 12 arrays
indicating the position of each piece on the board (one channel per piece type and color) to be used
as inputs. The first correct output moves in UCI move format are transformed into 8 ⇥ 8 binary
masks showing the origin and destination positions for the optimal move and used as targets for the
corresponding input. More specific details about these transformations can be viewed the provided
code.

Lichess compiles puzzle data by analyzing 200,000,000 from their database of games between users
using the Stockfish 12/13 NNUE chess engine at 40 meganodes. Though amalgamated puzzles do
not come with username information, this information can ostensibly be gathered by playing through
the puzzles on the Lichess website, where this information is available. Because of this, applying
deep learning to this dataset could reveal some information about the playing style of Lichess users.
However, upon creating accounts users agree to allow their game data to be public and be used
specifically for investigative purposes.

The puzzle data is released by Lichess for public use under the Creative Commons CC0 license.

A.2 Architectural details

Model files are available in the linked code repository, their details are as follows.

13



The feed-forward prefix sum models are fully convolutional models that take in n⇥ 1 arrays. The
first layer is a one-dimensional convolution with a three entry wide kernel that strides by one entry
with padding by one on either end on the input. The output of this first convolution has 120 channels
of the same shape as the input. The next parts of the networks are residual blocks made up of four
layers that are identical to the first layer with skip connections every two layers. After the residual
blocks, there are three similar convolutional layers that output 60, 30, and two channels, respectively.
For a network of depth d, there are (d � 4)/4 residual blocks. The recurrent models are identical,
except that all residual blocks share weights.

The feed-forward maze solving models are fully convolutional models that take in n⇥ n⇥ 3 arrays.
The first layer is a two-dimensional convolution with a 3⇥ 3 kernel that strides by one entry and pads
by one unit in each direction. The output of this first convolution has 128 channels of the same shape
as the input. As above, the next parts of the networks are residual blocks made up of four layers that
are identical to the first layer with skip connections every two layers. After the residual blocks, there
are three similar convolutional layers that output 32, 8, and two channels, respectively. For a network
of depth d, there are (d� 4)/4 residual blocks. The recurrent models are identical, except that all
residual blocks share weights.

For experiments with dilated filters, the only changes made are to the dilation of the convolutional
filters and to the padding of every convolution and the values are set to maintain the output dimenssion
of each layer.

The chess playing models are the same as the maze models except that the first layer takes 8⇥ 8⇥ 12
inputs and outputs 512 channels.

None of the models used in this project have batch normalization or bias terms.

A.3 Training hyperparameters

The training details and hyperparameters are outlined below.

• Prefix sum training is unstable, thus we only save models that show 100% training accuracy
at the end of training.

• Data augmentation: Binary string inputs to prefix sum networks are approximately normal-
ized by subtracting 0.5 from every element in the string in order to aid in training stability.
Mazes are padded to be 32⇥ 32 pixels.

• Optimizer: All prefix sum networks are trained using the Adam optimizer with a weight
decay factor of 2e-4. Because of training instability, we also apply gradient clipping at
magnitude 1.0. The maze solving networks are trained with stochastic gradient descent
with a weight decay factor of 2e-4 and momentum coefficient of 0.9. Chess networks are
trained using stochastic gradient descent with a weight decay factor of 2e-4 and momentum
coefficient of 0.9.

• Epochs: Prefix sum networks are trained to convergence with 500 epochs. Maze models are
trained for 200 epochs. Chess networks are all trained to convergence with 140 epochs.

• Learning rate and decay schedule and type. All prefix sum networks are trained using an
exponential warm-up schedule applied over 10 epochs. Initial learning rate (post-warmup) is
set at 0.001 and is subsequently halved at epochs 100, 200, and 300. Maze solving networks
also use warm-up with a period of 5 epochs after which the learning rate is 0.001. The
learning rate further decays by a factor of ten at epoch 175. Chess networks are trained with
an exponential warm-up schedule applied over 3 epochs. Initial learning rate (post-warmup)
is set to 0.1 and dropped by a factor of ten at epochs 100 and 110.

• Batch size: For training prefix sum models, we use batches of 150 binary strings. When
training maze networks we use batches of 50 mazes. For chess models, we train with batches
of 300 puzzles.

A.4 Compute resources

All of our experiments were done on Nvidia GeForce RTX 2080Ti GPUs. Prefix sum models train in
less than one hour on a single GPU, whereas maze solving models require approximately seven hours
on a single GPU. The chess networks were trained in about 24 hours on four GPUs.
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In total, the prefix sum training required to generate the results presented in this paper takes approxi-
mately 30 GPU hours. The maze models, in total, require one GPU week. And the chess networks
took 3 GPU weeks.

The data pre-processing as well as the testing of all models for every experiment can done compara-
tively quickly, in several hours.

B Further insights

We present several additional findings from our experiments.

B.1 Deeper feed-forward models

Significantly deeper feed forward models cannot generalize from easy to hard as well as recurrent
ones. For example, we extend the experiments in Figure 4 to feed-forward models with depths 132,
264, and 528. These models all fit the training data (32-bits) well, but the best performance on 40-bit
data is 53% and on 44-bit data is 27% – neither is attained by the deepest models lending confidence
that the performance would not increase with even more depth.

B.2 In-distribution tests

For in-distribution test accuracy (on small/easy cases) on prefix sums, both classes of models achieve
>99% and on mazes, both achieve >97% (using the same number of iterations as used during training).
When we apply more iterations, we see only slight drops for in-distribution test accuracy (tenths of a
percent), but no improvement. On chess puzzles, the in-distribution test accuracies are 92% for the
recurrent models and 84% for the feed-forward networks (though there is a gap in performance, it is
smaller than the gap observed for out-of-distribution testing).

We also train and test on the harder datasets to measure in-distribution accuracy. Here, we find there
is little difference between recurrent and feed-forward models. As examples, both classes of models
for prefix sums and mazes achieve essentially 100% on unseen data. Specifically, both recurrent and
feed-forward models achieve >99% on prefix sums and >97% on mazes.

Finally, we train models on larger instances and test them on smaller cases, and we find that they can
solve smaller examples in fewer iterations than were used at training. For example, when models are
trained to compute prefix sums on 44-bit data in 10 iterations, they can get 100% of the 16-bit test
examples correct after only 4 iterations.

B.3 Prefix sum experiments on other datasets

B.4 Dilated filters

The receptive field can be increased without adding parameters or depth by dilating the convolutional
filters. When we use dilated filters to compute prefix sums, we find that we can fit the training data
with N -bit sequences with fewer than N layers – a behaviour that is not possible with non-dilated
convolutions. This suggests that the algorithm learned by our models is informed by the receptive
field. In other words, since the final entry in a prefix sum does require global information (and
therefore, in order for a neural network to compute the final entry it needs a complete receptive
field), the use of extra iterations on longer sequences meshes with the algorithmic analysis. When
we contextualize our models by analyzing the way they scale, it is reasonable to find that networks
with non-dilated convolutions scale linearly with the input length. This also motivates future work to
study whether neural networks can be designed to learn an algorithm that scales with the square root
of the problem size, or even logarithmically.

B.5 Even harder chess puzzles

C Visualizations

Additional visualizations of intermediate outputs, along with input and target examples from all three
datasets are presented below.
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Figure 11: Generalizing from easy to hard prefix sums. The ability of networks to compute prefix
sums on two additional test sets with longer input strings than were used for training (accuracy on
36-bit inputs in yellow and on 48-bit inputs in pink). We compare recurrent models to the best
feed-forward models of comparable effective depth.

Figure 12: Generalizing from easy to hard chess puzzles. The ability of networks to solve harder
puzzles than were used for training. We trained models on the first 600,000 puzzles and we show
their performance with extra iterations on puzzles with index 800,000 to 850,000 (top left), 850,000
to 900,000 (top right), 900,000 to 950,000 (bottom left), and 100,000 to 150,000 (bottom right).

C.1 Prefix sums

We show a recurrent model’s output from each of 11 iterations on 40-bit input strings. Shown below
is the confidence that there is a 1 at each index of the output. The first index is at the top for all
vectors, the input is in the left-most column and the target is in the right-most column. The model
used to produce these plots was trained with fewer iterations (10) on shorter input strings (32-bit).
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Figure 13: Prefix sum intermediate outputs.

C.2 Mazes

We show inputs, targets, and outputs form different iterations to highlight the model’s ability to think
sequentially about mazes. We plot the model’s confidence that each pixel belongs to the optimal path.
Below are several representative examples from a model trained to solve small mazes in six iterations.

C.3 Chess puzzles

We show inputs, targets, and outputs form different iterations to highlight the model’s ability to think
about the next move. Below, we plot the model’s confidence that each pixel is one of the two that
define a move.
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Figure 14: Maze model intermediate outputs.
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Figure 15: Chess model intermediate outputs.
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D NeurIPS submission checklist

1. For all authors...
(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s

contributions and scope? [Yes]
(b) Did you describe the limitations of your work? [Yes] See Section 5.
(c) Did you discuss any potential negative societal impacts of your work? [No] We feel

that our investigation into the behavior of AI in some toy domains does not warrant
such a discussion, as it would relate only to the potential of the field in general.

(d) Have you read the ethics review guidelines and ensured that your paper conforms to
them? [Yes]

2. If you are including theoretical results...
(a) Did you state the full set of assumptions of all theoretical results? [N/A]
(b) Did you include complete proofs of all theoretical results? [N/A]

3. If you ran experiments...
(a) Did you include the code, data, and instructions needed to reproduce the main experi-

mental results (either in the supplemental material or as a URL)? [Yes] See Appendix
Sections A.1, A.2, and A.3, as well as the code in the supplementary files.

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [Yes] See Appendix A.3.

(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)? [Yes]

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [Yes] See Appendix A.4.

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...
(a) If your work uses existing assets, did you cite the creators? [Yes] See Section 2.
(b) Did you mention the license of the assets? [Yes] See Appendix A.1.3.
(c) Did you include any new assets either in the supplemental material or as a URL? [Yes]

See Appendix A.1.
(d) Did you discuss whether and how consent was obtained from people whose data you’re

using/curating? [Yes] Lichess is open source and encourages the use of their data
for research projects, see https://database.lichess.org/. This is mentioned in
Section 2.

(e) Did you discuss whether the data you are using/curating contains personally identifiable
information or offensive content? [Yes] See Appendix A.1.3.

5. If you used crowdsourcing or conducted research with human subjects...
(a) Did you include the full text of instructions given to participants and screenshots, if

applicable? [N/A]
(b) Did you describe any potential participant risks, with links to Institutional Review

Board (IRB) approvals, if applicable? [N/A]
(c) Did you include the estimated hourly wage paid to participants and the total amount

spent on participant compensation? [N/A]
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