
S1 Organization of the supplementary

The supplementary is organized as follows. First, in Appendix S2, we give details on why the
generated distribution in each aforementioned generative model is a push-forward of a standard
Gaussian distribution. In Appendix S3, we give the full proofs of all the theoretical results of the
paper. In Appendix S4, we show a generalization of Corollary 5 in the case there are more than two
disconnected manifolds. In Appendix S5, we give details on the experiments. Finally, in Appendix S6,
we provide additional experimental results and additional visualizations of histograms of generated
distributions for the univariate case, and generated data for the experiments on MNIST.

S2 More details on push-forward generative models

In this section, we specify why in each aforementioned model the generated distribution is of the
form gθ#µp with µp = N(0, Idp) being the standard Gaussian distribution in dimension p and
gθ : Rp → Rd being a deterministic mapping of parameter θ.

S2.1 Direct push-forward models

In GANs, the generated distribution is trivially of the form gθ#µp, where gθ is the generator and p is
the dimension of the latent space. This is also the case in most of normalizing flow models, where gθ
is a composition of neural flows and p is automatically equal to d since the networks must be invertible.
In the Gaussian-VAE model described in Kingma and Welling (2014), the conditional probability
pθ(x|z), with z ∈ Rp and x ∈ Rd being respectively the latent and observable variables, is of the
form pθ(x|z) = N(fθ(z), h

2
θ(z) Idd), where fθ(z) and gθ) are the outputs of the decoder. This is

often simplified in practice to pθ(x|z) = N(fθ(z), c
2 Idd) with c > 0 being an hyperparameter of the

model. Thus the generated distribution in Gaussian-VAE is of the form g#µp, where gθ : Rp+d → Rd

is the neural network defined as

gθ(z, z
′) =

�
fθ(z) + h2

θ(z)z
′ if pθ(x|z) = N(fθ(z), h

2
θ(z) Idd)

fθ(z) + c2z′ if pθ(x|z) = N(fθ(z), c
2 Idd) .

Moreover, if relaxing the conditional probability to pθ(x|z) = N(fθ(z), h
2
θ(z) Idd) or pθ(x|z) =

N(fθ(z), c
2 Idd) instead of δfθ(z) is crucial for the training of VAEs, this is not particularly relevant

during inference since the relaxed conditional distribution is simply a noisy version of the push-
forward measure fθ#µp. For this reason, the inference in VAEs is often done by simply sampling
from the single output fθ(z) of the decoder, with z ∼ µp, and so the generated distribution is trivially
of the form fθ#µp in that case.

S2.2 Score-based generative models

In diffusion models, the generation process is an Euler-Maruyama discretization of the reverse-time
denoising diffusion (Song et al., 2020)

dXt =
�
f(Xt, t)− g2(t)∇ log pt(Xt)

�
dt+ g(t)dBt ,

where (Xt)t∈[0,T] is a random process on Rd, (Bt)t∈[0,T] is a Brownian motion, and where f(., t) :

Rd → Rd is a vector-valued function called the drift operator, g : R → R is a real-valued function
called the diffusion coefficient and ∇ log pt(Xt) is the score of the marginal law of Xt, which is
approximated by a neural network sθ(Xt, t). This discretization yields for instance, for an appropriate
choice of f and g, to the annealed Langevin dynamic (Song and Ermon, 2019):

�
x0 = z0 (z0 ∼ N(0, Idd))
xk+1 = xk + (αk/2)sθ(xk,σk) +

√
αkzk+1 (zk+1 ∼ N(0, Idd)) ,

where αk = εσ2
k/σ

2
0 with ε > 0 being an hyperparameter of the model and (σk)k≥0 is such that it

exists K (another hyperparameter of the model) such that (σKi)i≥0 is a geometric progression, and
for all k ≥ 0, σk = σK⌊k/K⌋. Denoting for k ≥ 1, hk

θ : R2d → Rd the function defined as

hk
θ(x, y) = x+ (αk/2)sθ(x,σk) +

√
αky ,

15

it follows that when the data are generated with a Langevin dynamic of N iterations, the generated
distribution is of the form gθ#µp with p = d(N + 1) and where gθ : Rd(N+1) → Rd is the function
defined as

gθ(z0, z1, z2, . . . , zN−1, zN) = hN
θ

�
hN−1
θ

�
. . . (h2

θ

�
h1
θ(z0, z1), z2

�
, . . .), zN−1

�
, zN

�
.

S3 Proofs of the theoretical results

S3.1 Proof of Theorem 1

We start by recalling the Gaussian isoperimetric inequality Sudakov and Tsirelson (1978).

Lemma S9. Let A ∈ B(Rp) and µp = N(0, Idp). Then we have

µ+
p (∂A) ≥ φ(Φ−1(µp(A))) ,

where φ(x) = (2π)−1/2 exp[−x2/2] and Φ(x) =
R x

−∞ φ(t)dt. Equivalently, for all r ≥ 0

µp(Ar) ≥ Φ(r + Φ−1(µp(A))) .

In particular, using Lemma S9, one can show that among all sets of given Gaussian measure µp,
half-spaces have the minimal µp-surface area. We are now ready to turn to the proof of Theorem 1.

Proof of Theorem 1. Let A ∈ B(Rd) such that g#µp(A) > 0 (note that if g#µp(A) = 0 then
the result is trivial). First, we show that for any ε > 0, g((g−1(A))ε/Lip(g)) ⊂ Aε. Let x be in
g((g−1(A))ε/Lip(g)). There exists z1 ∈ (g−1(A))ε/Lip(g) such that g(z1) = x. There also exists
z2 ∈ g−1(A) such that

∥z1 − z2∥ ≤ ε/Lip(g) .

Hence, we have that

∥x− a∥ ≤ Lip(g)∥z1 − z2∥ ≤ ε ,

where a = g(z2). Since z2 ∈ g−1(A), a ∈ A, and therefore x ∈ Aε. Using this result, the fact that
g#µp(B) = µp(g

−1(B)) and B ⊂ g−1(g(B)) for any B ∈ B(Rd), we have

lim inf
ε→0+

{g#µp(Aε)− g#µp(A)}/ε ≥ lim inf
ε→0+

{g#µp(g((g
−1(A))ε/Lip(g)))− g#µp(A)}/ε

≥ lim inf
ε→0+

{µp((g
−1(A))ε/Lip(g))− µp(g

−1(A))}/ε . (S1)

Using Lemma S9, we have

Lip(g) lim inf
ε→0+

{(µp((g
−1(A))ε/Lip(g))− µp(g

−1(A)))}/ε ≥ φ(Φ−1(µp(g
−1(A)))) ,

Combining this result and (S1), we get that

Lip(g)(g#µp)
+(∂A) ≥ φ(Φ−1(g#µp(A))) .

In addition, using Lemma S9, we have for all r ≥ 0

µp((g
−1(A))r/Lip(g)) ≥ Φ(r/Lip(g) + Φ−1(µp(g

−1(A)))) .

Using this result and that g((g−1(A))r/Lip(g)) ⊂ Ar, we have for any r ≥ 0

g#µp(Ar) = µp(g
−1(Ar)) ≥ µp((g

−1(A))r/Lip(g)) ≥ Φ(r/Lip(g) + Φ−1(g#µp(A))) .

16

S3.2 Proof of Corollary 2

We prove the corollary when ν = λN(−m,σ2 Idd) + (1− λ)N(m,σ2 Idd) since the problem can
always be reduced to that case by translation and setting m = (m2 −m1)/2. Let H be defined by
H = {x ∈ Rd|mTx ≥ 0}. Note that for any x ∈ ∂H, ∥x −m∥ = ∥x +m∥. Since the problem is
invariant by rotation, we can consider without any loss of generality that m = (∥m∥, 0, . . . , 0). In
that case, we have ν = ν1 ⊗ N(0,σ2 Idd−1), where ν1 = λN(−∥m∥,σ2) + (1 − λ)N(∥m∥,σ2),
and ⊗ is the tensor product between measures. In this case, we have that H = {x1 ≥ 0} × Rd−1.
Therefore, we have

ν+(∂H) = lim infε→0+{(
R
Hε

pν(x)dx−
R
H
pν(x)dx)}/ε ,

= lim infε→0+{(
R +∞
−ε

R
Rd−1 pν1(x1)h(y)dx1dy −

R +∞
0

R
Rd−1 pν1(x1)h(y)dx1dy)}/ε ,

where pν and pν1
are the respective densities of ν and ν1, and h is the density of N(0,σ2Id−1). It

follows that

ν+(∂H) = lim infε→0+(1/ε)
R 0

−ε
pν1

(x1)(
R
Rd−1 h(y)dy)dx1

= lim infε→0+(1/ε)
R 0

−ε
pν1(x1)dx1 = pν1(0) = (2πσ2)−1/2 exp[−∥m∥2/(2σ2)] .

Applying Theorem 1, we get that

Lip(g) ≥ φ(Φ−1(ν(H)))/ν+(∂H) .

Furthermore, one can derive that

ν(H) = λ(1− Φ(m/σ)) + Φ(m/σ)(1− λ)

= λ(1− 2Φ(m/σ)) + Φ(m/σ) .

Observing that λ− ν(H) is an increasing function of λ and λ− ν(H) = 0 if λ = 1/2, we get that
λ ≤ ν(H) if λ ≤ 1/2 and λ ≥ ν(H) if λ ≥ 1/2. Since φ ◦ Φ−1 reaches its maximum in 1/2, it
follows that for any λ ∈ (0, 1) we have

φ(Φ−1(ν(H))) ≥ φ(Φ−1(λ)) ,

and thus

Lip(g) ≥ (2π)1/2σφ(Φ−1(λ)) exp[∥m∥2/(2σ2)]

≥ σ exp[∥m∥2/(2σ2)− (Φ−1(λ))2/2] ,

which concludes the proof.

�� � � � ��

���

���

Figure S1: The hypersurface ∂H in the univariate case.

S3.3 Proof of Corollary 3

Since ν admits a density pν with respect to the Lesbegue measure, it follows that Φν is absolutely
continuous and therefore differentiable almost everywhere w.r.t. the Lebesgue measure using the
Lebesgue differentiation theorem. Moreover, since supp(ν) = R, it follows that Φν : R → (0, 1) is

17

increasing and therefore is bijective, and so TOT = Φ−1
ν ◦ Φ is also differentiable almost everywhere

w.r.t. the Lebesgue measure and bijective, with inverse T−1
OT = Φ−1 ◦ Φν , using (Peyré and Cuturi,

2019, Remark 2.29). Therefore, for any x ∈ R we have

T ′
OT(x) = φ(x)/pν(TOT(x))

= φ(Φ−1(Φν(TOT(x)))/pν(TOT(x)) .

Let y ∈ R. Using Theorem 1 with A = (−∞, y] we get that for any g : Rp → R, Lipschitz such
that g#µp = ν,

Lip(g) ≥ supy∈R φ(Φ−1(Φν(y))/pν(y) ,

and so, since TOT is bijective
Lip(g) ≥ supx∈R |T ′

OT(x)| ,
which concludes the proof.

S3.4 Proof of Theorem 4

Let A ∈ B(Rd) and let r > 0. We have on one hand

|g#µp(Ar \ A)| ≤ |g#µp(Ar \ A)− ν(Ar \ A)|+ |ν(Ar \ A)|
≤ dTV(g#µp, ν) + ν(Ar \ A) .

Using Theorem 1, we get

|g#µp(Ar \ A)| = g#µp(Ar)− g#µp(A) ≥ Φ
�
r/Lip(g) + Φ−1(g#µp(A))

�
− g#µp(A) ,

and so
dTV(g#µp, ν) ≥ αg(A, r)− g#µp(A)− ν(Ar \ A) ,

where αg(A, r) = Φ
�
r/Lip(g) + Φ−1(g#µp(A))

�
. On the other hand, we have

|g#µp(Ar)| ≤ |g#µp(Ar)− ν(Ar)|+ |ν(Ar)|
≤ dTV(g#µp, ν) + ν(Ar \ A) + ν(A) .

Using Theorem 1, we get

|g#µp(Ar)| ≥ Φ
�
r/Lip(g) + Φ−1(g#µp(A))

�
,

and so
dTV(g#µp, ν) ≥ αg(A, r)− ν(A)− ν(Ar \ A) ,

which concludes the proof.

S3.5 Proof of Corollary 5

To prove Corollary 5, we will need the following lemma:
Lemma S10. Let A ∈ B(Rd) and r > 0. We denote B = (Ar)

c. Then

Br ⊂ Āc ,

where Āc denotes the closure of the complementary of A.

Proof. Let x ∈ Br. There exists b ∈ B such that ∥x− b∥ ≤ r. Moreover, since B = (Ar)
c, it follows

that for all a ∈ A,
∥b− a∥ > r .

Then
r < ∥b− x∥+ ∥x− a∥ ,

and so, it follows that for all a ∈ A,
∥x− a∥ > 0 .

Thus x ∈ Āc.

Now we are ready to turn to the proof of Corollary 5.

18

Proof of Corollary 5. We set r = d(M1,M2)/2 and A = (M1)r. Using Theorem 4, we have
dTV(g#µp, ν) ≥ αg(A, r)−min{g#µp(A), ν(A)}− ν(Ar \ A) .

First we suppose that g#µp(A) ≥ ν(A): since Φ is a non-decreasing function, it follows that

αg(A, r) = Φ
�
r/Lip(g) + Φ−1(g#µp(A))

�
≥ Φ

�
r/Lip(g) + Φ−1(ν(A))

�
.

Moreover min{g#µp(A), ν(A)} = ν(A) = λ = Φ(Φ−1(λ)) and so it follows

dTV(g#µp, ν) ≥ Φ
�
d(M1,M2)/(2Lip(g)) + Φ−1(λ)

�
− Φ(Φ−1(λ)) ≥

R r/Lip(g)+Φ−1(λ)

Φ−1(λ)
φ(t)dt ,

since ν has no mass on Ar \ A. Now we suppose that g#µp(A) ≤ ν(A): we then set B = Ac. Since
g#µp(A) ≤ ν(A), we have g#µp(B) ≥ ν(B). Applying Theorem 4, and the same reasoning as
before we get
dTV(g#µp, ν) ≥ αg(B, r)−min{g#µp(B), ν(B)}− ν(Br \ B)

≥ Φ
�
d(M1,M2)/(2Lip(g)) + Φ−1(1− λ)

�
− Φ(Φ−1((1− λ))− ν(Br \ B) .

Using Lemma S10, we get that ν(Br \ B) ≤ ν(Āc \ (Ar)
c) but ν(Āc \ (Ar)

c) = 0 since ν has no
mass on Āc \ (Ar)

c except on its boundary and so its follows that

dTV(g#µp, ν) ≥ Φ
�
d(M1,M2)/(2Lip(g)) + Φ−1(1− λ)

�
− Φ(Φ−1((1− λ))

≥ Φ
�
d(M1,M2)/(2Lip(g))− Φ−1(λ)

�
− Φ(−Φ−1(λ))

≥
R r/Lip(g)−Φ−1(λ)

−Φ−1(λ)
φ(t)dt ,

since Φ−1(1− λ) = −Φ−1(λ). Since λ ≥ 1/2, it follows that Φ−1(λ) ≥ 0 and so
R r/Lip(g)−Φ−1(λ)

−Φ−1(λ)
φ(t)dt ≥

R r/Lip(g)+Φ−1(λ)

Φ−1(λ)
φ(t)dt ,

which concludes the proof.

S3.6 Proof of Corollary 6

As previously, we prove the corollary when ν = (1/2)[N(−m,σ2 Idd) + N(m,σ2 Idd)] since
the problem can always be reduced to that case by translation and setting m = (m2 − m1)/2.
Since the problem is invariant by rotation, we can assume without any loss of generality that
m = (∥m∥, 0, . . . , 0). Let H be the half-space of Rd defined by H = (−∞, 0] × Rd−1 and we set
r = ∥m∥/2σ. First we suppose that g#µp(H) ≥ ν(H): using Theorem 4, we get that

dTV(g#µp, ν) ≥ αg(H, r)−min{g#µp(H), ν(H)}− ν(Hr \ H) ,
with Hr = (−∞, ∥m∥/2σ] × Rd−1. On one hand we have that ν = ν1 ⊗ N(0,σ2 Idd−1), where
ν1 = (1/2)[N(−∥m∥,σ2) + N(∥m∥,σ2)] and so ν(Hr \ H) = ν1([0, ∥m∥/2σ]). On the other hand
we have that min{g#µp(H), ν(H)} = ν(H) and g#µp(H) ≥ 1/2 since g#µp(H) ≥ ν(H). Hence it
follows that

dTV(g#µp, ν) ≥ Φ(r/Lip(g))− 1/2− ν1([0, ∥m∥/2σ]) .
Now we suppose that g#µp(H) ≤ ν(H): we then set H2 = (0,+∞]×Rd−1. Since g#µp(H) ≤ 1/2,
we get that g#µp(H2) ≥ 1/2 and so g#µp(H2) ≥ ν(H2). Hence we retrieve the previous case and
so it follows that

dTV(g#µp, ν) ≥ Φ(r/Lip(g))− 1/2− ν1([−∥m∥/2σ, 0]) .
Since ν1([−∥m∥/2σ, 0]) = ν1([0, ∥m∥/2σ]), we get in both cases

dTV(g#µp, ν) ≥ Φ(r/Lip(g))− 1/2− ν1([0, ∥m∥/2σ]) .
Now we derive the value of ν1([0, ∥m∥/2σ]):

ν1([0, ∥m∥/2σ]) = (1/2)
Rm/2σ

0
(2πσ2)−1/2 exp[−(x+m)2/2σ2]dx

+(1/2)
Rm/2σ

0
(2πσ2)−1/2 exp[−(x−m)2/2σ2]dx

= (1/2)
Rm/2σ

−m/2σ
(2πσ2)−1/2 exp[−(x+m)2/2σ2]dx

= (1/2)
R ∥m∥(2σ+1)/2σ2

∥m∥(2σ−1)/2σ2 φ(x)dx ,

which concludes the proof.

19

S3.7 Proof of Theorem 7

Let A ∈ B(Rd), r > 0 and ζ > 0. We set for any x ∈ Rd f(x) = ζχAr\A(x), where χA denotes the
characteristic function of the set A. Since f is bounded, it follows that

dKL(g#µp||ν) ≥
R
Rd f(x)dg#µp(x)− log

�R
Rd e

f(x)dν(x)
�

≥ ζg#µp(Ar \ A)− log
�
1 + (eζ − 1)ν(Ar \ A)

�
.

Using Theorem 1, we get

g#µp(Ar \ A) = g#µp(Ar)− g#µp(A) ≥ Φ
�
r/Lip(g) + Φ−1(g#µp(A))

�
− g#µp(A) .

Thus we get

dKL(g#µp||ν) ≥ sup{J(ζ,A, r) : ζ ∈ R,A ∈ B(Rd), r > 0} ,

where the functional J is defined by

J(ζ,A, r) = ζ
�
Φ
�
r/Lip(g) + Φ−1(g#µp(A))

�
− g#µp(A)

�

−log
�
1 + (eζ − 1)ν(Ar \ A)

�
.

Differentiating J with respect to ζ, we get that

∇ζJ(ζ,A, r) = βg(A, r)− (eζν(Ar \ A))/(1 + (eζ − 1)ν(Ar \ A)) ,
where βg(A, r) = Φ

�
r/Lip(g) + Φ−1(g#µp(A))

�
− g#µp(A) . Applying the first order condition,

we get that:

ζ∗ = log[βg(A, r)(1− ν(Ar \ A))]− log[ν(Ar \ A)(1− βg(A, r))] .

By re-injecting the value of ζ∗, we get

ζ∗βg(A, r)− log
�
1 + (eζ

∗ − 1)ν(Ar \ A)
�
= βg(A, r) log

�
βg(A,r)(1−ν(Ar\A))
ν(Ar\A)(1−βg(A,r))

�

− log
�

1−ν(Ar\A)
1−βg(A,r)

�

= βg(A, r) log
�

βg(A,r)
ν(Ar\A)

�

+(1− βg(A, r)) log
�

1−βg(A,r)
1−ν(Ar\A)

�
,

which concludes the proof.

S3.8 Proof of Corollary 8

As previously, we prove the corollary when ν = (1/2)[N(−m,σ2 Idd) + N(m,σ2 Idd)] since
the problem can always be reduced to that case by translation and setting m = (m2 − m1)/2.
Since the problem is invariant by rotation, we can assume without any loss of generality that
m = (∥m∥, 0, . . . , 0). Furthermore, observe that the half-space {(m2−m1)

T (x− (m1 +m2)/2) ≤
0 : x ∈ Rd} becomes (−∞, 0]× Rd−1 in that case, and that the condition λ ∈ (0, 1/2] is indeed
non-restrictive since the problem is invariant by rotation. We set as before H = (−∞, 0]× Rd−1 and
r = ∥m∥/2σ.

Applying Theorem 7, we get

dKL(g#µp||ν) ≥ βg(H, r) log
�

βg(H,r)
ν(Hr\H)

�
+ (1− βg(H, r)) log

�
1−βg(H,r)
1−ν(Hr\H)

�
.

On one hand, we get

βg(H, r) = Φ
�
r/Lip(g) + Φ−1(g#µp(H)

�
− g#µp(H)

= Φ
�
r/Lip(g) + Φ−1(g#µp(H)

�
− Φ

�
Φ−1(g#µp(H)

�

=
R ∥m∥/2σLip(g)+Φ−1(λ)

Φ−1(λ)
φ(t)dt

=
R ∥m∥/2σLip(g)−Φ−1(1−λ)

−Φ−1(1−λ)
φ(t)dt ,

20

noting λ = g#µp(H). We replaced Φ−1(λ) by −Φ−1(1−λ) in order to emphasize that Φ−1(λ) ≤ 0
since λ ≤ 1/2. Observe that if we supposed λ ≥ 1/2, we would have βg(H

c, r) ≥ βg(H, r) and so the
bound that we would have found by reasoning on H would have been sub-optimal. On the other hand,
observing as before that ν = ν1 ⊗N(0,σ2 Idd−1), where ν1 = (1/2)[N(−∥m∥,σ2) +N(∥m∥,σ2)],
we get that

ν(Hr \ H) = ν1([0, ∥m∥/2σ])
= (1/2)

R ∥m∥(2σ+1)/2σ2

∥m∥(2σ−1)/2σ2 φ(t)dt ,

which concludes the proof.

S4 Additional theoretical result

In this section we derive a generalization of Corollary 5 when ν is a distribution whose support is
composed of more than two disconnected manifolds.
Corollary S11. Let ν be a measure on Rd on N disconnected manifolds (M1, . . . ,MN), and let
g : Rp → Rd be a Lipschitz function. Then,

dTV(g#µp, ν) ≥ max
I⊂J1,NK

R d(
F
i∈I

Mi,
F

j∈J1,NK\I
Mj)/2Lip(g)+Φ−1(λ)

Φ−1(λ) φ(t)dt ,

where for A,B ∈ B(Rd), d(A,B) = inf{∥a − b∥ : a ∈ A, b ∈ B}, and λ = ν

�F
i∈I

Mi

�
if

ν

�F
i∈I

Mi

�
≥ 1/2 and λ = 1− ν

�F
i∈I

Mi

�
otherwise.

Proof. Let I ⊂ J1, NK. First, we suppose that ν
�F

i∈I

Mi

�
≥ 1/2. Since ν can be seen as a bi-modal

distribution on the two disconnected sets
F
i∈I

Mi and
F

j∈J1,NK\I
Mj , we can apply Corollary 5. Thus

we get

dTV(g#µp, ν) ≥
R d(

F
i∈I

Mi,
F

j∈J1,NK\I
Mj)/2Lip(g)+Φ−1(λ)

Φ−1(λ) φ(t)dt .

If ν
�F

i∈I

Mi

�
≤ 1/2, we can still apply Corollary 5 by interchanging the roles of

F
i∈I

Mi and
F

j∈J1,NK\I
Mj , thus we get also Inequality (S4) in that case, which concludes the proof.

S5 Experimental details

We detail our experiments in dimension 1 in Appendix S5.1. In Appendix S5.2, we give details on
our experiment on the synthetic mixture of two Gaussians derived from MNIST. Finally, we detail the
experiment on the subset of all 3 and 7 of MNIST in Appendix S5.3. We trained our models using 2
NVIDIA Titan Xp from the proprietary server of our institution with an estimated total training time
of approximately 175 GPU hours. Code is available here 3.

S5.1 Univariate case

In the univariate case we use a simple 3-layer Multi Layer Perceptron (MLP) of shape (1, 128, 256, 1)
as decoder for the VAE and as generator for the GAN. The network has a total of 33537 learnable
parameters. The score network uses also a a 3-layer MLP block, this time of shape (1, 96, 196, 1), in
which at each layer is injected the noise information transformed by a positional encoding (Vaswani
et al., 2017) and then by another MLP block size (16, 32, 64), see Figure S2. The score network has
a total of 34665 learnable parameters. In all three models, we use LeakyReLU (Maas et al., 2013) as

3https://github.com/AntoineSalmona/Push-forward-Generative-Models

21

non-linearity with a negative slope of 0.2. The three models are trained during 400 epochs with a
batch size of 1000 using ADAM (Kingma and Ba, 2015) with a momentum of 0.9 and a learning rate
of 10−4. In the following, we give more specific details for each model.

Figure S2: Architecture of the score network used for the univariate experiments. The "positional
encoding" block applies the sine transform described in Vaswani et al. (2017).

L
corresponds to

concatenation, the vertical blocks correspond to the fully connected layers and the numbers over the
arrows correspond to the size of the vectors.

Variational autoencoder. We use the vanilla VAE model as described in Kingma and Welling
(2014). In the following, we denote θ and ϕ the respective parameters of the decoder and the encoder.
The decoder fϕ is composed of an MLP block of size (1, 256, 128) followed by two parallel fully
connected layers of shape (128, 1) which gives two outputs f1ϕ(x) and f2ϕ(x). Then the input z
of the decoder gθ is obtained by the so-called reparametrization trick, which consists in sampling
z ∼ q

z|x
ϕ , where qz|xϕ = N(f1ϕ(x), exp[f2ϕ(x)]). During training, the model minimizes the following

loss function:
LVAE(θ,ϕ) = Ex∼ν [ELBOθ,ϕ(x, q

z|x
ϕ , p

x|z
θ)] ,

where p
x|z
θ = N(gθ(z), c

2 Idd) and ELBO is the Evidence Lower Bound (Blei et al., 2017), defined
as follows:

ELBOθ,ϕ(x, q
z|x
ϕ , p

x|z
θ) = E

z∼q
z|x
ϕ

[log(pθ(x|z))]− dKL(q
z|x
ϕ ||N(0, Idp)) .

The standard deviation c in p
x|z
θ is an hyperparameter of the model. For our experiments, we observed

that c = 0.1 gave good results.

Generative adversarial network. As for the VAE, we use the vanilla GAN model as described
in Goodfellow et al. (2014). The discriminator is 4-layer MLP of shape (1, 512, 256, 128, 1) with
spectral normalization (Miyato et al., 2018) in order to reduce as much as possible mode collapse.
We train the model using the vanilla adversarial loss, that the discriminator dϕ tries to maximize and
that the generator gθ tries to minimize

LGAN(θ,ϕ) = Ex∼ν [log(dϕ(x)] + Ez∼N(0,Idp)[log(1− dϕ(gθ(z)))] .

We also tried with the hinge version of the adversarial loss, as proposed in Lim and Ye (2017) and
Tran et al. (2017) and we obtained similar results.

Score-based generative modeling. Our diffusion model is similar to the model introduced by
Song and Ermon (2019). The neural network sθ learns to approximate, for a given x and a given σ,
the score ∇xpν(x,σ) of the data distribution convoluted with a Gaussian distribution of standard
deviation σ. This is done by first defining a geometrical progression {σi}Li=1 where L = 10 and
where the ratio is chosen such that σL ≈ 0.01, and then minimizing the Fischer divergence (Vincent,
2011)

LSGM(θ) = Eσ∼1/L
P

δσi

h
σ2Ex∼ν

h
Ey∼N(x,σ2 Idd)

h

sθ(y,σ) + (y − x)/σ2

2

iii
.

Then, in order to generate data, we use an annealed Langevin dynamic scheme as defined in Song
and Ermon (2019). In the Langevin dynamic, we set the step size to 2× 10−5 and the number of step
for each value of σ to 100 as in Song and Ermon (2019).

22

Influence of generator depth. For this experiment, we increase the number of layers of the
VAE decoder and the GAN generator from 2 to 6. At each new layer, we double the number of
neurons at the previous layer. For instance, the generative network with 2 layers is thus an MLP
of shape (1, 128, 1) and the one with 6 layers is an MLP of shape (1, 128, 256, 512, 1024, 2048, 1).
Specifically to the GAN model, we also increase the number of layers in the discriminator in order
to keep the dynamic between this latter and the generator balanced. As in the 3-layers case, the
discriminator is one layer deeper than the generator. For instance, the discriminator associated to the
generator with 2 layers is an MLP of shape (1, 256, 128, 1).

Influence of generator architecture. For this experiment, we use a feed-forward MLP of shape
(1, 256, 256, 256, 1) as backbone. Then we add two additive pre-activation skip-connections of
type "resnet" between the first and the second hidden layers and between the second and the third
hidden layers. Finally, we replace the two previous additive skip-connections of type "resnet" by
concatenation pre-activation skip-connections of type "densenet".

S5.2 Synthetic mixture of Gaussians on MNIST

Models details. We adapt our three models to MNIST, changing mainly the networks architectures
and making small modifications that we describe in what follows. We base the architecture of
the GAN and the VAE on DCGAN (Radford et al., 2015), using the generator as decoder and the
discriminator as encoder for our VAE. This is done by doubling the last layer of the discriminator
in order that the VAE encoder has two outputs as in the univariate case. For the GAN model, we
replaced the convolutional discriminator by a simple MLP of shape (784, 512, 256, 128, 1) because
the dynamic between the generator and the discriminator seemed unbalanced otherwise. We also
update our GAN model using some features of SAGAN (Zhang et al., 2019): applying spectral
normalization on the discriminator and using the unconditional hinge version of the adversarial loss
(Lim and Ye, 2017; Tran et al., 2017):

Ldϕ

GAN = −Ex∼ν [min{0,−1 + dϕ(x)}]− Ez∼N(0,Idp)[min{0,−1− dϕ(gθ(z)}] ,
Lgθ
GAN = −Ez∼N(0,Idp)[dϕ(gθ(z))] .

Such loss function is equivalent to minimize the Kullback-Leibler divergence between the generated
distribution and the data distribution. The VAE decoder and the GAN generator have 1713088
learnable parameters. For the score network architecture, we use the vanilla U-Net architecture
(Ronneberger et al., 2015) in which we double the number of channels at each layer, we add group
normalization (Wu and He, 2018) after each convolution and we replace the ReLU non-linearies by
SiLU (Elfwing et al., 2018). As in the univariate case, we use positional encoding (Vaswani et al.,
2017) followed by a MLP block of shape (1, 16, 32) to incorporate the noise information at each
layer. The score network has 1607392 learnable parameters. For inference, we use the same Langevin
dynamic scheme as above with the same hyperparameters as in the univariate case. The three models
are trained during 100 epochs with a batch size of 128 using ADAM with a momentum of 0.9 and a
learning rate of 2× 10−4.

Additional details. The histograms of projection on the line passing through the mean of each
Gaussians are obtained using 20000 generated samples. To assign a color to each bin of the histograms,
we train a simple MLP of shape (784, 1024, 50, 10) as classifier on MNIST. The classifier is trained
during 10 epochs using again ADAM with a momentum of 0.9 and a learning rate of 2× 10−4 and
reaches an accuracy of 0.98 on the test set.

S5.3 Subset of MNIST

Models details. Since the dataset is more complex than before, we use bigger models. For the score
network, we use the architecture defined in Ho et al. (2020), in which we set the number of channels
to 64 instead to 128 and we remove the self attention layers (Wang et al., 2018) for computational
resource purposes. The score network has 6072065 learnable parameters. Again, we use an annealed
Langevin dynamic scheme for inference with the same hyperparameters as before. For the VAE and
the GAN, we use the same architecture as before, using this time the convolutional discriminator of
DCGAN, and quadrupling the number of channels at each layer. This is mainly done in order to scale
the generator/decoder to the score network. Hence the VAE decoder/GAN generator has 7151104

23

learnable parameters. We train all three models during 600 epochs with a batch size of 128 using
ADAM with a momentum of 0.9 and a learning rate of 2× 10−4.

Additional details. We use the deep Wasserstein embedding proposed by Courty et al. (2018) in
order to visualize histograms of projection in the Wasserstein space. We use the exact same network
architecture and the same training procedure that in Courty et al. (2018): first, one million pairs of
digits of MNIST are chosen randomly, in which 700000 are kept for the training set, 200000 for
the test set, and 100000 for the validation set. We normalize each image in order to consider it as a
two-dimensional distribution and we compute the 1-Wasserstein distance for each pair. Then, we
train an autoencoder in a supervised manner in a way that the images at output of the autoencoder are
close to the images in input, and that the euclidean distance between two vectors in the latent space is
close to the 1-Wassertein distance between the two corresponding images of MNIST. As in Courty
et al. (2018), the latent Wasserstein space is of dimension 50 and the autoencoder is trained during
100 epochs with a batch size of 100 and with an early stopping criterion. Again, we use ADAM with
a momentum of 0.9 and a learning rate of 10−3. We use the same classifier as before to assign color
to each bin of the histograms. Finally, the histograms of projection on the line passing through the
deep Wasserstein barycenters of all 3 and 7 are obtained using 20000 generated samples.

S6 Additional experimental results

In the following, we provide additional experimental results. First, we compare estimates of the
bounds of Theorem 4, Corollary 6, and Theorem 7 to estimates of the total variation distance and the
Kullback-Leibler divergence in the univariate case. Then we study the possible correlation between
the size of the score network and the tendency of the score-based model to generate unbalanced
modes. Finally, we provide additional visualizations of histograms of generated distributions for the
univariate case and generated samples for the experiments on MNIST.

S6.1 Bounds on TV distance and KL divergence in the univariate case

dTV(g#µp, ν) dKL(g#µp||ν)

� � � � � ��

�

����

����

����

����
������������������

���������������

�����������������

� � � � � ��

�

�

�

�

�

��������������������

���������������

Figure S3: total variation distance (left) and Kullback-Leibler divergence (right) for the VAE (in
orange) and estimates of the respective lower bounds from Theorem 4 and Theorem 7 in blue. The
lower bound of Corollary 6 is also plotted in red for the total variation. The experiments are averaged
over 10 runs and the colored bands correspond to +/- the standard deviation.

In this experiment, we compare estimates of the bounds of Theorem 4, Corollary 6, and Theorem 7
to estimates of the total variation distance and the Kullback-Leibler divergence. We only provide
results for the VAE since the bounds are not interesting for the GAN since they are consequences of
interpolation between modes due to a small Lipschitz constant of the generative network. Yet this
latter in the GAN case achieves a large Lipschitz constant so does not interpolate significantly. To
estimate empirically the total variation distance and the Kullback-Leibler divergence, we used their
respective analytical formula

dTV(g#µp, ν) = (1/2)
R
R |pg#µp(x)− pν(x)|dx ,

dKL(g#µp||ν) =
R
R pg#µp

(x) log
�
pg#µp

(x)/pν(x)
�
dx ,

where pg#µp and pν are the respective densities of g#µp and ν. In order to estimate the lower bounds
of Theorem 4 and Theorem 7, we set A of the form (−∞,−r/2] and we perform a grid search on r.

24

In Figure S3, we can observe that the estimates of the bounds provided by Theorem 4 and Theorem 7
are not tights. This is possibly because we selected a sub-optimal A but it most likely follows from
the fact that the bounds don’t take into account that g#µp has automatically less mass on the modes
than ν since a significant amount of its total mass is between them. One can also observe that the
explicit lower bound of Corollary 6 is much smaller than the bound of Theorem 4. This can be
explained by the facts that ∥m∥/2σ is probably a sub-optimal choice of r and that the bound of
Corollary 6 minimizes the interpolation between modes over all the mappings with Lipschitz constant
Lip(g), regardless whether these mappings approximate well ν on its modes or not. Since there is
less interpolation if the modes are unbalanced (see Section 3.2), it is likely that the mappings g such
that g#µp is unbalanced are affecting the value of this bound in a bad way.

S6.2 Additional examples

S6.2.1 Univariate histograms

We provide additional visualizations of histograms of generated data with the three models for various
values of m.

�� �� �� � � � �� �� �� �� �� �� � � � �� �� �� �� �� �� � � � �� �� �� �� �� �� � � � �� �� ��

�� �� �� � � � �� �� �� �� �� �� � � � �� �� �� �� �� �� � � � �� �� �� �� �� �� � � � �� �� ��

�� �� �� � � � �� �� �� �� �� �� � � � �� �� �� �� �� �� � � � �� �� �� �� �� �� � � � �� �� ��

Figure S4: Histograms of distributions generated with VAE (top, in orange), GAN (middle, in green),
and with SGM (bottom, in purple) for m = 2, m = 4, m = 6 and m = 8. The data distribution
densities are plotted in blue.

We can observe that the score-based model already generates unbalanced modes, but the phenomenon
is globally less visible than in higher dimensions. Secondly, we provide additional visualizations
of histograms of generated data with GANs trained with an additional gradient penalty term in the
generator loss for various values of L ≈ Lip(g).

���� ��� ��� ��� ��� ��� ��� ��� ���� ���� ��� ��� ��� ��� ��� ��� ��� ���� ���� ��� ��� ��� ��� ��� ��� ��� ���� ���� ��� ��� ��� ��� ��� ��� ��� ����

Figure S5: histograms of distributions generated with GANs with with gradient penalty for Lip(g) ≈
L = 11, Lip(g) ≈ L = 15, Lip(g) ≈ L = 19 and Lip(g) ≈ L = 23. The data distribution densities
are plotted in blue.

25

S6.2.2 Visualization of generated data

Finally, we show randomly chosen generated samples with VAE, GAN and SGM on the synthetic
mixture of Gaussian on MNIST and the subset of all 3 and 7 of MNIST.

VAE GAN SGM

Figure S6: Generated samples with VAE, GAN and SGM on the synthetic mixture of Gaussian on
MNIST (top) and the subset of all 3 and 7 of MNIST (bottom). The samples have been randomly
chosen.

26

