
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

REGULARIZATION BY TEXTS FOR LATENT DIFFUSION
INVERSE SOLVERS

Anonymous authors
Paper under double-blind review

Figure 1: Representative solutions obtained by TReg for various inverse problems. TReg optimizes
both data consistency and the semantic alignment of the solution with textual cues, by reducing the
solution space with text-conditional latent regularizer. This serves as an effective semantic guidance
throughout the reconstruction process.

ABSTRACT

The recent development of diffusion models has led to significant progress in
solving inverse problems by leveraging these models as powerful generative priors.
However, challenges persist due to the ill-posed nature of such problems, often
arising from ambiguities in measurements or intrinsic system symmetries. To ad-
dress this, here we introduce a novel latent diffusion inverse solver, regularization
by text (TReg), inspired by the human ability to resolve visual ambiguities through
perceptual biases. TReg integrates textual descriptions of preconceptions about the
solution during reverse diffusion sampling, dynamically reinforcing these descrip-
tions through null-text optimization, which we refer to as adaptive negation. Our
comprehensive experimental results demonstrate that TReg effectively mitigates
ambiguity in inverse problems, improving both accuracy and efficiency.

1 INTRODUCTION

Consider a given forward measurement process:

y = A(x) + ϵ (1)

where A : Rm 7→ Rn describes forward measurement operator, y ∈ Rn and x ∈ Rm represents
the measurement and the true image, respectively, and ϵ ∈ Rn denotes the measurement noise
that follows the Gaussian distribution N (0, σ2

0In). Then, an inverse solver attempts to recover
x from the measurement y. Unfortunately, most inverse problems are ill-posed, meaning that
many different visual inputs can produce identical measurements due to significant information loss
during the measurement process. For example, consider Fourier phase retrieval—reconstructing
the phase information of a signal from its Fourier intensity measurements. Because of intrinsic
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system symmetries for shifts, rotations, and flips, it causes an input to be mapped to multiple
symmetry-related outputs when inverting such systems.

Traditionally, regularization techniques have been extensively studied to address the ambiguity in
inverse problems. Methods such as sparsity (L1 norm), total variation (TV), and regularization by
denoising (RED) have been widely employed, leveraging the statistical properties of natural images
(Boyd et al., 2011; Venkatakrishnan et al., 2013; Romano et al., 2017). With the advent of diffusion
models, a new class of Diffusion Inverse Solvers (DIS) (Kawar et al., 2022; Wang et al., 2022; Chung
et al., 2022a; Mardani et al., 2023; Chung et al., 2023d; Rout et al., 2024) has emerged, offering
superior reconstruction performance. The main idea is to leverage the diffusion model, which learns
the score function of the prior distribution, to mitigate the ill-posedness of inverse problems.

While diffusion models have significantly advanced the solution of inverse problems, it is important
to acknowledge the unresolved ill-posedness in certain challenging imaging systems. For instance, in
Fourier phase retrieval, Diffusion Posterior Sampling (DPS) (Chung et al., 2022a; Rout et al., 2024)
recover solutions more effectively than traditional methods, but it still cannot fully overcome the
intrinsic symmetry, as shown in Figure 6. This limitation arises because the diffusion prior is based
on image statistics, which alone may be insufficient to break the symmetry and guarantee a unique
solution. A similar challenge is in systems with severely degraded measurements. Therefore, inverse
problem solvers must incorporate additional cues to reduce ambiguity and fully resolve the problem.

In search of additional cues, we focus on text descriptions which may provide contextual information
to resolve ambiguities during the sampling process, enriching the reconstructed solutions with relevant
semantic content. While text conditions play a crucial role in the success of latent diffusion models,
current DIS approaches based on LDM often do not fully leverage this descriptive conditioning to
resolve uncertainties in recovered solutions. For instance, P2L (Chung et al., 2023d) leverages prompt
embeddings as additional parameters for fine-tuning to improve alignment between solutions and
measurements. However, this method primarily focuses on data consistency and thus lacks robust
alignment with textual prompts. Thus, there remains a significant gap between how human perception
resolves ambiguities by linguistic conditions and how DIS manage them. Bridging this gap may lead
to more effective solver for addressing inverse problems.

To this end, we introduce a novel concept called Regularization by Text (TReg), implemented through
latent diffusion models. TReg leverages textual descriptions that encapsulate the preconceived
description of the desired solution during the reverse sampling process, framing this as a latent
optimization problem to mitigate the ill-posedness. Ideally, the concepts described in the text should
be exclusively reflected in the outcomes. However, we observed that manually crafted descriptions
can introduce noise, leading to blurry outcomes or artifacts. To avoid this, we propose an innovative
null-text optimization technique called adaptive negation, applied throughout the reverse diffusion
sampling process. This method dynamically adjusts the influence of the textual guidance, ensuring
that only the intended concepts align with the evolving state of the reverse sampling. As a result,
TReg, when guided by a regularization prompt such as "photography of face," can break symmetries
in Fourier phase retrieval and consistently produce a unique, true solution, as demonstrated in Figure 6.
Furthermore, our method functions as a zero-shot inverse problem solver, robustly applicable across
various domains, as illustrated in Figure 1.

2 BACKGROUNDS

2.1 LATENT DIFFUSION MODEL

Image diffusion models that operate on the pixel space are compute-heavy. So the latent diffusion
model (LDM) (Rombach et al., 2022) has emerged as a class of diffusion-based generative mod-
els (Sohl-Dickstein et al., 2015; Ho et al., 2020; Song et al., 2020b), where the diffusion process is
operated on low dimensional latent space instead of the pixel space. Specifically, the LDMs are first
trained as a variational autoencoder by maximizing the evidence lower bound (ELBO) (Rombach
et al., 2022; Kingma & Welling, 2013). Thus, the latent is represented as:

z = Eϕ(x) := Eµϕ (x) + E
σ
ϕ (x)⊙ ϵ, ϵ ∼ N (0, I), (2)

where ⊙ denotes the element-by-element multiplication, and Eµϕ , Eσϕ are parts of the encoder that
outputs the mean and the variance of the encoder distribution. In this paper, we assume that Eσϕ(x) is
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isotropic, i.e. Eσϕ(x) = σE1. The resulting pixel domain representation can be obtained by

x = Dφ(z) (3)

where Dφ is the decoder.

Then, the forward diffusion is defined given the latent representation of the clean image z0 = Eϕ(x) ∈
Rd which perturbs z0 as zt =

√
ᾱtz0 +

√
1− ᾱtϵ following forward VP-SDE. Accordingly, the

residual denoiser ϵθ(·, t) is trained to estimate the noise ϵ from zt by epsilon matching:

min
θ

EEϕ(x),ϵ∼N (0,I),t

[
∥ϵ− ϵθ(zt, t)∥22

]
, (4)

where ϵθ is often parameterized as time-conditional UNet (Ronneberger et al., 2015) in practice.
Notably, the optimal solution ϵ∗θ of (4) serves as an alternative approximation of a score function as
∇zt

log p(zt) = −ϵ∗θ(zt, t)/t (Song et al., 2020b). Based on this, the generative reverse sampling
from the posterior distribution pθ(zt−1|zt, z0) can be performed as

ẑ0|t =E [z0|zt] = (zt −
√
1− ᾱtϵθ(zt, t))/

√
ᾱt (5)

zt−1 =
√
ᾱt−1ẑ0|t +

√
1− ᾱt−1ϵθ(zt, t), (6)

which corresponds to a single iterate of deterministic DDIM sampling (Song et al., 2020a).

For a text-conditional sampling, Classifier Free Guidance (CFG) (Ho & Salimans, 2021) is widely
leveraged based on the sharpened posterior distribution. Let ∅ denotes null-text embedding and
c represents target text embedding. Then, we have ϵωθ (zt, c, t) = ϵθ(zt,∅, t) + ω(ϵθ(zt, c, t) −
ϵθ(zt,∅, t)) where ω is a scale for the guidance. For the brevity, we will use ϵθ(z,∅, t) = ϵ̂∅,
ϵθ(z, c, t) = ϵ̂c, and ϵωθ (z, c, t) = ϵ̂ωc . For the details, please refer to Appendix A.6.

2.2 DIFFUSION INVERSE SOLVERS

Recently diffusion models have been emerged as powerful generative priors for inverse problems
(Kawar et al., 2022; Song et al., 2022; Wang et al., 2022; Chung et al., 2022a; Mardani et al., 2023;
Chung et al., 2023b). Earlier techniques in inverse imaging relied on an alternating projection method
(Song et al., 2020b; Choi et al., 2021; Chung et al., 2022b), enforcing hard measurement constraints
between denoising steps in either pixel or measurement spaces. More advanced strategies have been
proposed to approximate the gradient of the log posterior within diffusion models, broadening the
scope to tackle nonlinear problems (Chung et al., 2022a). The field has seen further expansion with
methods addressing blind inverse problem (Chung et al., 2023a), 3D (Chung et al., 2023c; Lee et al.,
2023), and problems of unlimited resolution (Bond-Taylor & Willcocks, 2023).

Traditionally, these methods have utilized image-domain diffusion models, but a shift has been
observed towards latent diffusion models such as latent DPS (LDPS) with a fixed point of autoencoder
process (Rout et al., 2024), LDPS with history update (He et al., 2023), Resample (Song et al., 2023),
and leveraging prompt tuning to improve the reconstruction (Chung et al., 2024). Despite these
innovations, the use of text embedding for regularization is often overlooked, missing an opportunity
to fully leverage the power of multi-modal latent space—an aspect we aim to address in following.

3 MAIN CONTRIBUTION: REGULARIZATION BY TEXT

In this section, we present TReg, an iterative refinement process for solving inverse problems by
fully leveraging informative text conditioning. Our framework is based on a text-conditioned latent
optimization objective, which, when minimized during the reverse sampling process, progressively
improves both data consistency and the alignment of the estimated solution with the provided textual
cue. This regularized sampling process produces a solution that aligns to human perceptual priors.
For textual alignment, our framework incorporates two key components: (1) text-conditional latent
regularization and (2) adaptive negation. Specifically, the text embedding is jointly optimized to align
with the current latent representation, mitigating the unintended signal components introduced by
hand-crafted text descriptions. We begin by outlining the overall latent optimization framework.
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3.1 LATENT OPTIMIZATION FOR TEXTUAL CONSTRAINT

Consider a probability density of posterior distribution p(x|y, z) where z denotes latent vector of
clean image x and y denotes the measurement. By the Bayes’ rule, we can see that

p(x|y, z) ∝ p(y|x, z)p(x|z) ∝ p(z|x,y)p(y|x)p(x|z), (7)

where we assume p(x|z) := δ(x−Dφ(z)) given a well pre-trained autoencoder as in (3). Then, the
objective of the maximum a posteriori (MAP) problem is defined as

ℓMAP(z) = − log p(z|Dφ(z),y)− log p(y|Dφ(z)) =
∥z − Eµϕ (Dφ(z))∥22

2σ2
E

+
∥y −A(Dφ(z))∥22

2σ2
,

(8)

where the second equality holds due to the noisy measurement in (1) and VAE prior in (2).

While optimizing (8) during reverse sampling approximates posterior sampling, it does not guarantee
semantic alignment between the estimated solution and the textual descriptions. To address this,
we propose a text-conditional latent regularizer which drives the sampling trajectory towards clean
manifold that optimally aligns with the text condition c:

ℓTReg(z) = ∥z − ẑ0|t∥2, (9)

where the input latent z is conditioned on the text condition c, and ẑ0|t refers to a text-conditioned
denoised estimate ẑ0|t = ẑ0|t(c) = (zt−

√
1− ᾱtϵ̂

ω
c )/
√
ᾱt derived by the Tweedie’s formula (Rob-

bins, 1992; Efron, 2011). Thus ẑ0|t serves as a pivot, preventing the sampling trajectory from
deviating significantly from the proper text-conditioned sampling path. By combining (8) and (9), the
resulting proximal optimization framework is defined as follows:

min
x,z

ℓMAP(z) + γℓTreg(z) = ℓMAP(z) + γ∥z − ẑ0|t∥2 (10)

s.t. x = Dφ(z),

where we initialize the input latent z0 as ẑ0|t, the initial clean estimate of the sampling process at
time t. While one may use off-the-shelf optimizers, we aim to solve (10) by leveraging variable
splitting inspired by the alternating direction method of multipliers (Boyd et al., 2011).

Namely, using the decoder approximation and setting x = Dφ(z), the optimization problem with
respect to x becomes

min
x

∥y −A(x)∥22
2σ2

+
∥z − Eµϕ (x)∥22

2σ2
E

+ λ∥x−Dφ(z) + η∥22. (11)

Here, for simplicity, we set dual variable η as a zero vector and do not consider its update. Then,
from the initialization with z = ẑ0|t, we have

x̂0(y) = argmin
x

∥y −A(x)∥22
2σ2

+ λ∥x−Dφ(ẑ0|t)∥22, (12)

which can be solved with negligible computation cost such as conjugate gradient (CG) if A is a linear
operation. Subsequently, using the encoder approximation and setting z = Eµϕ (x) with η = 0, the
optimization problem with respect to z is derived as

ẑema
0 = argmin

z
ζ∥z − ẑ0(y)∥22 + γ∥z − ẑ0|t∥2 = ᾱt−1ẑ0(y) + (1− ᾱt−1)ẑ0|t, (13)

where the second equality is a closed-form solution with the initialization of ẑ0(y) := Eϕ(x̂0(y)).
Here, ζ, γ are empirically chosen to satisfy ᾱt−1 = ζ/(ζ + γ) to hold the second equality of (13).
Specifically, we set the interpolation coefficient to prioritize ẑ0(y) during the final phase of reverse
sampling, ensuring fine-grained refinement for improved data consistency. Meanwhile, the text-
conditioned pivot relatively dominates the early stages of the sampling process, establishing the
coarse layout and improving text adherence. Note that the estimated solution ẑema

0 is obtained by the
interpolation between initial text-conditioned estimate ẑ0|t and ẑ0(y) derived with the measurement y.
Finally, by integrating the updated latent ẑema

0 , a single iterate of the resulting DDIM sampling (Song
et al., 2020a) at t reads:

z′
t−1 =

√
ᾱt−1ẑ

ema
0 +

√
1− ᾱt−1ϵ̃t, (14)
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Figure 2: (a) Concept of adaptive negation. Compared to concept emphasize and negation which
targets a specific concept, the adaptive negation tries to suppress concepts except the desired one. (b)
Adaptive negation is crucial to avoid artifacts on reconstruction.

where ϵ̃t denotes the total noise given by

ϵ̃t :=

√
1− ᾱt−1 − η2β̃2

t ϵ̂
ω
c + ηβ̃tϵ

√
1− ᾱt−1

. (15)

In (14), η ∈ [0, 1] is a parameter controlling the stochasticity of the update rule. Empirically, we
find that ηβ̃t =

√
ᾱt−1

√
1− ᾱt−1 results in robust performance. In other words, the total noise

is computed by ϵ̃t :=
√
1− ᾱt−1ϵ̂θ +

√
ᾱt−1ϵ. For the convergence analysis, please refer to the

Appendix B.

3.2 ADAPTIVE NEGATION FOR TEXTUAL CONSTRAINT

The primary component of the proposed optimization framework includes ẑ0|t, a pivot for sampling
paths conditioned on text embeddings, which effectively narrows the solution space. While con-
ditioning on a well-chosen embedding is crucial for semantic alignment, relying on error-prone,
hand-crafted prompts can result in suboptimal reconstructions, as illustrated in Figure 2(b).

To mitigate this, we propose the joint optimization of the text embedding during the reverse sampling
process in an adaptive manner based on image representations. Specifically, we employ concept
negation (Ho & Salimans, 2021) to suppress invalid concepts which relatively enhances the intended
semantic contents, as shown in Figure 2(a). We prioritize concept negation over concept emphasis
via direct prompt tuning (Lester et al., 2021), as the latter may disrupt the original intended semantic
contents embedded in the text prompt.

Here, the null-text embedding c∅ in CFG is regarded as a representation of concepts to be suppressed.
The goal of adaptive negation is to update c∅ to exclude concepts that is already captured by the
latent z through latent optimization. During the reverse sampling, we update c∅ to minimize the
following similarity in the CLIP (Radford et al., 2021) embedding space:

ℓ∅(c∅) = ⟨Timg(x̂0(y)), c∅⟩, (16)

where Timg denotes CLIP image encoder, and x̂0(y) denotes clean estimates on pixel space which is
the solution of (12). By optimizing (16), c∅ is “adaptively” updated to encode concepts that are not
prominent in the image representations, thereby allowing it to represent complementary concepts.
The computational cost of this optimization is negligible as shown in Table 4, since it only involves
the optimization of c∅ without backpropagating through the denoiser.

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

3.3 LATENT DPS WITH UPDATED NULL-TEXT

Based on the defined proximal optimization on clean latent domain, we found that alternating latent
DPS steps further improves the data consistency, especially for the image inpainting and phase
retrieval problems. In this case, we obtain the standard LDPS gradient with null text embedding c∅,
and update the intermediate noisy sample:

zt−1 = z′
t−1 − ρt∇zt∥A(Dφ(ẑ0|t(ĉ∅)))− y∥2 (17)

where ρt denotes the step size that weights the likelihood, similar to (Chung et al., 2022a; Rout
et al., 2024). In image super-resolution and deburring, we bypass the DPS update for computational
efficiency. Nevertheless, our algorithm can effectively solve the problem and shows comparable
performance with DPS update as shown in Figure 7. To sum up, the proposed algorithm is described
as in Algorithm 1.

4 EXPERIMENTS

Algorithm 1 Inverse problem solving with TReg

Require: Pretrained LDM ϵθ, Null text embedding c∅,
Text embedding c, VAE encoder Eϕ, VAE decoder
Dφ, Forward operation A, Measurement y, CLIP
image encoder Timg , Update Range Γ a

Initialization zT ∼ N (0, I)
for t ∈ [T, 1] do

ẑ0|t = (zt −
√
1− ᾱtϵ̂

ω
c )/
√
ᾱt

ϵ̃t ← Compute noise using (15)
if t ∈ Γ then

// Latent Optimization
x̂0 ← D(ẑ0|t)
x̂0(y)← Equation (12)
ẑ0(y)← E(x̂0(y))
ẑema
0 ← ᾱt−1ẑ0(y) + (1− ᾱt−1)ẑ0|t

zt−1 ←
√
ᾱt−1ẑ

ema
0 +

√
1− ᾱt−1ϵ̃t

// Adaptive Negation
c∅ ← c∅ − η∇∅sim(Timg(x̂0(y)), c∅)

else
zt−1 ←

√
ᾱt−1ẑ0|t +

√
1− ᾱt−1ϵ̃t

end if
end for

aPlease refer to Appendix A.4.

The goal of text regularization (TReg) is to
refine the solution space and reduce ambigu-
ity by leveraging text prompts as additional
cues. We assume that both the measure-
ment and a text prompt describing the so-
lution are provided for the inverse problem.
To highlight the effectiveness of ambigu-
ity reduction, we evaluate TReg under ex-
treme measurement conditions, in contrast
to other inverse problem solvers. Our evalu-
ation focuses on two key aspects: (1) the ef-
fectiveness of TReg in resolving ambiguity
through text, and (2) the accuracy of the re-
sulting solution, which includes alignment
with both the text and the measurements.
For further details on the experimental set-
tings, please refer to the Appendix.

4.1 EXPERIMENTAL SETTINGS

Forward models. For linear inverse prob-
lems, we select bicubic super-resolution
with scale factor 16, Gaussian deblur with
kernel size 61 and sigma 5.0, and box in-
painting where the masked reason is de-
signed to encompasses the eyes and mouth
of either animal or human. The forward operators are defined by following Kawar et al. (2022);
Wang et al. (2022); Song et al. (2022); Chung et al. (2023b). For non-linear inverse problems, we
choose Fourier phase retrieval and gamma correction. For details of the forward operators, please
refer to Appendix. For all tasks, we add measurement noise that follows the Gaussian distribution
with zero mean and noise scale σ2

0 = 0.01.

Dataset and text prompt. We prepare measurement-text sets where the text describes solution. The
simplest way is to leverage the ground-truth class label as a text description. However, to further
explore the capability of TReg reducing solution space according to given text description, we provide
perceptually estimated (non-ground-truth) classes as text cues. Here, we should carefully set proper
class for measurement to avoid ignoring the provided guidance.1

We decide to use Food-101 dataset (Bossard et al., 2014) for quantitative evaluation since it contains
complex patterns, leading to high ambiguity. Also, given that all images fall under the ’food’ category,
it is more straightforward to select an appropriate c aligned with the original caption. Specifically, we

1For example, “dog” for the measurement generated by baby image cannot effectively reduce solution space.
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Figure 3: TReg effectively reduce ambiguity of solution with text-based regularization. (a) Given
measurement and text description. (b) Multiple reconstructions and pixel-wise variance without and
with text regularization. (c) Variance measured over white dotted line on uncertainty map.

leverage 250 images from each of the "fried rice" and "ice cream" classes. For the case that given text
description is different from the original classes, we use “spaghetti” for “fried rice” and “macarons"
for “ice cream”. For the qualitative comparison, we additionally use a validation set of ImageNet,
AFHQ, FFHQ and LHQ datasets. Used text prompt is provided with reconstructed samples.

Baselines. As the first attempt to solve inverse problems using text-driven regularization, we establish
baselines by combining 1) data consistency-preserving methods and 2) text-guided editing methods.
Notably, these baselines involve sequential processing, while the proposed method stands out for
its efficiency, eliminating the need for pre/post-hoc techniques. For data consistency methods, we
utilize the measurement itself and PSLD (Rout et al., 2024) which is an LDM-based inverse problem
solver. Regarding text-guided editing methods, we opt for state-of-the-art techniques, namely Delta
Denoising Score (DDS) (Hertz et al., 2023) and Plug-and-Play diffusion (PnP) (Tumanyan et al.,
2023). Since PnP involves an inversion process, we handle it as a two-stage approach. Also, we use
PSLD with text guidance as our baseline by computing estimated noise via CFG. For the inpainting
task, we utilize Stable-Inpaint, a fine-tuned stable diffusion model for the inpainting task, and
Repaint (Lugmayr et al., 2022) as our baseline. Finally, in the Fourier phase retrieval task, we
compared the results with and without the text prompt using our framework to emphasize the effect
of text guidance in breaking symmetry. In other words, for the baseline, we provided null text for the
text condition.

4.2 EXPERIMENTAL RESULTS

Ambiguity reduction. To assess the effectiveness of TReg in reducing ambiguity in reconstruction
through text regularization, we quantify pixel-level variance across multiple reconstructions from
blurry measurements with and without text descriptions (Figure 3).2 Specifically, for the reconstruc-
tion without text description, we use a null-text c∅ as a text description for the solution. All other
components such as latent optimization (Section 3.1) and adaptive negation (Section 3.2) are retained.

As shown in Figure 3(b), TReg leads to consistent solutions corresponding to the given text description,
while reconstructed images exhibit multiple solutions, such as a car in the background or a bedroom,
in the absence of text regularizaiton. This discrepancy is clearly observed in pixel-level variance
in Figure 3(c). While solutions with TReg are successfully refined, some residual uncertainties
are observed, especially at head positioning or mouth shape. However, it is noteworthy that those
residual uncertainties do not violate the data consistency and text description, and TReg is effective
in resolving ambiguity via text.

Accuracy of obtained solution: use true class as c. TReg is an inverse problem solver that uses
text description of solution to refine the solution space. To evaluate the accuracy of obtained solution
via TReg, we first prepare set of measurement-text pairs where the original class of measurement is
given as text. For both SR and Gaussian deblur tasks, we report PSNR and FID of reconstructions

2Specifically, we repeat reconstruction 10 times with different random seeds for a single measurement. The
true image is sampled from ImageNet validation set.
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Figure 4: Reconstruction by TReg where the original class is given as text description: "A photo of
<class>."

Class: Ice-Cream SRx16 Deblur

Method PSNR ↑ FID ↓ PSNR ↑ FID ↓
DDRM 16.98 268.5 17.41 223.2
PGDM 14.95 260.5 13.87 295.8

PSLD 17.73 280.1 21.89 213.6
PSLD + CFG 16.47 176.1 20.76 192.9
Our (w/o AN) 22.05 144.4 23.91 131.2
Our (w/ AN) 21.09 124.2 23.73 120.6

Table 1: Quantitative result for text "ice cream".

Class: Fried-rice SRx16 Deblur

Method PSNR ↑ FID ↓ PSNR ↑ FID ↓
DDRM 16.71 244.0 17.08 195.3
PGDM 14.58 246.6 14.01 276.2

PSLD 17.32 320.3 21.09 187.3
PSLD + CFG 14.97 150.8 20.49 168.3
Our (w/o AN) 21.26 132.0 22.99 133.4
Our (w/ AN) 19.98 97.40 22.83 112.1

Table 2: Quantitative result for text "fried rice".
Fried Rice→ Spaghetti (SRx16) Ice Cream→Macaron (SRx16) Fried Rice→ Spaghetti (Deblur) Ice Cream→Macaron (Deblur)

# stages Method LPIPS ↓ CLIP-sim ↑ y-MSE ↓ LPIPS ↓ CLIP-sim ↑ y-MSE ↓ LPIPS ↓ CLIP-sim ↑ y-MSE ↓ LPIPS ↓ CLIP-sim ↑ y-MSE ↓
1 Ours 0.769 0.303 0.005 0.771 0.314 0.004 0.737 0.300 0.013 0.743 0.312 0.011

P2L 0.756 0.265 0.020 0.743 0.293 0.020 0.798 0.274 0.013 0.750 0.252 0.011
PSLD 0.756 0.265 0.020 0.743 0.293 0.020 0.798 0.274 0.013 0.750 0.252 0.011

2 PnP 0.826 0.251 0.005 0.808 0.239 0.005 0.798 0.259 0.015 0.752 0.248 0.011
PSLD+DDS 0.788 0.247 0.010 0.772 0.328 0.013 0.768 0.247 0.014 0.752 0.300 0.015

3 PSLD+PnP 0.801 0.291 0.014 0.784 0.306 0.008 0.761 0.312 0.016 0.751 0.319 0.013

Table 3: Quantitative evaluation of SRx16 and Gaussian Deblurring task. Mean values are reported.
Bold: the best score, underline: the second best.

in Table 1 and 2. Evaluation demonstrates the effectiveness of proposed method compared to other
diffusion-based inverse solvers. The proposed solver without adaptive negation tends to achieve
higher PSNR than with adaptive negation, since it obtains blurry images with missing details. Thus,
FID score is improved with adaptive negation which is aligned with qualitative comparison in Figure 2.
Also, TReg effectively reconstruct solutions for other dataset such as ImageNet (Figure 4) which
implies the robustness of the proposed solver to various image domain based on powerful diffusion
prior. For more analysis, please refer to Appendix section G.

Accuracy of obtained solution: use different class as c.

Using TReg, we can find solution of inverse problem according to text prompt. To examine this
property, we solve the aforementioned problems where the given text is different with the original class
of the measurement. The proper solution should satisfy 1) data consistency with measurement and 2)
alignment with given prompt. We evaluate the quality of obtained solution based on three metrics:
LPIPS, the mean squared error on measurement domain, namely y-MSE3, and the CLIP similarity
between reconstruction and given text prompt following the prior works in image editing (Tumanyan
et al., 2023; Hertz et al., 2023; Park et al., 2024). Note that there is no ground truth in this case, so we
do not evaluate PSNR or SSIM.

3This is equivalent to data consistency loss, ∥y −A(x)∥22.
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Figure 5: Reconstructions when given text prompt differs from the original class.

Table 3 shows that TReg achieves superior performance compared to baselines. Specifically, TReg
find solution with high quality while preserving data consistency, as evidenced by lower LPIPS and y-
MSE values. For some cases, PSLD gives lower LPIPS but solutions lose data consistency and exhibit
large y-MSE values, which is also shown in the fourth column of Figure 5. TReg is comparable to or
outperforms baseline methods, emphasizing that TReg is better than a straightforward application of
image editing algorithms in solving text-guided inverse problems. For more analysis, please refer to
Appendix section H.

Direct application of the editing algorithm to the measurement, referred to as PnP, yields sub-optimal
performance across all metrics. In the case of y-MSE, PnP achieves a lower value due to minimal
alterations made to the measurement, as depicted in the last column of Figure 5. Also, the performance
of sequential approaches shows that reconstruction error is accumulated at each stage, resulting in
substantial errors in the final outcome. In contrast, TReg effectively integrates the given text prompt
while preserving robust data consistency, thereby validating its efficacy. Meanwhile, we also compare
the results of our method without text prompt. When text is replaced by null-text (third column in
Figure 5), it provides a solution that aligns well with the given measurement but generates arbitrary
structures. This result highlights the impact of TReg that reduces the ambiguity of inverse problem
solving. PSLD with CFG guidance (fourth column in Figure 5) also fails to appropriately reflect
given text prompt, as there is no consideration for text-guidance in solving inverse problems.

4.3 ADDITIONAL RESULTS ON NON-LINEAR INVERSE PROBLEMS

Although we propose solving latent optimization (10) using variable splitting for computational
efficiency, any off-the-shelf optimizer could be employed to address, for example, non-linear inverse
problems. We demonstrate in Figure 6 that TReg improves the accuracy of solutions for non-linear
problems through text regularization. Specifically, the results for Fourier Phase Retrieval emphasize
that current diffusion-based inverse problem solvers, such as Latent DPS, are still insufficient for
breaking the symmetry caused by the loss of phase information. In contrast, text regularization
via TReg successfully breaks this symmetry and consistently produce a unique solution across
multiple trials. Additionally, for non-uniform deblurring with gamma correction, TReg enhances
reconstruction quality compared to Latent DPS. Notably, text conditioning through CFG in the latent
DPS introduces unintended noisy structures, which are absent when using TReg.

5 RELATED WORK

Leveraging text prompts for inverse problem solving has been studied in several recent works.
TextIR (Bai et al., 2023) incorporates text embedding from CLIP during the training of an image
restoration network to constrain the solution space in the case of extreme inverse problems. DA-
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Figure 6: Reconstructions for non-linear inverse problems: Fourier Phase retrieval and Non-uniform
deblurring with gamma correction.

CLIP (Luo et al., 2023) takes a similar approach of leveraging the embeddings and applies it to
diffusion bridges. P2L (Chung et al., 2023d) proposes to automatically tune text embedding on-the-fly
while running a generic diffusion inverse problem solver (More discussions in Appendix C). Notably,
the latter two methods (Luo et al., 2023; Chung et al., 2023d) are focused on improving the overall
performance rather than constraining the solution space. TextIR has similar objective to TReg, but
requires task-specific training. In this regard, to the best of our knowledge, TReg is the first general
diffusion-based inverse problem solver that does not require task-specific training, while being able
to incorporate text conditions to effectively control the solution space in general inverse problems.

6 CONCLUSION

This study introduced a novel concept of latent diffusion inverse solver with regularization by texts,
namely TReg. The proposed solver minimizes ambiguity in solving inverse problems, effectively
reducing uncertainty and improving accuracy in visual reconstructions, bridging the gap between
human perception and machine-based interpretation. To achieve this, we derived LDM-based reverse
sampling steps to minimize data consistency with text-driven regularization, consisting of adaptive
negation. Specifically, to effectively integrate textual cues and guide reverse sampling, the paper
introduced a null text optimization approach. Experimental results and visualizations demonstrated
that text-driven regularization effectively reduces the uncertainty of solving inverse problems, and
further enables text-guided control of signal reconstruction.
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A IMPLEMENTATION DETAILS

In this section, we provide further details on implementation of TReg. The code will be available to
public on https://github.com/TReg-inverse/Treg.

A.1 FORWARD OPERATIONS

Box inpainting In the case of the box inpainting task, our intention is to employ a universal mask
that encompasses the eyes and mouth of either animal or human. For this, we generate a rectangular
mask based on averaged images across all data points within each dataset.

Fourier phase retrieval For Fourier phase retrieval, we obtain the Fourier magnitude by ap-
plying the Fourier transform to the image. In the formula, the forward model is expressed as
y ∼ N (y||FPx0|, σ2

0I), where F denotes the 2D Discrete Fourier Transform (DFT), P represents
oversampling, that is implemented by adding 256 zero-padding to each side, and x0 denotes the clean
image.

A.2 STABLE-DIFFUSION AND CLIP

We leverage the pre-trained Latent Diffusion Model (LDM), including an auto-encoder and the U-net
model, provided by diffusers. Due to the limitation of its modularity, we implement the sampling
process for inverse problems by ourselves, rather than changing given pipelines. The Stable-diffusion
v1.5 is utilized for every experiment in this work, and the ViT-L/14 backbone and its checkpoint is
used for CLIP image encoder for adaptive negation.

A.3 CONJUGATE GRADIENT METHOD

In this work, we apply the CG method to find a solution to the following problem:

min
x

∥y −Ax∥22
2σ2

+ λ∥x−Dφ(ẑ0|t)∥22. (18)

As the objective function is a convex function, the solution x∗ should satisfy

−A⊤(y −Ax∗) + λ(x∗ −Dφ(ẑ0|t)) = 0, (19)

where the coefficients are absorbed to λ. Then, we can formulate it as a linear system as

(λI+A⊤A)x∗ = λDφ(ẑ0|t) +A⊤y (20)

where A = λI+A⊤A and b = λDφ(ẑ0|t) +A⊤y. Thus, we can solve (20) by CG method. In this
work, we use 5 iterations of CG update with λ = 1e− 4 for each time step if not explicitly stated
otherwise.

A.4 CG UPDATE RANGE

The data consistency update with CG algorithms is applied for a subset of sampling steps as described
by Γ in Algorithm 1 of the main paper. Our empirical observation show that this partial data
consistency update achieves better trade-off between the image reconstruction consistency and the
latent stability. In the absence of the data consistency update, we employ the deterministic DDIM
sampling step by setting ηβ̃t = 0 or apply DPS gradient to improve the reconstruction quality. Overall,
for inverse problems except the Fourier phase retrieval, we set the Network Function Evaluation
(NFE) to 200 and design Γ = {t|t mod 3 = 0, t ≤ 850}4, where mod denotes the modulo operation.
For the Fourier phase retrieval, we set Γ = {t|t mod 10 = 0}.

4The pre-trained Stable-diffusion uses T = 1000. Thus, t = 850 is equivalent to the sampling step with
NFE = 170.
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Figure 7: Regardless of DPS guidance, we can obtain proper solution through TReg for super-
resolution and deblurring. Original class: "ice cream", Given text prompt: "macaron". x̂0 represents
obtained solution and A(x̂0) denotes simulated measurement with x̂0.

Algorithm 2 Inverse problem solving with TReg with DPS

Require: ϵθ,∅, c, E ,D,A, y, Timg

zT ∼ N (0, I)
for t ∈ [T, 1] do

if t ∈ Γ then
ẑ0|t = (zt −

√
1− ᾱtϵ̂

ω1
c (zt))/

√
ᾱt

ϵ̃t ← Compute noise using (15)
x̂0 ← D(ẑ0|t)
x̂0(y)← Equation (12)
ẑ0(y)← E(x̂0(y))
ẑema
0 ← ᾱt−1ẑ0(y) + (1− ᾱt−1)ẑ0|t ▷ Latent Optimization

zt−1 ←
√
ᾱt−1ẑ

ema
0 +

√
1− ᾱt−1ϵ̃t

c∅ ← c∅ − η∇∅sim(Timg(x̂0(y)), c∅) ▷ Adaptive negation
else

ẑ0|t = (zt −
√
1− ᾱtϵ̂

ω2
c (zt))/

√
ᾱt

ϵ̃t ← Compute noise using (15)
z′
t−1 ←

√
ᾱt−1ẑ0|t +

√
1− ᾱt−1ϵ̃t

zt−1 ← z′
t−1 − ρt∇zt∥A(Dφ(ẑ0|t))− y∥

end if
end for

A.5 TREG WITH DPS UPDATE

In the main manuscript, we only describe the pseudocode of TReg without DPS update for the
readability. However, the algorithm could readily conduct an additional DPS update as follow. The
pseudocode could be described as in Algorithm 2. We have used this additional DPS step for the box
inpainting and Fourier phase retrieval task with step size ρt =

√
ᾱt−1. For box inpainting task, we

set CFG scale ω2 for DPS gradient to 0, while we set CFG scale ω2 = ω1 in Fourier phase retrieval
task. For other tasks, we found that reconstructions quality is promising even without DPS as shown
in Figure 7.

A.6 CFG GUIDANCE SCALE

The classifier-free guidance (CFG) is defined as

ϵ̂θ = ϵθ(zt, ϕ, t) + ω(ϵθ(zt, c, t)− ϵθ(zt, ϕ, t)) (21)
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where ω is a scale for the guidance. In other words, ω could be interpreted as a magnitude for the
negation. Thus, we leverage ω to control the extent of enhancement applied to a given text prompt.
In fact, we can regulate the same feature by adjusting the null-text update strategy, including null-text
update frequency and number of optimization iterations per time step. However, the CFG guidance
scale is simpler and more intuitive than adjusting the null-text update strategy. Hence, we have used a
proper CFG scale while fixing the null-text update schedule Γ.

For the main experiments with the Food101 dataset in the main paper, we use the default scale 7.5
for all results. For the Fourier phase retrieval problem, we set the CFG scale ω1 = ω2 = 4.0. For
other results, CFG scale among {3.0, 4.0, 5.0, 7.5} provide robust performance for various datasets
including FFHQ, AFHQ, LHQ (landscape dataset), and ImageNet.

A.7 OPTIMIZATION PROBLEM FOR FOURIER PHASE RETRIEVAL

In contrast other inverse problems with linear operation, Fourier phase retrieval involves non-linear
operation so we cannot leverage CG to solve the optimization problem in pixel space. Thus, we use
Adam optimizer with learning rate 1e− 3 and β1 = 0.9, β2 = 0.999 to obtain the solution of

min
x

∥y −A(x)∥22
2σ2

+ λ∥x− x̂0∥22 (22)

by setting λ = 0. This induces additional computational costs to solve the optimization problem.
However, as analyzed in Section D, these costs are comparable to those of other baseline algorithms,
while consistently achieving the reconstruction of a unique solution.

B CONVERGENCE ANALYSIS

In section 3.1, we optimize the full latent proximal objective by leveraging alternate variable splitting,
where the data consistency (12) is optimized in pixel space and the text-conditional proximal opti-
mization (13) is mainly solved in latent space. Here, we analyze the convergence of the proposed
refinement process for a better understanding.

Figure 8: Data consistency and DSM loss
during reconstruction. Mean ± Std for 100
samples are plotted.

A direct theoretical convergence analysis is challeng-
ing due to the complexity arising from the transition
between pixel and latent spaces. However, we provide
an informative empirical analysis by evaluating the pro-
gression of two objectives during the reverse sampling
process: (a) data consistency measured in pixel space
and (b) diffusion training objective (also known as the
denoising score matching loss) with a given text prompt.

In formula, we plot (a) ∥y − A(x̂0|t)∥2 and (b) ∥ϵ −
ϵθ(zt, c, t)∥2 as in (24). The first objective indicates
how well the solution aligns with the given measure-
ment. The second objective represents how well the
solution follows the marginal distribution of the pre-
trained diffusion model, conditioned on the given text.
We present results for two cases as the main paper:
where the given text prompt matches the true label and
where it differs from the true label. For both cases, we plot the mean and standard deviation of
these objectives, computed across 100 samples. Figure 8 and 9 shows that both objectives decrease
significantly during the reverse sampling process, demonstrating that TReg empirically promotes
convergence. Notably, the data consistency of TReg improves particularly in the later sampling phase,
which is in line with the interpolative constant setting (ᾱt−1 = ζ/(ζ + γ)) in (13).
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Figure 9: Data consistency and Text-conditioned score matching loss for TReg and P2L. Mean ± Std
for 100 reconstructions are plotted. Task: Gaussian Deblurring. Original Class: “Risotto”. Target
Text: “French Fries”. P2L initializes the prompt embedding with the target text (“French Fries").

C COMPARISON TO P2L

Here, we compare TReg with P2L (Chung et al., 2023d) in detail and highlight the key differences.
As mentioned in Sec. 1, we note that P2L is orthogonal to our approach, despite their apparent
similarities. Specifically, P2L treats the (null-text) prompt as an additional parameter to improve the
data consistency, optimizing it as:

C∗t,P2L = argmin
C
∥y −A(Dφ(ẑ0|t(C)))∥22, (23)

which corresponds to eq.(12) of Chung et al. (2023d).

Unlike TReg, P2L does not guide outputs toward a specific mode aligned with semantic linguistic
conditions. It lacks support for Classifier-Free Guidance (CFG) and relies solely on conditional
scores. While both methods leverage prompt embeddings, they do so in fundamentally different
ways: P2L focuses on data consistency, whereas TReg reduces the solution space by incorporating
rich perceptual estimates of noisy measurements in the form of linguistic descriptions.

Several empirical analysis verify these distinctions (see Sec. G). First, while P2L initialize c as a
null text embedding in general, for the comparison, we adapt P2L as a target text-based baseline
by providing a ground-truth textual descriptions. Quantitatively, TReg outperforms P2L even under
these ideal scenarios (see Sec. G for more discussions). We remark that P2L requires twice the
neural function evaluations (NFEs) compared to TReg, as it recomputes Tweedie estimates after each
prompt update (refer to Table 4 and Sec. D for details).

Fig. 9 further highlights the fundamental gap between TReg and P2L. Specifically, we monitor the
normalized text-conditional score matching loss (i.e. score matching distillation loss (Poole et al.,
2023)) throughout the reverse sampling for both TReg and P2L:

ℓ(z) =
1− ᾱt

ᾱt
∥ϵ− ϵθ(

√
ᾱtz +

√
1− ᾱtϵ, c, t)∥2 (24)

=
1− ᾱt

ᾱt
∥ϵ− ϵθ(zt, c, t)∥2. (25)

This evaluates how well the intermediate solutions progressively align with the clean data manifold
and the corresponding text condition c. As shown in Fig. 9 (right), TReg consistently achieves
better progressive alignment with textual conditions, particularly during the early stages of sampling.
These early stages are critical for the overall spatial layout, eventually establishing semantic textual
alignment. Overall, TReg demonstrates qualitative and quantitative advantages over P2L by achieving
more efficient sampling, better data consistency, and textual alignment.
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PSLD PSLD w/ AN P2L TReg

Linear 1.47 1.47 2.00 0.26
Non-linear 1.12 1.12 − 1.09

Table 4: Wall-clock runtime (min) of each algorithm for NFE=200.

Figure 10: Reconstruction by TReg with various text prompts. Super-resolution (x16) task on
AFHQ-cat.

D RUNTIME ANALYSIS

We propose text regularization by formulating a proximal optimization problem in the latent space.
Thus, additional time to solve the optimization problem is required compared to reverse diffusion
process. Notably, TReg does not require excessive computation time although we introduce a two-
step optimization approach. This is because we employ an accelerated optimization method, like
conjugate gradietn (CG), and derive a closed-form solution for subsequent problem. As a result,
TReg demonstrates superior efficiency compared to the baseline algorithm, as shown in Table 4. To
evaluate the efficiency, we measure the runtime for a Gaussian deblurring task and Fourier phase
retrieval with PSLD and TReg, as representative tasks for linear and non-linear inverse problem.
Specifically, we did not use the fixed-point constraint of PSLD for the non-linear inverse problem,
as A⊤ is not properly defined in this case. Table 4 shows that TReg requires significantly shorter
time to obtain solutions for linear inverse problem. Also, for the non-linear problem where the
off-the-shelf optimizer is leveraged, TReg is faster than PSLD since the optimizaion variable is clean
latent estimate so it does not require back-propagation through denoising UNet. Furthermore, the
optimization variable for adaptive negation is limited to the text embedding, which incurs minimal
additional computational cost. Consequently, the runtime for adaptive negation is negligible.

E ABLATION STUDY ON TEXT PROMPT

We conduct an ablation study on text prompts to assess whether the reconstructions vary based on
the given text. Specifically, for the AFHQ-cat validation set, we examine the solutions for a super-
resolution task obtained by TReg using the prompts “a cat,” “a photo of a cat”, and “a photography of
a cat.” As shown in Figure 10, the reconstructions are not highly sensitive to grammatical variations
in the text prompts.
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Figure 11: Reconstructions in the presence of JPEG compression artifacts applied after Gaussian blur
on AFHQ-dog validation set.

F ROBUSTNESS TO JPEG ARTIFACTS

A practical scenario for inverse problems involves measurements that include additional noise beyond
Gaussian noise, such as artifacts introduced by JPEG compression. In this section, we evaluate the
robustness of TReg to JPEG artifacts. Specifically, we apply a JPEG compression algorithm5 to
the measurement and then add Gaussian noise. For JPEG compression, we vary the quality factor
(QF) at 50, 30, and 10, where a higher quality factor indicates less compression. It is important
to note that we do not include JPEG compression in our forward operation, as the purpose of this
study is to assess TReg’s robustness to measurement noise. For the prompt, we use “a photo of a
dog”. As shown in Figure 11, TReg demonstrates robustness up to Q30, providing nearly identical
reconstructions. At Q10, however, significant noise is introduced into the measurement, resulting in
degraded reconstructions. For such extreme JPEG artifacts, incorporating JPEG compression into the
forward operation could be considered.

G ADDITIONAL EVALUATION WITH GROUND-TRUTH CLASSES

The main experiments focus on practical scenarios where perceptually estimated descriptions simulate
real-world user-provided cues for better reconstruction. In this section, for completeness, we also
evaluate an additional scenario with ‘ground-truth’ textual descriptions of the noisy measurements.
Using benchmarks like FFHQ, AFHQ-cat, and AFHQ-dog, where ground-truth class labels (e.g.,
‘dog’, ‘cat’) are available, P2L is adapted as a text-based baseline by initializing prompt embeddings
with these ground-truth label descriptions.

Table 5 and 6 shows that TReg outperforms other baselines, including the computationally expensive
P2L. Fig. 10, 11, 12, and 13 further illustrate the qualitative advances. These results highlight that
TReg utilizes textual information more effectively and could achieve even better performance with
reliable descriptive inferences of noisy measurements.

H ADDITIONAL EVALUATION WITH ESTIMATED CLASSES

To further demonstrate whether TReg can reliably and generally reconstruct “perceptually plausible”
solutions from a single noisy measurement with text description, we conduct additional evaluation on
ImageNet validation set which contains 1000 classes.

5We use the forward operation defined by DDRM (Kawar et al., 2022), https://github.com/
bahjat-kawar/ddrm-jpeg.
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FFHQ (SRx16) FFHQ (Deblur) FFHQ (Inpaint) AFHQ (SRx16) AFHQ (Deblur) AFHQ (Inpaint)

Method PSNR ↑ FID ↓ PSNR ↑ FID ↓ PSNR ↑ FID ↓ PSNR ↑ FID ↓ PSNR ↑ FID ↓ PSNR ↑ FID ↓
PSLD 20.01 142.8 24.82 59.41 19.76 60.97 16.48 113.4 20.52 125.5 16.93 104.7

PSLD + CFG 15.67 146.4 22.61 109.4 16.82 90.72 16.45 123.8 20.58 125.3 15.17 130.3
P2L 21.94 72.02 23.03 91.15 16.84 85.32 19.99 121.7 20.96 85.80 16.07 138.4

TReg 22.60 82.71 24.82 40.24 19.95 66.93 19.60 37.13 21.13 35.47 17.39 51.97

Table 5: Quantitative evaluation on FFHQ and AFHQ validation sets. The ground-truth class labels
are given as text descriptions. Bold represents the best and underline denotes the second best.

ImageNet (SRx16) ImageNet (Deblur) ImageNet (Inpaint)

Method PSNR ↑ FID ↓ PSNR ↑ FID ↓ PSNR ↑ FID ↓
PSLD 18.04 170.5 20.97 115.9 17.41 90.13
P2L 18.62 141.1 19.58 117.0 15.94 119.3

TReg 19.71 69.65 20.66 55.92 18.11 50.67

Table 6: Quantitative evaluation on ImageNet 1k validation sets. The ground-truth class labels are
given as text descriptions. Bold represents the best and underline denotes the second best.

Specifically, we construct a validation set from ImageNet comprising image-text pairs where the
text description differs from the original class. First, we constructed a 1k ImageNet validation set
encompassing all ImageNet classes, following the approach used in P2L. For each validation sample,
the ground-truth class is known. Next, to identify a “perceptually plausible” text description, we
measured pairwise LPIPS for all noisy measurements simulated from the 1k ImageNet validation
set and selected the target text description corresponding to the class label with the lowest LPIPS
samples. This process resulted in a 1k ImageNet validation set with both original and target classes
(e.g. “great white shark” and “albatross”, see Figure 16). Finally, we solved the inverse problem on
this validation set using the experimental setup outlined in the main experiment.

Table 6 demonstrates that TReg effectively reconstructs solutions aligned with the given target
class while satisfying data consistency, as evidenced by improved FID, CLIP similarity scores, and
yMSE. In contrast, baseline methods exhibit significant trade-offs among these metrics. For example,
PSLD achieves the best FID in the deblurring task, but its reconstructions fail to align with the
given text description, as indicated by low CLIP similarity. Similarly, PSLD + CFG in the SR task
achieves higher CLIP similarity but fails to maintain data consistency. In comparison, TReg delivers
better or comparable performance across all metrics. These results highlight the versatility of text
regularization with TReg in solving inverse problems for a wide range of natural images, extending
beyond categories like person, cat, and dog.

I ADDITIONAL RESULTS

I.1 TEXT-GUIDED BOX INPAINTING

We conduct a qualitative comparison for box inpainting task. As illustrated in Figure 17 (a), TReg
reconstructs image properly according to the given text prompt with higher fidelity compared to
baseline methods. From Figure 17 (b), we repeatedly observe that text regularization enables the
discovery of solutions as intended. It allows the discovery of even rare solutions, such as a cat with
green eyes. Additionally, in Figure 17 (c), TReg demonstrates its capability to solve the inpainting
problem by composing concepts. In other words, TReg can narrow down the solution space by
utilizing not only a singular concept but also multiple concepts simultaneously.

Furthermore, we provide uncurated reconstruction results in Figure 18 to demonstrate the robustness
of the TReg. We provide two box inpainting scenarios: a rectangular inpainting task on the AFHQ-
dog validation set with the text prompt “a photo of a dog with glasses”, and a square inpainting
task on the AFHQ-cat validation set with the text prompt “a photo of a dog”. For both cases, TReg
successfully fills out the masked regions according to provided text descriptions.
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Figure 12: Qualitative comparison for super-resolution (x16) task on FFHQ

I.2 SUPER-RESOLUTION AND DEBLURRING

TReg is a zero-shot inverse problem solver based on diffusion prior trained on large scale of text-image
dataset, implying its robustness to diverse set of texts and image domain. Thus, we further investigate
the robustness of TReg in reducing solution space based on given text prompt. Figure 19 illustrates
reconstructions with various text prompts. Regardless of data domain, TReg effectively finds the
solution by preserving data consistency and reflecting text prompt. Furthermore, the result directly
shows the existence of multiple solutions that satisfied given forward model, which is an evidence
of the ill-posedness nature of the inverse problem. In addition, we examine the reconstruction for
inverse problem defiend on FFHQ dataset with text prompts “baby face” and “adult face”. As shown
in Figure 20, the proposed method successfully reconstructs images according to the given prompt,
while the baseline method (sequential approach of PSLD and DDS) shows inferior reconstruction
quality.

J LIMITATION

While TReg demonstrates its performance in breaking the symmetry in the Fourier Phase Retrieval
problem, its effectiveness is contingent upon the text prompt. For instance, when the true image
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Figure 13: Qualitative comparison for deblurring (Gauss) task on FFHQ

features a complex or colorful background, a simple text prompt such as "a photography of a face"
may not suffice to reconstruct a unique solution without residual symmetry.

In our scenario, we assume that the user can access the category of the dataset (e.g., FFHQ for faces).
However, in real-world scenarios, it may be challenging to derive more informative text prompts
solely from measurements with severe degradation. In general, finding suitable text prompts remains
an open problem in text regularization for solving inverse problems.
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Figure 14: Qualitative comparison for super-resolution (x16) task on AFHQ
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Figure 15: Qualitative comparison for deblurring (Gauss) task on AFHQ
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Figure 16: Reconstructions for deblurring task when given text prompt differs from the original class.
ImageNet validation set (1k images) is leveraged.

Figure 17: Representative results for box inpainting task. (a) TReg is better at finding solution
according to text with high-fidelity. (b) Text regularization helps to reconstruct as intended. (c) TReg
is possible to reconstruct based on multiple concepts.
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Figure 18: Uncurated results for box inpainting task. (Top) Inpainting of eye region of AFHQ-dog
with the prompt "a photo of a dog with glasses". (Bottom) Inpainting of face region of AHFQ-cat
with the prompt "a photo of a dog".
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Figure 19: Reconstructions for diverse domain.
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Figure 20: Reconstruction result for SR (x16) and Deblur (Gaussian) task on FFHQ dataset. Our
method outperforms the existing methods (PSLD+DDS) in terms of the reconstruction quality.
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