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A Framework18

A.1 Details of Datasets and Instructions19

Table 1: Data Overview
Splitting Data Class Dataset No. of Molecules No. of Tasks Task Metric Task Type

Pretraining Bioactivity assay ChEMBL bioassay activity dataset 365065 1048 ROC_AUC Classification
Physico-chemical CHEMBL Property 365065 13 RMSE Regression

Downstream Zero-Shot

Large Scale PCBA PubChem HTS bioAssay 437929 128 ROC-AUC Classification
ChEMBL Zero-Shot 91266 262 ROC_AUC Classification

Pharmacokinetic CYP inhibition 16896 5 ROC_AUC Classification
BBBP Blood-brain barrier penetration 2039 1 ROC_AUC Classification

Bio-activity
MUV PubChem bioAssay 93087 17 ROC_AUC Classification
BACE-1 benchmark set 1513 1 ROC_AUC Classification
HIV replication inhibition 41127 1 ROC_AUC Classification

Toxicity Tox21Toxicology in the 21st century 7831 12 ROC_AUC Classification
Toxcast 8598 617 ROC_AUC Classification

Physico-chemical
ESOL Water solubility 1128 1 RMSE Regression
FreeSolv Solvation free energy 642 1 RMSE Regression
Lipo Lipophilicity 4200 1 RMSE Regression

The datasets used in our study are presented in Table 1. These datasets consist of different types of20

tasks related to molecule property prediction. It should be noted that during the pretraining phase,21

the loss function is not specific to the task types, but rather encompasses the generative loss of the22

language model.23

We have chosen not to include certain datasets, namely SIDER and ClinTox, in our collection of24

datasets. The decision was based on the fact that the tasks associated with these datasets are not25

clearly defined and involve complex systemic phenomena, making it challenging to describe them26

through instructional texts. For instance, the ClinTox dataset involves determining whether drugs27

have passed the FDA approval, which is not an objective problem but rather a dynamic and intricate28

social phenomenon. The SIDER dataset focuses on describing the side effects of drugs on system29

organ classes, which have intricate mechanisms and a wide range of possible causes, making them30

difficult to be effectively conveyed through instructions.31
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For the Chembl property dataset that we have constructed, detailed information can be found in Table32

2. These properties are sourced from the Chembl database [19] through the web API.33

Table 2: Chembl property tasks and labels
Property Label type
Aromatic rings number Integer
cx_logd distribution coefficient Real
cx_logp partition coefficient Real
cx_most_apka − log10 dissociation constant Real
Molecular masses Real
Hydrogen bond donor number Integer
Heavy atom number Integer
Lipinski’s rule of five violation number Integer
Polar surface area (PSA) Real
Quantitative Estimate of Druglikeness (QED) Real
Rule of three passes Bool
Rotatable bond number Integer

The task explanation is primarily sourced from relevant papers, websites, or databases that introduce34

and compile the respective datasets. The specific sources utilized depend on the particular datasets35

under consideration. For Chembl tasks, we obtain task descriptions from the Chembl website.36

Descriptions for MoleculeNet tasks and PCBA are primarily sourced from the PubChem website.37

Certain datasets, such as Toxcast, include task descriptions within the dataset files. In the case of38

other tasks, like Chembl property and Physical-Chemical tasks, instructions are derived from Wiki or39

other papers. We list the instruction source in Table 3.40

Table 3: Data sources and classes for different stages of the model
Dataset Instruction Source
ChEMBL Zero-Shot bioassay activity dataset Chembl Database
CHEMBL Property Wiki
PCBA PubChem HTS bioAssay Pubchem Database
ChEMBL Zero-Shot bioassay activity dataset Chembl Database
CYP PubChem BioAssay CYP 1A2, 2C9, 2C19, 2D6, 3A4 inhibition Pubchem Database
BBBP Blood-brain barrier penetration Paper [21]
MUV PubChem bioAssay Pubchem Database
BACE-1 benchmark set Pubchem Database
HIV replication inhibition Paper [38]
Tox21 Toxicology in the 21st century Pubchem Database
Toxcast Toxcast file
ESOL Water solubility Paper [61]
FreeSolv Solvation free energy Paper [7]
Lipo Lipophilicity Wiki

The description covers a wide range of aspects, including the family, function, and mechanism of41

the assay target, the assay experiment setting, the approximation method used for determining the42

property, and others. We describe regression tasks by introducing the relasionship between the43

task property and other properties, i.e. how to estimate these properties by other ones. However,44

this method is still challenging due to the model’s capacity to understand complex mathematical45

relationships.46

The instructions for each task are generated automatically by conducting searches on the databases and47

summarizing the descriptions. We use a mixture strategy of summarizing, combining template-based48

summarizing and GPT-3.5-turbo-based summarizing methods. The GPT-3.5-turbo-based summariz-49

ing method is applied by the prompt ’Summarize the assay: \n {Descriptions to be summarized}’.50

The resulting instructions are then concatenated with relevant questions. These instructions are51

subsequently reviewed and validated by a professional biology Ph.D. student and slightly modified if52

necessary.53
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We then list the instructions of each dataset. For datasets with more than one task, we only list the54

instruction of one task as an illustration.55

Chembl56

"The assay is PUBCHEM_BIOASSAY: qHTS Assay for Activators of57

Human Muscle isoform 2 Pyruvate Kinase. (Class of assay:58

confirmatory) , and it is Direct single protein target59

assigned . The assay has properties: assay category is60

confirmatory ; assay organism is Homo sapiens ; assay type61

description is Functional . Is the molecule effective to this62

assay?"63

Chembl property64

The partition coefficient , abbreviated P, is defined as a65

particular ratio of the concentrations of a solute between the66

two solvents (a biphase of liquid phases), specifically for67

un -ionized solutes , and the logarithm of the ratio is thus Log68

P. When one of the solvents is water and the other is a69

non -polar solvent , then the log P value is a measure of70

lipophilicity or hydrophobicity. The defined precedent is for71

the lipophilic and hydrophilic phase types to always be in the72

numerator and denominator respectively. What is the logarithm73

of the partition coefficient of this molecule?74

PCBA75

"The assay tests the inhibition of ALDH1A1 activity using76

propionaldehyde as an electron donor and NAD+ as an electron77

acceptor. The conversion of NAD+ to NADH is measured via an78

increase in fluorescence intensity to determine enzyme79

activity. ALDH1A1 plays critical roles in the metabolic80

activation of retinoic acid and may be a target for inhibitor81

development in metabolic diseases. Is the molecule effective82

to this assay?"83

CYP45084

"Find molecules that can effectively inhibit Cytochrome P45085

(CYP450) enzymes , particularly CYP1A2 , to help reduce the risk86

of adverse drug events and drug -drug interactions caused by87

CYP450 -mediated metabolic pathways. Consider the various88

CYP450 inhibition mechanisms such as occupying active sites or89

weakening enzyme activity , while keeping in mind the potential90

for increased side effects due to elevated blood drug91

concentrations. Is this molecule effective to this assay ?"92

BBBP93

"In general , molecules that passively diffuse across the brain94

blood barrier have the molecular weight less than 500, with a95

LogP of 2-4, and no more than five hydrogen bond donors or96

acceptors. Does the molecule adhere to the three rules or not?"97

MUV98

"Protein kinase A (PKA) is an ubiquitous serine/threonine99

protein kinase and belongs to the AGC kinase family. It has100

several functions in the cell , including regulation of immune101

response , transcription , cell cycle and apoptosis. PKA is a102

cAMP dependent enzyme that exists in its native inactive form103
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as a 4 subunit enzyme with two regulatory and two catalytic104

subunits. Binding of cAMP to the regulatory subunit leads to105

the disassembly of the complex and release of now active106

catalytic subunits. Is this molecule inhibitor of PKA?"107

BACE108

"BACE1 is an aspartic -acid protease important in the109

pathogenesis of Alzheimer ’s disease , and in the formation of110

myelin sheaths. BACE1 is a member of family of aspartic111

proteases. Same as other aspartic proteases , BACE1 is a112

bilobal enzyme , each lobe contributing a catalytic Asp113

residue , with an extended active site cleft localized between114

the two lobes of the molecule. The assay tests whether the115

molecule can bind to the BACE1 protein. Is this molecule116

effective to the assay?"117

HIV118

"Human immunodeficiency viruses (HIV) are a type of119

retrovirus , which induces acquired immune deficiency syndrome120

(AIDs). Now there are six main classes of antiretroviral121

drugs for treating AIDs patients approved by FDA , which are122

the nucleoside reverse transcriptase inhibitors (NRTIs), the123

non -nucleoside reverse transcriptase inhibitors (NNRTIs), the124

protease inhibitors , the integrase inhibitor , the fusion125

inhibitor , and the chemokine receptor CCR5 antagonist. Is126

this molecule effective to this assay ?"127

Tox21128

"Estrogen receptor alpha (ER aplha) is Nuclear hormone129

receptor. The steroid hormones and their receptors are130

involved in the regulation of eukaryotic gene expression and131

affect cellular proliferation and differentiation in target132

tissues. Ligand -dependent nuclear transactivation involves133

either direct homodimer binding to a palindromic estrogen134

response element (ERE) sequence or association with other135

DNA -binding transcription factors , such as AP -1/c-Jun , c-Fos ,136

ATF -2, Sp1 and Sp3 , to mediate ERE -independent signaling. Is137

this molecule effective to this assay ?"138

Toxcast139

"APR_HepG2_CellCycleArrest_24hr , is one of 10 assay140

component(s) measured or calculated from the APR_HepG2_24hr141

assay. It is designed to make measurements of cell phenotype ,142

a form of morphology reporter , as detected with fluorescence143

intensity signals by HCS Fluorescent Imaging technology.Data144

from the assay component APR_HepG2_CellCycleArrest_24hr was145

analyzed into 2 assay endpoints. \nThis assay endpoint ,146

APR_HepG2_CellCycleArrest_24h_dn , was analyzed in the negative147

fitting direction relative to DMSO as the negative control and148

baseline of activity. \nUsing a type of morphology reporter ,149

measures of all nuclear dna for loss -of -signal activity can be150

used to understand the signaling at the pathway -level as they151

relate to the gene . \nFurthermore , this assay endpoint can be152

referred to as a primary readout , because this assay has153

produced multiple assay endpoints where this one serves a154

signaling function. \nTo generalize the intended target to155

other relatable targets , this assay endpoint is annotated to156
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the \"cell cycle\" intended target family , where the subfamily157

is \" proliferation \". Is this molecule effective to this158

assay?"159

ESOL160

"Solubility (logS) can be approximated by negative LogP -0.01161

* (MPt \u2013 25) + 0.5 . Can you approximate the logS of this162

molecule by its negative logP and MPt?"163

FreeSolv164

"The free energy of hydration can be approximated by165

\u0394G_hyd = \u0394G_solv ,soln - \u0394G_solv ,gas + RT ln166

(10^(- pKa)). Can you tell me the free energy of hydration (by167

using the negative pka) of this molecule , predicted by using168

\u0394G_solv and negative pka?"169

Lipo170

"Lipophilicity is an important feature of drug molecules that171

affects both membrane permeability and solubility , measured by172

octanol/water distribution coefficient (logD at pH 7.4).173

What ’s the octanol/water distribution coefficient (logD at pH174

7.4) of this molecule ?"175

A.2 Details of Framework Application176

In our framework, we represent the labels of various tasks as strings. For assay tasks involving177

classification, the labels are converted to either "Yes" or "No" based on whether the molecule has178

an effect on the assay. In regression tasks, the labels are transformed into numerical strings. Integer179

values remain unchanged, while decimal numbers are rounded to two decimal places.180

To conduct zero-shot testing on our model, we generate output sequences and extract the answer from181

the results. For assay classification, we consider the first token generated as the answer and use the182

scores for the ’Yes’ and ’No’ tokens to compute the ROC-AUC score for classification. In regression183

tasks, we extract the number from the generated sequence by performing string matching using a184

regular expression template: r"-?\d+\.?\d*e??\d*?". Notably, we discovered that GIMLET consistently185

generates results in the correct format for all classification tasks and accurately formatted numbers186

for over 98% of regression testing samples, without any augmentation of restriction in the vocabulary.187

A.3 Baselines Evaluation188

For the baselines, we apply our instruction-based molecule zero-shot learning to their respective189

settings. KVPLM employs SMILES for molecule representation and utilizes masked language190

modeling for molecule-text data. Galactica also represents molecules using SMILES but generates191

the next sentence in an autoregressive manner. MoMu employs contrastive learning between the192

GNN-encoded molecule and the corresponding text, allowing it to score each candidate sentence for193

the target molecule and retrieve the best matching one. Our application of each baseline model aligns194

with their intended use.195

It is important to note that for the baseline models, to avoid baselines generating answers in classi-196

fication not in our parsing method (’Yes’ and ’No’), we limit the vocabulary during generation to197

only include ’Yes’ and ’No’ in classification tasks. This restriction is achieved by utilizing the bias198

term in huggingface to prevent the generation of other words. However, it is worth mentioning that199

our model, GIMLET, does not require this augmentation and is able to generate the desired outputs200

without any additional constraints.201

For KVPLM, we mask the answer position in the whole sentence for the model to predict. For202

example, for molecule CCOc1ccccc1-n1nnnc1SCC(=O)NC(=O)NCc1ccco1 and classification tasks203

ARE inhibitor, input to KVPLM is:204

5



"CCOc1ccccc1 -n1nnnc1SCC (=O)NC(=O)NCc1ccco1205

Oxidative stress has been implicated in the pathogenesis of a206

variety of diseases ranging from cancer to neurodegeneration.207

The antioxidant response element (ARE) signaling pathway is208

important in the amelioration of oxidative stress. Is this209

molecule agonists of antioxidant response element (ARE)210

signaling pathway? [MASK]"211

For Galactica, the answer is expected to be generated after reading the question. The input example is212

"[ START_I_SMILES] CCOc1ccccc1 -n1nnnc1SCC (=O)NC(=O)NCc1ccco1213

[END_I_SMILES]214

Question: Oxidative stress has been implicated in the215

pathogenesis of a variety of diseases ranging from cancer to216

neurodegeneration. The antioxidant response element (ARE)217

signaling pathway is important in the amelioration of218

oxidative stress. Is this molecule agonists of antioxidant219

response element (ARE) signaling pathway?220

Answer :"221

For MoMu, we compute the matching score between the molecule graph and the instruction with222

each answer. In the example, the classification scores for ’Yes’ and ’No’ are computed by matching223

graph feature of molecule CCOc1ccccc1-n1nnnc1SCC(=O)NC(=O)NCc1ccco1 with224

"Oxidative stress has been implicated in the pathogenesis of a225

variety of diseases ranging from cancer to neurodegeneration.226

The antioxidant response element (ARE) signaling pathway is227

important in the amelioration of oxidative stress. Is this228

molecule agonists of antioxidant response element (ARE)229

signaling pathway? Yes"230

and231

"Oxidative stress has been implicated in the pathogenesis of a232

variety of diseases ranging from cancer to neurodegeneration.233

The antioxidant response element (ARE) signaling pathway is234

important in the amelioration of oxidative stress. Is this235

molecule agonists of antioxidant response element (ARE)236

signaling pathway? No"237

.238

B Method239

B.1 Discussion of Individual Encoding Module Method240

The Individual encoding module-based multimodal language model can be formalized as241

LLM(M(G), T ), where M is the individual encoding module for graph data G. For example,242

the visual module is applied to pre-encode the image data to get the dense representation, then put243

into the language model as tokens embedding [4, 9, 1, 28]. Current works on molecule language244

models also use a GNN to get the representation of molecules to interact with the language models245

[16, 49, 48].246

This method can be considered as decomposition of the conditional probability P (y|G,T )247

P (ŷ|G,T ) =

∫
PM (z|G)PLLM(ŷ|z, T )dz, (1)

based on the assumption that the feature distributions P (z|G) should be modeled by modality-specific248

modules to introduce inductive bias, and be independent of text information to help with adaptation249

to novel text data.250
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However, for the molecule-text model, individual pre-encoding modules present problems. First,251

graph learning relies on structure information, but the dense vectors encoded by GNN have a limited252

capacity to carry structure information, and language models don’t have inductive bias toward graph253

structure. Furthermore, training the additional module is difficult due to the increased layers, since254

deep transformers have vanishing gradients in early layers [29, 2], which is a well-known problem of255

transformer. Lastly, the additional modules increase parameters and training costs.256

Our method GIMLET not only overcome these issues, our approach GIMLET not only directly unifies257

the standard language model for graph and text without introducing additional graph encoder module,258

but also remains the decoupled graph encoding for better generalization.259

B.2 Model Theoretical Capacity260

In this section, we analyze the theoretical capacity of our modeling method.261

Theorem 1 Assume for different input features and position embeddings, the transformer layers can262

output different output features. The transformer with distance-based relative position embedding263

has a stronger capacity than the 1-WL test for the graph isomorphism problem.264

Proof 1 The 1-WL test is defined as the following iteration:265

χ0
G(i) = hash(vi)

χt
G(i) := hash

(
χt−1
G (i),

{
χt−1
G (j) : j ∈ NG(i)

})
(∀i ∈ N),

(2)

where χG is the label in WL test, hash is the hash function, NG(i) is the neighbor of node i.266

The transformer with distance-based relative position embedding can be considered as the following267

mapping:268

χt
G(i) := hash

({(
dG(i, j), χ

t−1
G (j)

)
: j ∈ N

})
= hash({(0, χt−1

G (i))}
∪ {(1, χt−1

G (j)) : j ∈ NG(i)}
∪ {(dG(i, k), χt−1

G (k)) : k ∈ N −NG(i)− {i}})

(3)

It can be seen that the iteration of the transformer with distance-based relative position embedding269

includes both the node i and its neighbors NG(i), marked by distance 0 and 1, respectively, ensuring270

the capacity is at least as strong as 1-WL test. It further includes other nodes far away, along with271

their distance, which constitutes a stronger capacity than 1-WL test. Figure 1 are two example272

graphs that cannot be distinguished by 1-WL test, but can be distinguished by transformer with273

distance-based relative position embedding.274

Figure 1: Two example graphs that cannot be distinguished by 1-WL test, but can be distinguished by
transformer with distance-based relative position embedding.

Theorem 2 Assume for different input features and position embeddings, the transformer layers can275

output different output features. GIMLET can distinguish graph-instruction pairs if graphs can be276
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distinguished by transformer with distance-based relative position embedding, or instructions are277

different.278

Proof 2 As GIMLET decomposes the attention from graph nodes to text, the graph nodes can only279

attend to other graph nodes. Thus the encoding capacity of graph data is the same as a single280

transformer with distance-based relative position embedding for graph data.281

Along with the assumption of transformer layers, GIMLET is able to distinguish graph-instruction282

pairs if graphs can be distinguished by transformer with distance-based relative position embedding,283

or instructions are different.284

B.3 Detalied Related Work285

We present a detailed related work here, due to the space limitation of paper.286

Molecule Representation learning In recent years, there has been a growing interest in developing287

molecular representation learning for downstream tasks like drug discovery and other applications.288

One approach that has received considerable attention is utilizing language modeling techniques to289

acquire molecular representations based on Simplified Molecular Input Line Entry System (SMILES)290

strings [57, 10]. Although sequence-based representations have demonstrated success in some ap-291

plications, concerns have been raised about their capability to incorporate all pertinent substructure292

information. To address this limitation, some researchers have proposed the use of Graph Neural Net-293

works (GNNs) to model molecules as graphs [20, 67, 25], potentially providing a more comprehensive294

and accurate representation of the molecular structure.295

Existing GNNs follow the message-passing paradigm and suffer from problems like long-range296

dependency vanishing and over-smoothing. Recently, Graph Transformer [44, 65] has been proposed297

to better encode structures of graphs. The Graph Transformer is inspired by the Transformer298

architecture, which has shown remarkable performance in natural language processing [55, 13, 33].299

The Graph Transformer extends the Transformer architecture to the graph domain, allowing the300

model to capture the global structure and long-range dependencies of the graph [69, 14, 27, 26, 62,301

40, 34, 65, 8, 35, 11, 5, 22, 71].302

Molecule Pretraining To fully explore the inherent structural information of molecules on a large303

scale and transfer useful information to downstream tasks, significant efforts have been made to304

address the inadequacies in molecular pre-training. Supervised pretraining is commonly used for305

learning useful representations [25, 65, 52]. As for unsupervised pretraining, one approach involved306

using an generative pre-training strategy on molecular SMILES strings [57, 24, 10, 3, 45] and Graph307

[25, 30, 44, 70], which was followed by recent works adopting the contrastive paradigm that aligns308

representation of augmented views of the same graph but keeping views from other graphs away309

[56, 50, 23, 67, 66, 53, 64, 18, 51, 59, 63, 58, 32].310

The pretraining methods mentioned focus on obtaining representations for supervised training.311

However, for natural language instruction-based zero-shot graph learning, it’s necessary to incorporate312

natural language into the pretraining process. Several studies have explored molecule structure-text313

multimodal pretraining. One class of method is the SMILES based language model, including314

KVPLM [68] and MolT5 [15], which use SMILES strings and text for joint representation and315

translation. Another work Galactica [54] explored the multi-task molecule task learning with316

instruction. Some other works acquire advanced representations for molecules by GNN, such as317

Text2Mol [16], MoMu [49], MoleculeSTM [31], and CLAMP [48], trained by contrastive learning318

between molecule graph and text description for molecule retrieval and caption tasks. MoleculeSTM319

and CLAMP explored molecule editing and property prediction with instructions. However, none of320

these works address the zero-shot fashion on complex molecule tasks like property prediction, due to321

constraints imposed by the pretraining methodology that not addressing the instruction-following322

ability, and their model capacity for representing molecule graphs.323

Instruction-based zero-shot learning Instruction-based zero-shot learning is an innovative approach324

that leverages natural language instructions and definitions to enable neural models to solve a variety325

of tasks [42, 6, 47, 17, 72, 36, 37, 41]. By providing a human-readable prompt, this method enables326

easier and more efficient specification of the learning task by utilizing knowledge about the task327

without data. To enhance the model’s ability to follow instructions, some researchers have employed328

instruction-based pretraining techniques [46, 60, 12, 39], which explicitly train language models329
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to solve tasks with instructions. Besides natural language processing, instruction-based zero-shot330

learning is also studied in multimodal domains like images [4, 9, 1, 28].331

C Experiments332

C.1 Experiment setting333

Our model only utilizes the basic features [25, 52] of molecule graphs, which do not include additional334

features like ring markers. Specifically, it utilizes the first two dimensions of node features and the335

first two dimensions of edge features processed by ogb.smiles2graph. Therefore, the effectiveness336

of GIMLET predominantly stems from its architectural design and pretraining rather than the graph337

features it incorporates.338

Following the standard supervised setting in previous studies [25], we utilize the scaffold strategy339

[43] to partition datasets into three subsets: the training set, validation set, and testing set with a340

ratio of 0.8, 0.1, 0.1. The scaffold strategy is a deterministic approach that involves sorting the data341

based on the scaffold, which represents the molecular structure. While this strategy aids in dataset342

partitioning, it can introduce a significant domain gap between the training and testing sets, thereby343

increasing the challenge of generalization.344

For zero-shot, we report the results on the testing sets, ensuring the comparability of our results to345

previous works. For few-shot, we report the result of the best validation model on the testing set, the346

same as previous works and other supervised baselines [43].347

Many datasets encompass multiple tasks. To evaluate these datasets, we conduct separate testing for348

each task, accompanied by their respective instructions. For datasets with multiple tasks, we report349

the average ROC-AUC score for each task, following the methodology established in previous works350

[25].351

C.2 Detailed Zero-Shot Result352

We list the full zero-shot result of GIMLET and baselines in Table 4, 5, and 6. The standard deviation353

for supervised results are denoted after ±, and the multi-task setting results of Galactica are denoted354

in parentheses with italic. We also include the instruction-based zero-shot result reported in recent355

baseline CLAMP [48] which is tested by their instruction, denoted by italics too. CLAMP is a356

contrastive pretrained model with ensembled encoders for molecule and text. The parameter number357

for CLAMP’s result is not clearly stated in their paper but should be larger than 10B as they use sT5358

language model [42] XXL variant (11B) as one of the ensembled language models.359

Table 4: Zero shot performance over Bio-activity tasks
Method Parameter Type bace hiv muv Avg. bio
KVPLM 110M

Zero Shot
0.5126 0.6120 0.6172 0.5806

MoMu 113M 0.6656 0.5026 0.6051 0.5911
CLAMP > 10B 0.6476 0.8067 - -
GIMLET 64M 0.6957 0.6624 0.6439 0.6673
Galactica-125M 125M Multi Task 0.4451(0.561) 0.3671(0.702) 0.4986 0.4369
Galactica-1.3B 1.3B 0.5648(0.576) 0.3385(0.724) 0.5715 0.4916
GCN 0.5M

Supervised

0.736±0.030 0.757±0.011 0.732±0.014 0.742
GAT 1.0M 0.697±0.064 0.729±0.018 0.666±0.022 0.697
GIN 1.8M 0.701±0.054 0.753±0.019 0.718±0.025 0.724
Graphormer 48M 0.7760±0.015 0.7452±0.014 0.7061±0.027 0.7424
Graphormer-p 48M 0.8575±0.006 0.7788±0.012 0.7480±0.020 0.7948

The result in parentheses represents the outcome of the multitask setting, also referred to as weakly360

supervised in the original paper, where the same instructions are used for both pretraining and testing.361

While Galactica has been exposed to the same task instructions, it actually employs multitask learning362

with instructions serving as task identity.363

Even in comparison to Galactica’s multitask result, GIMLET demonstrates comparable or superior364

performance on most datasets. This highlights the ability of GIMLET to perform zero-shot tasks with365

high quality.366
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Table 5: Zero shot performance over Toxicity tasks
Method Parameter Type tox21 toxcast Avg. tox
KVPLM 110M

Zero Shot
0.4917 0.5096 0.5007

MoMu 113M 0.5757 0.5238 0.5498
CLAMP > 10B 0.6058 0.5383 0.5721
GIMLET 64M 0.6119 0.5904 0.6011
Galactica-125M 125M Multi Task 0.4964(0.543) 0.5106(0.518) 0.5035
Galactica-1.3B 1.3B 0.4946(0.606) 0.5123(0.589) 0.5035
GCN 0.5M

Supervised

0.749±0.008 0.633±0.009 0.691
GAT 1.0M 0.754±0.005 0.646±0.006 0.700
GIN 1.8M 0.740±0.008 0.634±0.006 0.687
Graphormer 48M 0.7589±0.004 0.6470±0.008 0.7029
Graphormer-p 48M 0.7729±0.006 0.6649±0.006 0.7189

Table 6: Zero shot performance over Pharmacokinetic tasks
Method Parameter Type bbbp cyp450 Avg. pha
KVPLM 110M

Zero Shot
0.6020 0.5922 0.5971

MoMu 113M 0.4981 0.5798 0.5390
CLAMP > 10B 0.4788 - -
GIMLET 64M 0.5939 0.7125 0.6532
Galactica-125M 125M Multi Task 0.6052(0.393) 0.5369 0.5711
Galactica-1.3B 1.3B 0.5394(0.604) 0.4686 0.5040
GCN 0.5M

Supervised

0.649±0.030 0.8041±0.005 0.7266
GAT 1.0M 0.662±0.026 0.8281±0.004 0.7451
GIN 1.8M 0.658±0.045 0.8205±0.012 0.7392
Graphormer 48M 0.7015±0.013 0.8436±0.003 0.7725
Graphormer-p 48M 0.7163±0.009 0.8877±0.004 0.8020

Figure 2: Scatter of GIMLET over baselines. Below the diagonal line x=y means our method performs
better.
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The disparity between the multitask result and the tested result with our instructions is due to the gap367

between their instructions and ours, which indicates that Galactica relies on specific task instructions368

for task recognition, without a true understanding of the instructions. As a result, it exhibits poor369

generalization to other instruction forms. Note that Galactica even do not surpass KVPLM and370

MoMu which are also zero-shot learning methods.371

GIMLET exhibits superior performance compared to the larger model CLAMP on the majority of372

datasets, with the exception of HIV. It is important to highlight that our model is significantly373

smaller in size than CLAMP, underscoring the effectiveness of our unified graph-text language model.374

Additionally, it should be noted that CLAMP lacks the capability to handle regression tasks due to its375

contrastive model architecture, whereas our encoder-decoder architecture enables us to successfully376

tackle a wide range of task types.377

Significantly, the supervised results shed light on the task difficulties associated with each dataset.378

This showcases GIMLET’s capability to effectively solve molecule tasks in a zero-shot manner,379

approaching the performance of supervised results. Furthermore, our pretraining tasks yield an380

average performance improvement of 3 percent for Graphormer, with the largest gains observed in381

Bioactivity tasks and the smallest in Toxicity tasks. This suggests that there still exist gaps between382

the pretraining data and our downstream tasks, addressing the zero-shot setting of our dataset.383

In Figure 2, we present scatter plots comparing GIMLET with KVPLM and MoMu across all tasks.384

The diagonal line represents the equality line where x=y indicates our method outperforms the385

baseline. Notably, it is evident that GIMLET consistently performs significantly better than random386

guessing and surpasses the baselines on all tasks.387

We plot the scatter of regression tasks in Figure 3. The plot clearly demonstrates a strong correlation388

between the predicted and actual values for ESOL and Lipo.389

Figure 3: Scatter of GIMLET on generative tasks.

C.3 Detailed Few-Shot Results390

In both classification tasks and regression tasks, we fine-tune the last linear layer of all models using391

their respective modeling loss.392

It is important to note that the instruction-based few-shot approach is trained on each task individually,393

while supervised baselines are trained on multiple tasks from the dataset. Therefore, comparing394

these two approaches may not be strictly fair, as the multitask learning of the supervised baseline can395

contribute to improved task performance.396

The results for few-shot learning on each dataset are presented in Figure 4. It is evident that, across397

the majority of datasets, GIMLET demonstrates improvement as the number of few-shot examples398

increases. In fact, it even outperforms or matches the performance of the supervised GIN on several399

datasets, such as bace, bbbp, and esol. There is also observable enhancement in performance across400

various datasets when employing few-shot learning, including tox21, toxcast, lipo, and freesolv.401

There is not result of MoMu on regression tasks, because MoMu is a contrastive model between402

graph and text, which cannot handle regression tasks.403
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Figure 4: Few-shot performance on each dataset
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C.4 Detailed Ablation Results of Pretraining404

The results of pretraining ablation for each dataset are presented in Table 7, 8, 9, and 10. The findings405

indicate that both bioactivity assay and physico-chemical properties offer significant benefits for all406

the downstream tasks, demonstrating positive transfer across different domains.407

Table 7: Pretraining ablation study on Bio-activity tasks
bace hiv muv Average_bio

bioactivity assay only 0.6390 0.6772 0.6044 0.6402
physico-chemical only 0.4648 0.5461 0.4572 0.4894
both 0.6957 0.6624 0.6439 0.6673

Table 8: Pretraining ablation study on Toxicity tasks
tox21 toxcast Average_tox

bioactivity assay only 0.5726 0.5625 0.5676
physico-chemical only 0.4478 0.5017 0.4748
both 0.6119 0.5904 0.6011

Table 9: Pretraining ablation study on Pharmacokinetic tasks
bbbp cyp450 Average_pha

bioactivity assay only 0.5313 0.6829 0.6071
physico-chemical only 0.5932 0.4976 0.5454
both 0.5939 0.7125 0.6532

C.5 Instruction Robustness408

To test the robustness of GIMLET, the Instructions are rephrased by GPT-3.5-turbo. There are four409

types of rephrasing, realized by the following prompts:410

rewrite411

’Rephrase the text of the following prompt: \n’412

expand413

’Rephrase the text of the following prompt longer: \n’414

detail415

’Rephrase the text of the following prompt by adding more416

explanation: \n’417

short418

’Rephrase the text of the following prompt shorter: \n’419

Given a task instruction, we rephrase the instruction by the prompts above. Here is an example of420

four types of rephrased task instruction from Toxcast:421

origin422

"CEETOX_H295R_ANDR , is one of 23 assay component(s) measured423

or calculated from the CEETOX_H295R assay. It is designed to424

make measurements of hormone induction , a form of inducible425

reporter , as detected with absorbance signals by HPLC -MS-MS426

technology.Data from the assay component CEETOX_H295R_ANDR was427

analyzed into 2 assay endpoints. This assay endpoint ,428

CEETOX_H295R_ANDR_dn , was analyzed in the positive fitting429

direction relative to DMSO as the negative control and430

baseline of activity. Using a type of inducible reporter ,431

13



Table 10: Pretraining ablation study on Physical-chemical tasks
esol freesolv lipo Average_phy

bioactivity assay only - - -
physico-chemical only 1.1822 5.2935 1.3778 2.6178
both 1.1320 5.1027 1.3450 2.5266

loss -of-signal activity using HPLC -MS -MS was used to432

understand synthesis of Androstenedione in H295R cell line at433

48hr of chemical exposure. To generalize the intended target434

to other relatable targets , this assay endpoint is annotated435

to the steroid hormone intended target family , where the436

subfamily is androgens. Is this molecule effective to this437

assay?"438

rewrite439

"The CEETOX_H295R_ANDR is a component of the CEETOX_H295R440

assay , which measures hormone induction through absorbance441

signals detected by HPLC -MS-MS technology. The data from442

CEETOX_H295R_ANDR has been analyzed into two endpoints , with443

CEETOX_H295R_ANDR_dn being analyzed in relation to DMSO as the444

negative control and baseline of activity. HPLC -MS-MS was used445

to detect loss -of -signal activity and understand the synthesis446

of Androstenedione in H295R cell line after 48 hours of447

chemical exposure. This assay endpoint is related to the448

steroid hormone intended target family , specifically the449

subfamily of androgens , and can be generalized to other450

similar targets.Can this assay be effectively performed using451

this molecule ?"452

expand453

"The CEETOX_H295R_ANDR assay component is just one of the 23454

assay components that are measured or calculated from the455

CEETOX_H295R assay. The assay is specifically designed to456

measure hormone induction , which is a form of inducible457

reporter , and is detected using absorbance signals by means of458

HPLC -MS-MS technology. The data obtained from the459

CEETOX_H295R_ANDR assay component was analyzed into two assay460

endpoints. The CEETOX_H295R_ANDR_dn assay endpoint was461

analyzed in the positive fitting direction in relation to DMSO462

as the negative control and activity baseline. To understand463

the synthesis of Androstenedione in the H295R cell line after464

48 hours of chemical exposure , loss -of-signal activity was465

used with HPLC -MS -MS technology. This endpoint is annotated to466

the steroid hormone intended target family to help other467

related targets , where the subfamily is androgens. Can it be468

determined if this particular molecule exhibits desirable469

efficacy to be utilized in this particular assay ?"470

detail471

"The CEETOX_H295R_ANDR is an assay component that is one of472

the 23 components that are measured or calculated from the473

CEETOX_H295R assay. It is intended to measure hormone474

induction , which is a form of inducible reporter , and the475

measurement is done with the help of absorbance signals using476

HPLC -MS-MS technology. The data obtained from the measurement477

of assay component CEETOX_H295R_ANDR is analyzed into two478

assay endpoints. One of these endpoints , CEETOX_H295R_ANDR_dn ,479
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is analyzed in the positive fitting direction , relative to480

DMSO , which is used as the negative control and baseline for481

activity. The HPLC -MS-MS technology is used to detect the482

loss -of-signal activity , which helps in understanding the483

synthesis of Androstenedione in H295R cell line after 48 hours484

of chemical exposure. To make the intended target more485

comprehensive and relatable to other targets , the assay486

endpoint is annotated to the steroid hormone intended target487

family , where the subfamily is androgens. Can this molecule be488

used for this assay ?"489

short490

"CEETOX_H295R_ANDR is one of 23 components in the CEETOX_H295R491

assay , measuring hormone induction detected with absorbance492

signals by HPLC -MS -MS. It’s analyzed into 2 endpoints , with493

CEETOX_H295R_ANDR_dn being the positive fitting direction494

relative to the negative control. It analyzes the495

loss -of-signal activity to understand Androstenedione496

synthesis in H295R cell line after 48hr chemical exposure.497

It ’s annotated as a steroid hormone intended target in498

androgens sub -family. Is molecule suitable for assay ?"499

C.6 Instruction Ablation500

To ablate the explanation-based instruction, we remove the explanation and only keep the assay name.501

The ablated instruction for the instruction above is:502

"The assay name is CEETOX_H295R_ANDR. Is this molecule503

effective to this assay?"504

C.7 Attention Visualization505

We present visualizations of the attention of text tokens to molecule graphs, demonstrating how506

our unified transformer incorporates molecule information using various instructions. We randomly507

sample molecules and attention heads for visualization. To emphasize high-level features, we focus508

on visualizing the attention patterns of the last layer. The redder means the larger attention value.509

For BACE instruction, we visualize the attention of several keywords marked in red to molecules:510

"BACE1 is an aspartic-acid protease important in the pathogenesis of Alzheimer’s disease, and in511

the formation of myelin sheaths. BACE1 is a member of family of aspartic proteases. Same as other512

aspartic proteases, BACE1 is a bilobal enzyme, each lobe contributing a catalytic Asp residue, with513

an extended active site cleft localized between the two lobes of the molecule. The assay tests whether514

the molecule can bind to the BACE1 protein. Is this molecule effective to the assay?"515

For BBBP instruction:516

’In general, molecules that passively diffuse across the brain blood barrier have the molecular weight517

less than 500, with a LogP of 2-4, and no more than five hydrogen bond donors or acceptors. Does518

the molecule adhere to the three rules or not?’519
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(a) BACE1 (b) aspartic-acid (c) Alzheimer

(d) myelin (e) aspartic (f) bilobal

(g) catalytic (h) cleft (i) effective

Figure 5: Visualization of attention for BACE on molecule
O=C(N(C)C1CCCCC1)CCc1cc2c(nc1N)cccc2
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(a) BACE1 (b) aspartic-acid (c) Alzheimer

(d) myelin (e) aspartic (f) bilobal

(g) catalytic (h) cleft (i) effective

Figure 6: Visualization of attention for BACE on molecule
O=C(NCC1CCCCC1)CCc1cc2c(nc1N)cccc2

17



(a) BACE1 (b) aspartic-acid (c) Alzheimer

(d) myelin (e) aspartic (f) bilobal

(g) catalytic (h) cleft (i) effective

Figure 7: Visualization of attention for BACE on molecule
O=C1NC(CN1Cc1ccccc1)(Cc1ccccc1)C(=O)NC(Cc1ccccc1)C(O)C[NH2+]Cc1cc(N(C)C)ccc1
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(a) BACE1 (b) aspartic-acid (c) Alzheimer

(d) myelin (e) aspartic (f) bilobal

(g) catalytic (h) cleft (i) effective

Figure 8: Visualization of attention for BACE on molecule
O=C1N(C)C(=[NH2+])NC1(c1ccccc1)c1ccccc1
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(a) BACE1 (b) aspartic-acid (c) Alzheimer

(d) myelin (e) aspartic (f) bilobal

(g) catalytic (h) cleft (i) effective

Figure 9: Visualization of attention for BACE on molecule
O(c1cc2CN(C(CCC(=O)N(C)C3CCCCC3)C3CCCCC3)C(=[NH+]c2cc1)N)c1ccccc1
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(a) brain blood barrier (b) molecular weight (c) 500

(d) LogP (e) 2-4 (f) five

(g) hydrogen bond donors (h) acceptors (i) three rules

Figure 10: Visualization of attention for BBBP on molecule
NH
C(CC(C)C([N@@](C(C)(C)C)C(N)(C)N)(C)C)c1c(c(c[nH+][o+]1)C)[O-]
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(a) brain blood barrier (b) molecular weight (c) 500

(d) LogP (e) 2-4 (f) five

(g) hydrogen bond donors (h) acceptors (i) three rules

Figure 11: Visualization of attention for BBBP on molecule
Cc1nccc2c1[nH]c3ccccc23
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(a) brain blood barrier (b) molecular weight (c) 500

(d) LogP (e) 2-4 (f) five

(g) hydrogen bond donors (h) acceptors (i) three rules

Figure 12: Visualization of attention for BBBP on molecule
CC1=C2NC3=CC(=O)C=CC3=C2C=CN1
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(a) brain blood barrier (b) molecular weight (c) 500

(d) LogP (e) 2-4 (f) five

(g) hydrogen bond donors (h) acceptors (i) three rules

Figure 13: Visualization of attention for BBBP on molecule
COc1cc2CCN(C)C3CC4(C=CC(=O)C=C4)c(c1O)c23
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(a) brain blood barrier (b) molecular weight (c) 500

(d) LogP (e) 2-4 (f) five

(g) hydrogen bond donors (h) acceptors (i) three rules

Figure 14: Visualization of attention for BBBP on molecule
CCC1(C)CC(=O)NC1=O
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