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1 RELATED WORK

Our work mainly involves two research fields: Universal Representation Learning (URL) for time
series based on Contrastive Learning (CL) and Large Language Model (LLM) + Time Series (TS).

1.1 CL-BASED URL FOR TS

Unsupervised URL approaches aim to learn discriminative feature representations from unlabeled
data, without the requirement of annotating every sample. Enabling URL is extremely crucial for
time series data, due to its unique annotation bottleneck caused by its complex characteristics and
lack of visual cues compared with other data modalities.

Contrastive methods learn meaningful representations from time series by optimizing self-
discrimination tasks. Instead of directly modeling the complex raw data, they employ pretext
tasks that leverage the underlying similarity between samples, which eliminates the need for re-
constructing the complete input and allows for the discovery of contextualized underlying factors of
variations. Contrastive methods typically generate augmented views of the raw data through vari-
ous transformations and then learn representations by contrasting positive samples against negative
samples.The existing CL-based URL for TS are listed in Table S1.

Type Methods

Instance-level SimCLR Chen et al. (2020) TimeCLR Yang et al. (2022) MoCo He et al. (2020) BYOL Grill et al. (2020)
CPC van den Oord et al. (2018) SimSiam Zheng et al. (2023) MCL Wickstrøm et al. (2022)

Prototype-level SwAV Caron et al. (2020) PCL Li et al. (2021b) CCL Sharma et al. (2020) SCCL Zhang et al. (2021)
CC Li et al. (2021c) SLIC Khorasgani et al. (2022) MHCCL Meng et al. (2022)

Temporal-level TS2Vec Yue et al. (2022) TS-TCC Eldele et al. (2021) TNC Tonekaboni et al. (2021) TCL
T-Loss Franceschi et al. (2019b) BTSF Yang & Hong (2022) CoST Woo et al. (2022a)

Table S1: Contrastive Learning based Universal Representation Methods for Time Series

Instance-level contrastive models treat individual samples independently for the purpose of instance
discrimination. They utilize data augmentations to transform original inputs into a new embedding
space. Within this space, augmentations derived from the same sample are considered as positive
pairs, while those from different samples are treated as negative pairs. During training, these models
are optimized by maximizing the similarity between representations of positive pairs, while simul-
taneously minimizing the similarity between representations of negative pairs.

Prototype-level contrastive models break the independence between samples and explore to exploit
the implicit semantics shared by samples in the same cluster. They can address the limitation that
instance-level contrastive learning models tend to treat semantically similar samples as negatives.

Temporal-level contrastive models instead focus on capturing scale- invariant representations at each
individual timestamp. By cosidering both instance-level and temporal-level representation learning
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strategies, researchers aim to enhance the capability of contrastive learning methods in capturing the
complexities inherent in time series data.

1.2 LLM+TS

Large models, specifically referred to as large language models (LLMs) and pre-trained foundation
models (PFMs), have witnessed remarkable success across a multitude of tasks and domains, such
as natural language processing (NLP), computer vision (CV). Given the remarkable achievements of
large models in these diverse fields, an intriguing question emerges: can large models be effectively
employed to analyze TS data?

TS data has long been studied and proven to be indispensable in a myriad of real-world applica-
tions, encompassing fields such as geoscience, transportation, energy, healthcare, environment, and
finance. While large models have made significant progress in various fields, the arena of time se-
ries analysis has followed a more gradual path. Traditional analytical methods have predominantly
relied on statistical models. The advent of deep learning has galvanized the research community to
explore more potent data-driven models, typically built on the basis of Recurrent Neural Networks
(RNNs), Convolutional Neural Networks (CNNs), and Transformers. Nonetheless, the majority of
these models remain relatively small in scale and are tailored for specific tasks, thereby lacking the
capacity to acquire comprehensive semantic and knowledge representations from large-scale data
for multi-task reasoning.

There hasn’t been much research done on TS+LLM because this field is still in its infancy. We
summarize the existing work in Table S2. Different from the main text, we category work here
through technical means.

Means Pros Cons Work

Training Specialized, Not universal, Pre-training Ma et al. (2023)
accurate large datasets Earth transformer Bi et al. (2023)

Tuning End-to-end, More experiments, GPT4TSZhou et al. (2023)
accurate lose language ability LLM4TSChang et al. (2023)

LLMTime Gruver et al. (2023)

Tool Augmented
Parameter-efficient,
less experiments

Need experts,
need annotation

PromptCast Xue & Salim (2023)
Health Learner Liu et al. (2023)
METS Li et al. (2023)
Text2ECGChung et al. (2023)

External Encoder Parameter-efficient, Weak robust TEST
multiple abilities Time-LLM Jin et al. (2023)

Table S2: Existing Work about TS+LLM

2 EXPERIMENTS

2.1 MODEL

2.1.1 ENCODER

The core of TEST is to train an encoder and a soft prompt. The encoder must can extract relevant
information from TS, needs to be time- and memory-efficient, and has to allow variable-length
inputs. Thus, as shown in Figure S1, we build a causal TCN with 10 layers of convolution blocks.
Each convolution block is a sequence of GELU, DilatedConv, BatchNorm, GELU, DilatedConv,
with skip connections across each block. The DilatedConvs have dilation of 2i in each layer i of
convolution block. A final convolution block is used to map the hidden channels to the output
channel whose size is the same as the LLM’s embedding size.

The detailed architecture is: Number of channels in the intermediary layers of the causal network
is 40; Number of layers (depth of the causal network) is 10; Kernel size of all convolutions is
3; Negative slope of the leaky ReLU activation is 0.01; Number of output channels of the causal
network (before max pooling) is 640; Dimension of the representations is the same as the LLM’s
embedding size (e.g. 1024 for gpt2).
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Figure S1: Illustration of Three Stacked Dilated Causal Convolutions and Composition of the i-th
Layer of The Chosen Architecture

We train our models with the following parameters for time series classification. Note that no hy-
perparameter optimization was performed on the encoder hyperparameters: Optimizer is Adam
with learning rate α = 0.001 and decay rates β = (0.9, 0.999); Number of negative samples is
K ∈ {1, 2, 5, 10} for for univariate time series, K ∈ {5, 10, 20} for multivariate ones; Batch size is
10; Number of optimizations steps is 2000for K ≤ 10 (i.e., 20 epochs for a dataset of size 1000),
1500 otherwise.

2.1.2 LLM

The used LLMs are as listed in Table S3. Each encoder and soft prompt of LLM are trained using
the Adam optimizer on 20 NVIDIA Tesla V100-SXM2 GPU with CUDA 11.3.

Model Size Embed. dimension

Bert Devlin et al. (2018) 110M, 335M 748, 1024
GPT2 Radford et al. (2019) 117M, 345M, 774M 768, 1024, 1280
ChatGLM Du et al. (2022) 6B 4096
LLaMa2 Touvron et al. (2023) 7B, 13B 4096

Table S3: The Used Language Model

2.2 FORECASTING TASKS

All the deep learning networks are implemented in PyTorch and trained on NVIDIA V100 32GB
GPUs. We use mean square error (MSE) and mean absolute error (MAE) as metrics. For zero-
shot learning, mean absolute percentage error (MAPE) is used for TOURISM; symmetric MAPE
(sMAPE) is used for M3 and M4; normalized deviation (ND) is used for ELECTR. All experiments
are repeated 3 times and the mean of the metrics is used in the final results.

2.2.1 DATASET DETAILS

The details of long-term forecasting and few-shot forecasting datasets are: ETT datasets Zhou et al.
(2021) contain electricity load of various resolutions (ETTh & ETTm) from two electricity stations;
Weather datasetWetterstation (2017) contains 21 meteorological indicators of Germany within 1
year; Illness datasetCDC (2021) contains the influenza-like illness patients in the United States.
ILI is not used for few-shot learning for the limited quantity that is hard to follow the definition
of few-shot; Electricity dataset SJ & B (2017) contains the electricity consumption; Traffic dataset
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PeMS (2021) contains the occupation rate of freeway system across the State of California. Table
S4 summarizes details of feature statistics.

Dataset Length Dimension Frequency

ETTh 17420 7 1 hour
ETTm 69680 7 15 min
Weather 52696 22 10 min
ILI 966 7 7 days
Electricity 26304 321 1 hour
Traffic 17544 862 1 hour

Table S4: Long-term Forecasting and Few-shot Forecasting Dataset Details

Dataset Mapping
Length Horizon M4 M3

M3 Yearly 645 6 Yearly -
M3 Quarterly 756 8 Quarterly -
M3 Monthly 1428 18 Monthly -
M3 Others 174 8 Monthly -

M4 Yearly 23000 18 - Yearly
M4 Quarterly 6 24000 - Quarterly
M4 Monthly 8 48000 - Monthly
M4 Weekly 359 13 - Monthly
M4 Daily 4227 14 - Monthly
M4 Hourly 414 48 - Monthly

TOURISM Yearly 518 4 Yearly Yearly
TOURISM Quarterly 427 8 Quarterly Quarterly
TOURISM Monthly 366 24 Monthly Monthly

ELECTR 1311 168 Hourly Monthly

Table S5: Zero-term Forecasting Datasets and Mapping Details of Zero-shot Learning

The details of zero-shot forecasting datasets are: M4 is a large and diverse dataset that contains time
series of various frequencies and fields, including business, financial and economic forecasting; M3
is smaller than M4, but also contains time series from diverse domains and frequencies; TOURISM
is the dataset of tourism activities with different frequencies and contains a much higher fraction
of erratic series compared with M4; ELECTR represents the electricity usage monitoring of 370
customers over three years. Table S5 summarizes details of the datasets and zero-shot mapping
between source and target.

2.2.2 BASELINE DETAILS

For long-shot forecasting, we refer to the SOTA methods reported in Wu et al. (2023): TimesNet
Wu et al. (2023), ETSformer Woo et al. (2022b), DLinear Zeng et al. (2023), FEDformer Zhou et al.
(2022), Informer Zhou et al. (2021), and LLM for TS method GPT4TS Zhou et al. (2023).

For few-shot forecasting, we refor to the SOTA methods reported in Zhou et al. (2023): DLinear
Zeng et al. (2023), PatchTST Nie et al. (2023), TimesNet Wu et al. (2023), FEDformer Zhou et al.
(2022), Autoformer Wu et al. (2021), Stationary Liu et al. (2022), ETSformer Woo et al. (2022b),
Informer Zhou et al. (2021), Reformer Kitaev et al. (2020)

For zero-shot forecasting, we refor to the SOTA methods reported in Zhou et al. (2023): N-BEATS
Oreshkin et al. (2020), DLinear Zeng et al. (2023), PatchTST Nie et al. (2023), TimesNet Wu et al.
(2023), FEDformer Zhou et al. (2022), Autoformer Wu et al. (2021), Stationary Liu et al. (2022),
ETSformer Woo et al. (2022b), Informer Zhou et al. (2021), Reformer Kitaev et al. (2020)

2.2.3 LONG-TERM FORECASTING

We follow the classical experiment settings and the results of SOTA models in Wu et al. (2023)
(ICLR 2023). The results are shown in Table S6. Overall, TEST achieves comparable performance
to SOTA models TimesNet and Dlinear, and outperforms other baselines.
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Methods TEST GPT4TS TimesNet ETSformer DLinear FEDformer Informer TCN LSTM

ETTm1

96 0.293 0.346 0.292 0.346 0.325 0.398 0.338 0.375 0.345 0.372 0.375 0.398 0.672 0.571 0.863 0.664 0.863 0.664
192 0.332 0.369 0.332 0.372 0.324 0.387 0.408 0.410 0.380 0.389 0.426 0.441 0.795 0.669 0.837 0.700 1.113 0.776
336 0.368 0.392 0.366 0.394 0.360 0.411 0.435 0.428 0.413 0.413 0.445 0.459 1.212 0.871 1.124 0.832 1.267 0.832
720 0.418 0.420 0.417 0.421 0.428 0.450 0.499 0.462 0.474 0.453 0.543 0.490 1.166 0.823 1.153 0.820 1.324 0.858
Avg 0.353 0.382 0.352 0.383 0.350 0.406 0.429 0.425 0.403 0.407 0.448 0.452 0.961 0.734 0.929 0.725 1.142 0.782

ETTh1

96 0.372 0.400 0.376 0.397 0.384 0.402 0.494 0.479 0.386 0.400 0.376 0.419 0.865 0.713 0.878 0.740 1.044 0.773
192 0.414 0.422 0.416 0.418 0.436 0.429 0.538 0.504 0.437 0.432 0.420 0.448 1.008 0.792 1.037 0.824 1.217 0.832
336 0.422 0.437 0.442 0.433 0.491 0.469 0.574 0.521 0.481 0.459 0.459 0.465 1.107 0.809 1.238 0.932 1.259 0.841
720 0.447 0.467 0.477 0.456 0.521 0.500 0.562 0.535 0.519 0.516 0.506 0.507 1.181 0.865 1.135 0.852 1.271 0.838
Avg 0.414 0.431 0.427 0.426 0.458 0.450 0.542 0.510 0.456 0.452 0.440 0.460 1.040 0.795 1.072 0.837 1.198 0.821

ETTh2

96 0.275 0.338 0.285 0.342 0.340 0.374 0.340 0.391 0.333 0.387 0.358 0.397 3.755 1.525 2.116 1.197 2.522 1.278
192 0.340 0.379 0.354 0.389 0.402 0.414 0.430 0.439 0.477 0.476 0.429 0.439 5.602 1.931 4.315 1.635 3.312 1.384
336 0.329 0.381 0.373 0.407 0.452 0.452 0.485 0.559 0.594 0.541 0.496 0.487 4.721 1.835 1.124 1.604 3.291 1.388
720 0.381 0.423 0.406 0.441 0.462 0.468 0.500 0.497 0.831 0.657 0.463 0.474 3.647 1.625 3.188 1.540 3.257 1.357
Avg 0.331 0.380 0.354 0.394 0.414 0.427 0.439 0.452 0.559 0.515 0.4370.449 4.431 1.729 2.686 1.494 3.095 1.352

Electricity

96 0.132 0.223 0.139 0.238 0.168 0.222 0.187 0.304 0.197 0.282 0.193 0.308 0.274 0.368 0.258 0.357 0.375 0.437
192 0.158 0.241 0.153 0.251 0.184 0.239 0.199 0.196 0.285 0.201 0.315 0.296 0.386 0.266 0.368 0.348 0.442 0.473
336 0.163 0.260 0.169 0.266 0.198 0.260 0.212 0.329 0.209 0.301 0.214 0.329 0.300 0.394 0.280 0.380 0.439 0.473
720 0.199 0.291 0.206 0.297 0.220 0.300 0.233 0.345 0.245 0.333 0.246 0.355 0.373 0.439 0.283 0.376 0.980 0.814
Avg 0.162 0.253 0.167 0.263 0.192 0.245 0.208 0.323 0.212 0.300 0.214 0.327 0.311 0.397 0.313 0.401 0.559 0.549

Traffic

96 0.407 0.282 0 0.388 0.282 0.593 0.321 0.607 0.392 0.650 0.396 0.587 0.366 0.719 0.391 0.684 0.384 0.843 0.453
192 0.423 0.287 0.407 0.290 0.617 0.336 0.621 0.399 0.598 0.370 0.604 0.373 0.696 0.379 0.685 0.390 0.847 0.453
336 0.430 0.296 0.412 0.294 0.629 0.336 0.622 0.396 0.605 0.373 0.621 0.383 0.777 0.420 0.734 0.408 0.853 0.455
720 0.463 0.315 0.450 0.312 0.640 0.350 0.632 0.396 0.645 0.394 0.626 0.382 0.864 0.472 0.717 0.396 1.500 0.805
Avg 0.430 0.295 0.414 0.294 0.620 0.336 0.621 0.396 0.625 0.383 0.610 0.376 0.764 0.416 0.705 0.395 1.011 0.541

Weather

96 0.150 0.202 0.162 0.212 0.152 0.220 0.197 0.281 0.196 0.255 0.217 0.296 0.300 0.384 0.458 0.490 0.369 0.406
192 0.198 0.246 0.204 0.248 0.209 0.261 0.237 0.312 0.237 0.296 0.276 0.336 0.598 0.544 0.658 0.589 0.416 0.435
336 0.245 0.286 0.254 0.286 0.280 0.306 0.298 0.353 0.283 0.335 0.339 0.380 0.578 0.521 0.797 0.652 0.455 0.454
720 0.324 0.342 0.326 0.337 0.365 0.359 0.352 0.288 0.345 0.381 0.403 0.428 1.059 0.741 0.869 0.675 0.535 0.520
Avg 0.229 0.271 0.237 0.270 0.236 0.287 0.271 0.334 0.265 0.317 0.309 0.360 0.634 0.548 0.696 0.602 0.444 0.454

ILI

24 1.974 0.886 2.063 0.881 2.317 0.934 2.527 1.000 2.398 1.040 3.228 1.260 5.764 1.677 4.480 1.444 5.914 1.734
36 2.028 0.976 1.868 0.892 1.972 0.900 2.615 1.007 2.646 1.088 2.679 1.080 4.755 1.467 4.799 1.467 6.631 1.845
48 2.353 1.115 1.790 0.884 2.238 0.900 2.359 0.972 2.614 1.086 2.622 1.078 4.763 1.469 4.800 1.468 6.736 1.857
60 2.425 1.203 1.979 0.957 2.027 0.928 2.487 1.016 2.804 1.146 2.857 1.15 5.264 1.564 5.278 1.560 6.870 1.879
Avg 2.195 1.045 1.925 0.903 2.139 0.901 2.497 1.004 2.616 1.090 2.847 1.144 5.137 1.544 4.839 1.485 6.538 1.829

1st count 5 5 4 0 0 0 0 0 0

Table S6: Long-term Forecasting Results (MSE, MAE). TEST uses GPT2-Medium as the backbone.
The past sequence length is set as 36 for ILI and 96 for the others. All the results are averaged from
4 different prediction lengths, that is {24, 36, 48, 60} for ILI and {96, 192, 336, 720} for the others.

2.2.4 FEW-SHOT FORECASTING

For the few-shot forecasting task, only 10% percentage timesteps of training data are used, and the
other two parts remain unchanged. We follow the classical experiment settings and the results of
SOTA models in Zhou et al. (2023) (NeurIPS 2023). The results are shown in Table S7. Overall,
TEST has comparable performance with the SOTA baselines PatchTST and Dlinear, and SOTA
LLM for TS method GPT4TS.

2.2.5 ZERO-SHOT FORECASTING

Zero-shot Forecasting task can evaluate the cross datasets adaption ability. Which means that the
method is evaluated to perform on a dataset (without any training data from this dataset) when it is
trained from another dataset. The results are summarized in Table S8. TEST outperforms all recent
SOTA methods. TEST is comparable to N-BEATS without any meta-learning design and GPT4TS.

2.3 CLASSIFICATION TASKS

All the deep learning networks are implemented in PyTorch and trained on NVIDIA V100 32GB
GPUs. We use Area Under Curve of Receiver Operating Characteristic (AUC-ROC) as metrics.
Meanwhile, we compute the average rank, the number of Top-1, Top-3, and Top-5 accuracy to show
the robustness of different methods. All experiments are repeated 3 times and the mean of the
metrics is used in the final results.
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Methods TEST GPT4TS DLinear PatchTST TimesNet FEDformer Autoformer Stationary ETSformer LightTS Informer Reformer

Weather

96 0.163 0.213 0.163 0.215 0.171 0.224 0.165 0.215 0.184 0.230 0.188 0.253 0.221 0.297 0.192 0.234 0.199 0.272 0.217 0.269 0.374 0.401 0.335 0.380
192 0.230 0.263 0.210 0.254 0.215 0.263 0.210 0.257 0.245 0.283 0.250 0.304 0.270 0.322 0.269 0.295 0.279 0.332 0.259 0.304 0.552 0.478 0.522 0.462
336 0.278 0.282 0.256 0.292 0.258 0.299 0.259 0.297 0.305 0.321 0.312 0.346 0.320 0.351 0.370 0.357 0.356 0.386 0.303 0.334 0.724 0.541 0.715 0.535
720 0.301 0.328 0.321 0.339 0.320 0.346 0.332 0.346 0.381 0.371 0.387 0.393 0.390 0.396 0.441 0.405 0.437 0.448 0.377 0.382 0.739 0.558 0.611 0.500
Avg 0.243 0.272 0.238 0.275 0.241 0.283 0.242 0.279 0.279 0.301 0.284 0.324 0.300 0.342 0.318 0.323 0.318 0.360 0.289 0.322 0.597 0.495 0.546 0.469

ETTh1

96 0.455 0.457 0.458 0.456 0.492 0.495 0.516 0.485 0.861 0.628 0.512 0.499 0.613 0.552 0.918 0.639 1.112 0.806 1.298 0.838 1.179 0.792 1.184 0.790
192 0.572 0.519 0.570 0.516 0.565 0.538 0.598 0.524 0.797 0.593 0.624 0.555 0.722 0.598 0.915 0.629 1.155 0.823 1.322 0.854 1.199 0.806 1.295 0.850
336 0.611 0.531 0.608 0.535 0.721 0.622 0.657 0.550 0.941 0.648 0.691 0.574 0.750 0.619 0.939 0.644 1.179 0.832 1.347 0.870 1.202 0.811 1.294 0.854
720 0.723 0.594 0.725 0.591 0.986 0.743 0.762 0.610 0.877 0.641 0.728 0.614 0.721 0.616 0.887 0.645 1.273 0.874 1.534 0.947 1.217 0.825 1.223 0.838
Avg 0.479 0.525 0.590 0.525 0.691 0.600 0.633 0.542 0.869 0.628 0.639 0.561 0.702 0.596 0.915 0.639 1.180 0.834 1.375 0.877 1.199 0.809 1.249 0.833

ETTh2

96 0.332 0.374 0.331 0.374 0.357 0.411 0.353 0.389 0.378 0.409 0.382 0.416 0.413 0.451 0.389 0.411 0.678 0.619 2.022 1.006 3.837 1.508 3.788 1.533
192 0.401 0.433 0.402 0.411 0.569 0.519 0.403 0.414 0.490 0.467 0.478 0.474 0.474 0.477 0.473 0.455 0.785 0.666 2.329 1.104 3.856 1.513 3.552 1.483
336 0.408 0.440 0.406 0.433 0.671 0.572 0.426 0.441 0.537 0.494 0.504 0.501 0.547 0.543 0.507 0.480 0.839 0.694 2.453 1.122 3.952 1.526 3.395 1.526
720 0.459 0.480 0.449 0.464 0.824 0.648 0.477 0.480 0.510 0.491 0.499 0.509 0.516 0.523 0.477 0.472 1.273 0.874 3.816 1.407 3.842 1.503 3.205 1.401
Avg 0.401 0.432 0.397 0.421 0.605 0.538 0.415 0.431 0.479 0.465 0.466 0.475 0.488 0.499 0.462 0.455 0.894 0.713 2.655 1.160 3.872 1.513 3.485 1.486

ETTm1

96 0.392 0.401 0.390 0.404 0.352 0.392 0.410 0.419 0.583 0.501 0.578 0.518 0.774 0.614 0.761 0.568 0.911 0.688 0.921 0.682 1.162 0.785 1.442 0.847
192 0.423 0.426 0.429 0.423 0.382 0.412 0.437 0.434 0.630 0.528 0.617 0.546 0.754 0.592 0.781 0.574 0.955 0.703 0.957 0.701 1.172 0.793 1.444 0.862
336 0.471 0.444 0.469 0.439 0.419 0.434 0.476 0.454 0.725 0.568 0.998 0.775 0.869 0.677 0.803 0.587 0.991 0.719 0.998 0.716 1.227 0.908 1.450 0.866
720 0.552 0.501 0.569 0.498 0.490 0.477 0.681 0.556 0.769 0.549 0.693 0.579 0.810 0.630 0.844 0.581 1.062 0.747 1.007 0.719 1.207 0.797 1.366 0.850
Avg 0.574 0.443 0.464 0.441 0.411 0.429 0.501 0.466 0.677 0.537 0.722 0.605 0.802 0.628 0.797 0.578 0.980 0.714 0.971 0.705 1.192 0.821 1.426 0.856

ETTm2

96 0.233 0.262 0.188 0.269 0.213 0.303 0.191 0.274 0.212 0.285 0.291 0.399 0.352 0.454 0.229 0.308 0.331 0.430 0.813 0.688 3.203 1.407 4.195 1.628
192 0.303 0.302 0.251 0.309 0.278 0.345 0.252 0.317 0.270 0.323 0.307 0.379 0.694 0.691 0.291 0.343 0.400 0.464 1.008 0.768 3.112 1.387 4.042 1.601
336 0.359 0.341 0.307 0.346 0.338 0.385 0.306 0.353 0.323 0.353 0.543 0.559 2.408 1.407 0.348 0.376 0.469 0.498 1.031 0.775 3.255 1.421 3.963 1.585
720 0.452 0.419 0.426 0.417 0.436 0.440 0.433 0.427 0.474 0.449 0.712 0.614 1.913 1.166 0.461 0.438 0.589 0.557 1.096 0.791 3.909 1.543 3.711 1.532
Avg 0.317 0.309 0.293 0.335 0.316 0.368 0.296 0.343 0.320 0.353 0.463 0.488 1.342 0.930 0.332 0.366 0.447 0.487 0.987 0.756 3.370 1.440 3.978 1.587

Electricity

96 0.143 0.235 0.139 0.237 0.150 0.253 0.140 0.238 0.299 0.373 0.231 0.323 0.261 0.348 0.420 0.466 0.599 0.587 0.350 0.425 1.259 0.919 0.993 0.784
192 0.158 0.255 0.156 0.252 0.164 0.264 0.160 0.255 0.305 0.379 0.261 0.356 0.338 0.406 0.411 0.459 0.620 0.598 0.376 0.448 1.160 0.873 0.938 0.753
336 0.176 0.275 0.175 0.270 0.181 0.282 0.180 0.276 0.319 0.391 0.360 0.445 0.410 0.474 0.434 0.473 0.662 0.619 0.428 0.485 1.157 0.872 0.925 0.745
720 0.230 0.311 0.233 0.317 0.223 0.321 0.241 0.323 0.369 0.426 0.530 0.585 0.715 0.685 0.510 0.521 0.757 0.664 0.611 0.597 1.203 0.898 1.004 0.790
Avg 0.176 0.269 0.176 0.269 0.180 0.280 0.180 0.273 0.323 0.392 0.346 0.427 0.431 0.478 0.444 0.480 0.660 0.617 0.441 0.489 1.195 0.891 0.965 0.768

Traffic

96 0.415 0.317 0.414 0.297 0.419 0.298 0.403 0.289 0.719 0.416 0.639 0.400 0.672 0.405 1.412 0.802 1.643 0.855 1.157 0.636 1.557 0.821 1.527 0.815
192 0.425 0.300 0.426 0.301 0.434 0.305 0.415 0.296 0.748 0.428 0.637 0.416 0.727 0.424 1.419 0.806 1.641 0.854 1.207 0.661 1.454 0.765 1.538 0.817
336 0.436 0.310 0.434 0.303 0.449 0.313 0.426 0.304 0.853 0.471 0.655 0.427 0.749 0.454 1.443 0.815 1.711 0.878 1.334 0.713 1.521 0.812 1.550 0.819
720 0.489 0.338 0.487 0.337 0.484 0.336 0.474 0.331 1.485 0.825 0.722 0.456 0.847 0.499 1.539 0.837 2.660 1.157 1.292 0.726 1.605 0.846 1.588 0.833
Avg 0.441 0.316 0.440 0.310 0.447 0.313 0.430 0.305 0.951 0.535 0.663 0.425 0.749 0.446 1.453 0.815 1.914 0.936 1.248 0.684 1.534 0.811 1.551 0.821

1st count 5 5 4 0 0 0 0 0 0 0 0 0

Table S7: Few-shot Forecasting Results (MSE, MAE). TEST uses GPT2-Medium as the backbone.
All the results are averaged from 4 different prediction lengths, that is {96, 192, 336, 720}.

Methods M4 M3 TOURISM ELECTR
Metric sMAPE sMAPE MAPE ND×100 Average 1st count

N-BEATS 11.70 12.44 18.82 17.8 15.19 2
DLinear 15.33 14.03 28.51 17.6 18.86 0

TimesNet 13.55 14.17 28.84 19.3 18.96 0
PatchTST 13.22 13.06 27.10 17.3 17.67 0

ETSformer 27.74 16.03 180.40 44.2 67.09 0
LightTS 13.62 17.90 66.99 19.6 29.52 0

Stationary 13.32 15.29 43.75 22.0 23.59 0
FEDformer 15.04 13.53 31.55 18.4 19.63 0
Autoformer 20.02 15.87 40.39 33.9 27.54 0

Informer 19.04 15.82 35.82 21.2 22.97 0
Reformer 14.09 13.37 25.48 21.6 18.63 0
GPT2(6) 13.12 13.06 22.14 17.2 16.38 1
TEST 13.10 12.56 18.17 17.9 15.93 1

Table S8: Zero-shot learning results. Dataset-specific metrics aggregated over each dataset. A lower
value indicates better performance. The source dataset of M3, Tourism, Electricity are M4. For M4,
the source data for N-BEATS is FRED, and M3 for other models.

2.3.1 DATASET DETAILS

We present accuracy scores for all 30 kinds of multivariate TS datasets in UEA archive Bagnall et al.
(2018). UEA consists of 30 different datasets. Details of these datasets are shown in Table S9
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Dataset Train Cases Test Cases Dimensions Length Classes

ArticularyWordRecognition 275 30 9 144 25
AtrialFibrillation 15 15 2 640 3
BasicMotions 40 40 4 100 4
CharacterTrajectories 1422 1436 3 182 20
Cricket 108 72 6 17984 5
DuckDuckGeese 60 40 1345 270 5
EigenWorms 128 131 6 17984 5
Epilepsy 137 138 3 206 4
EthanolConcentration 261 263 3 1751 4
ERing 30 20 4 65 6
FaceDetection 5890 3524 144 62 2
FingerMovements 316 100 28 50 2
HandMovementDirection 320 147 10 400 4
Handwriting 150 850 3 152 26
Heartbeat 204 105 61 495 2
JapaneseVowels 270 370 12 29 9
Libras 180 280 2 45 15
LSST 2459 2466 6 36 14
InsectWingbeat 30000 20000 200 78 10
MotorImagery 278 100 64 3000 2
NATOPS 180 180 24 51 6
PenDigits 7494 3498 2 8 10
PEMS-SF 267 173 963 144 7
Phoneme 3315 3353 11 217 39
RacketSports 151 152 6 30 4
SelfRegulationSCP1 268 293 6 896 2
SelfRegulationSCP2 200 180 7 1152 2
SpokenArabicDigits 6599 2199 13 93 10
StandWalkJump 12 15 4 2500 3
UWaveGestureLibrary 120 320 3 315 8

Table S9: UEA Classification Dataset Details

2.3.2 BASELINE DETAILS

For classification, we refer to the SOTA methods: Three benchmarks Bostrom et al. (2018) (EDI,
DTWI, and DTWD) are based on Euclidean Distance, dimension-independent dynamic time warp-
ing, and dimension-dependent dynamic time warping; MLSTM-FCNs Karim et al. (2019) applies an
LSTM layer and stacked CNN layers to generate features; WEASEL-MUSE Schäfer & Leser (2017)
is a bag-of-pattern based approach which extracts and represents features to words. Scalable Rep-
resentation Learning (SRL) Franceschi et al. (2019a) employs negative sampling techniques with
an encoder-based architecture to learn the representation; TapNet Zhang et al. (2020) is a recent
model with an attentional prototype learning in its deep learning-based network; ShapeNet Li et al.
(2021a) projects the subsequences into a unified space and applies clustering to find the shapelets;
Rocket and MiniRocket Dempster et al. (2021) use random convolutional kernels to extract features
from univariate time series; RL-PAM Gao et al. (2022) introduces reinforcement learning to the
pattern mining; TStamp Transformer Zerveas et al. (2021) takes the values at each timestamp as the
input for a transformer encoder; SVP-T Zuo et al. (2023) uses differnt variables and positions (time
interval) as the inputs (shape-level).

2.3.3 MULTIVARIATE TIME SERIES CLASSIFICATION

We follow the classical experiment settings in multivariate time series classification tasks Bostrom
et al. (2018). The results are shown in Table S10. Overall, TEST achieves comparable performance
to SOTA models and outperforms most baselines.

2.4 REPRESENTATION TASKS

We assess the quality of our learned representations on supervised tasks in a standard manner by
using them for time series classification Franceschi et al. (2019b). All the deep learning networks
are implemented in PyTorch and trained on NVIDIA V100 32GB GPUs. We use Area Under Curve
of Receiver Operating Characteristic (AUC-ROC) as metrics.
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EDI DTWI DTWD MLSTM-FCNs WEASEL+MUSE SRL TapNet ShapeNet Rocket MiniRocket RLPAM TStamp SVP-T TEST

AWR 0.970 0.980 0.987 0.973 0.990 0.987 0.987 0.987 0.996 0.992 0.923 0.983 0.993 0.994
AF 0.267 0.267 0.220 0.267 0.333 0.133 0.333 0.400 0.249 0.133 0.733 0.200 0.400 0.420
BM 0.676 1.000 0.975 0.950 1.000 1.000 1.000 1.000 0.990 1.000 1.000 0.975 1.000 1.000
CT 0.964 0.969 0.989 0.985 0.990 0.994 0.997 0.980 N/A 0.993 0.978 N/A 0.990 0.989
CK 0.944 0.986 1.000 0.917 1.000 0.986 0.958 0.986 1.000 0.986 1.000 0.958 1.000 1.000
DDG 0.275 0.550 0.600 0.675 0.575 0.675 0.575 0.725 0.461 0.650 0.700 0.480 0.700 0.675
EW 0.549 N/A 0.618 0.504 0.890 0.878 0.489 0.878 0.863 0.962 0.908 N/A 0.923 0.878
EP 0.666 0.978 0.964 0.761 1.000 0.957 0.971 0.987 0.991 1.000 0.978 0.920 0.986 0.985
ER 0.133 0.914 0.929 0.133 0.133 0.133 0.133 0.133 0.981 0.981 0.819 0.933 0.937 0.937
EC 0.293 0.304 0.323 0.373 0.430 0.236 0.323 0.312 0.447 0.468 0.369 0.337 0.331 0.373
FD 0.519 0.000 0.529 0.545 0.545 0.528 0.556 0.602 0.694 0.620 0.621 0.681 0.512 0.512
FM 0.550 0.520 0.530 0.580 0.490 0.540 0.530 0.580 0.553 0.550 0.640 0.776 0.600 0.770
HMD 0.278 0.306 0.231 0.365 0.365 0.270 0.378 0.338 0.446 0.392 0.635 0.608 0.392 0.444
HW 0.200 0.316 0.286 0.286 0.605 0.533 0.357 0.452 0.567 0.507 0.522 0.305 0.433 0.431
HB 0.619 0.658 0.717 0.663 0.727 0.737 0.751 0.756 0.718 0.771 0.779 0.712 0.790 0.791
IW 0.128 N/A N/A 0.167 N/A 0.160 0.208 0.250 N/A 0.595 0.352 0.684 0.184 0.572
JV 0.924 0.959 0.949 0.976 0.973 0.989 0.965 0.984 0.965 0.989 0.935 0.994 0.978 0.991
LB 0.833 0.894 0.870 0.856 0.878 0.867 0.850 0.856 0.906 0.922 0.794 0.844 0.883 0.884
LSST 0.456 0.575 0.551 0.373 0.590 0.558 0.568 0.590 0.632 0.643 0.643 0.381 0.666 0.595
MI 0.510 N/A 0.500 0.510 0.500 0.540 0.590 0.610 0.531 0.550 0.610 N/A 0.650 0.650
NT 0.850 0.850 0.883 0.889 0.870 0.944 0.939 0.883 0.885 0.928 0.950 0.900 0.906 0.902
PD 0.705 0.939 0.977 0.978 0.948 0.983 0.980 0.977 0.996 N/A 0.982 0.974 0.983 0.979
PM 0.973 0.734 0.711 0.699 0.000 0.688 0.751 0.751 0.856 0.522 0.632 0.919 0.867 0.860
PH 0.104 0.151 0.151 0.110 0.190 0.246 0.175 0.298 0.284 0.292 0.175 0.088 0.176 0.196
RS 0.868 0.842 0.803 0.803 0.934 0.862 0.868 0.882 0.928 0.868 0.868 0.829 0.842 0.851
SCP1 0.771 0.765 0.775 0.874 0.710 0.846 0.652 0.782 0.866 0.925 0.802 0.925 0.884 0.870
SCP2 0.483 0.533 0.539 0.472 0.460 0.556 0.550 0.578 0.514 0.522 0.632 0.589 0.600 0.579
SAD 0.967 0.959 0.963 0.990 0.982 0.956 0.983 0.975 0.630 0.620 0.621 0.993 0.986 0.982
SWJ 0.200 0.333 0.200 0.067 0.333 0.400 0.400 0.533 0.456 0.333 0.667 0.267 0.467 0.468
UGL 0.881 0.868 0.903 0.891 0.916 0.884 0.894 0.906 0.944 0.938 0.944 0.903 0.941 0.933

Avg.Rank 10.933 9.480 8.821 8.756 6.890 7.120 6.956 5.523 5.423 5.013 5.059 7.484 4.032 4.012
Num.Top-1 1 1 1 0 5 1 2 3 5 5 6 4 4 6
Num.Top-3 1 2 1 1 6 6 3 7 12 14 16 9 17 18
Num.Top-5 2 2 3 5 15 12 13 17 16 20 19 10 23 24
P-value 0.000 0.000 0.000 0.000 0.006 0.003 0.000 0.118 0.217 0.765 0.967 0.047 0.044 0.040

Table S10: Accuracies on All Datasets of the UEA Archive

2.4.1 DATASET DETAILS

We represent the results for all 128 kinds of univariate TS datasets in UCR archive Dau et al. (2019),
which is a standard set of varied univariate datasets.

2.4.2 BASELINE DETAILS

The compared method includes SOTAs of unsupervised time series representation: T-Loss
Franceschi et al. (2019b), TS-TCC Eldele et al. (2021), TST Zerveas et al. (2021) and TNC Tonek-
aboni et al. (2021), TS2Vec Yue et al. (2022).

2.4.3 CLASSIFICATION BASED ON REPRESENTATION

We assess the quality of our learned representations on supervised tasks in a standard manner by
using them for time series classification Franceschi et al. (2019b). In this setting, we show that our
method outperforms SOTA unsupervised methods, and notably achieves performance close to the
supervised SOTA method as shown in Table S11.

For each considered dataset with a train / test split, we unsupervisedly train an encoder using its train
set. We then train an SVM with radial basis function kernel on top of the learned features using the
train labels of the dataset, and output the corresponding classification score on the test set.

TEST TCN TS2Vec T-Loss TNC

Adiac 0.776 0.768 0.765 0.675 0.726
ArrowHead 0.825 0.857 0.817 0.766 0.703
Beef 0.766 0.768 0.633 0.667 0.733
BeetleFly 0.853 0.900 0.900 0.800 0.850
BirdChicken 0.808 0.803 0.800 0.850 0.750
Car 0.883 0.834 0.700 0.833 0.683
CBF 1.000 1.000 1.000 0.983 0.983
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ChlorineConcentration 0.810 0.832 0.812 0.749 0.760
CinCECGTorso 0.815 0.829 0.825 0.713 0.669
Coffee 1.000 1.000 1.000 1.000 1.000
Computers 0.632 0.660 0.660 0.664 0.684
CricketX 0.802 0.787 0.805 0.713 0.623
CricketY 0.754 0.749 0.769 0.728 0.597
CricketZ 0.787 0.794 0.790 0.708 0.682
DiatomSizeReduction 0.980 0.985 0.987 0.984 0.993
DistalPhalanxOutlineCorrect 0.776 0.761 0.757 0.775 0.754
DistalPhalanxOutlineAgeGroup 0.714 0.727 0.719 0.727 0.741
DistalPhalanxTW 0.662 0.698 0.683 0.676 0.669
Earthquakes 0.746 0.748 0.748 0.748 0.748
ECG200 0.893 0.920 0.880 0.940 0.830
ECG5000 0.935 0.935 0.934 0.933 0.937
ECGFiveDays 1.000 1.000 1.000 1.000 0.999
ElectricDevices 0.714 0.721 0.719 0.707 0.700
FaceAll 0.789 0.771 0.805 0.786 0.766
FaceFour 0.834 0.932 0.932 0.920 0.659
FacesUCR 0.939 0.924 0.926 0.884 0.789
FiftyWords 0.781 0.771 0.774 0.732 0.653
Fish 0.937 0.926 0.937 0.891 0.817
FordA 0.940 0.936 0.948 0.928 0.902
FordB 0.789 0.794 0.807 0.793 0.733
GunPoint 0.983 0.980 0.987 0.980 0.967
Ham 0.714 0.714 0.724 0.724 0.752
HandOutlines 0.918 0.925 0.930 0.922 0.930
Haptics 0.510 0.526 0.536 0.490 0.474
Herring 0.625 0.644 0.609 0.594 0.594
InlineSkate 0.389 0.418 0.407 0.371 0.378
InsectWingbeatSound 0.620 0.630 0.624 0.597 0.549
ItalyPowerDemand 0.969 0.925 0.960 0.954 0.928
LargeKitchenAppliances0 0.855 0.845 0.875 0.789 0.776
Lightning2 0.846 0.869 0.820 0.869 0.869
Lightning7 0.866 0.863 0.822 0.795 0.767
Mallat 0.915 0.944 0.873 0.951 0.871
Meat 0.950 0.952 0.967 0.950 0.917
MedicalImages 0.792 0.789 0.793 0.750 0.754
MiddlePhalanxOutlineCorrect 0.811 0.838 0.825 0.825 0.818
MiddlePhalanxOutlineAgeGroup 0.636 0.636 0.630 0.656 0.643
MiddlePhalanxTW 0.591 0.584 0.578 0.591 0.571
MoteStrain 0.857 0.861 0.863 0.851 0.825
NonInvasiveFetalECGThorax1 0.923 0.930 0.919 0.878 0.898
NonInvasiveFetalECGThorax2 0.940 0.938 0.935 0.919 0.912
OliveOil 0.903 0.901 0.940 0.867 0.833
OSULeaf 0.872 0.851 0.843 0.760 0.723
PhalangesOutlinesCorrect 0.794 0.809 0.823 0.784 0.787
Phoneme 0.296 0.312 0.309 0.276 0.180
Plane 1.000 1.000 0.990 0.990 1.000
ProximalPhalanxOutlineCorrect 0.876 0.887 0.900 0.859 0.866
ProximalPhalanxOutlineAgeGroup 0.844 0.837 0.829 0.844 0.854
ProximalPhalanxTW 0.785 0.824 0.805 0.771 0.810
RefrigerationDevices 0.587 0.586 0.589 0.515 0.565
ScreenType 0.405 0.414 0.397 0.416 0.509
ShapeletSim 0.989 1.000 0.994 0.672 0.589
ShapesAll 0.897 0.902 0.905 0.848 0.788
SmallKitchenAppliances 0.723 0.731 0.733 0.677 0.725
SonyAIBORobotSurface1 0.874 0.903 0.900 0.902 0.804
SonyAIBORobotSurface2 0.893 0.871 0.889 0.889 0.834
StarLightCurves 0.970 0.968 0.971 0.964 0.968
Strawberry 0.962 0.966 0.965 0.954 0.951
SwedishLeaf 0.939 0.945 0.942 0.914 0.880
Symbols 0.973 0.977 0.972 0.963 0.885
SyntheticControl 0.997 0.997 0.993 0.987 1.000
ToeSegmentation1 0.933 0.917 0.947 0.939 0.864
ToeSegmentation2 0.915 0.899 0.900 0.900 0.831
Trace 1.000 1.000 1.000 0.990 1.000
TwoLeadECG 0.982 0.986 0.987 0.999 0.993
TwoPatterns 1.000 1.000 1.000 0.999 1.000
UWaveGestureLibraryX 0.810 0.795 0.801 0.785 0.781
UWaveGestureLibraryY 0.729 0.719 0.720 0.710 0.697
UWaveGestureLibraryZ 0.761 0.774 0.768 0.757 0.721
UWaveGestureLibraryAll 0.935 0.930 0.934 0.896 0.903
Wafer 0.995 0.998 0.998 0.992 0.994
Wine 0.788 0.880 0.889 0.815 0.759
WordSynonyms 0.699 0.679 0.704 0.691 0.630
Worms 0.704 0.701 0.701 0.727 0.623
WormsTwoClass 0.805 0.806 0.753 0.792 0.727
Yoga 0.883 0.883 0.877 0.837 0.812
ACSF1 0.849 0.910 0.910 0.900 0.730
AllGestureWiimoteX 0.744 0.777 0.751 0.763 0.703
AllGestureWiimoteY 0.754 0.796 0.774 0.726 0.699
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AllGestureWiimoteZ 0.744 0.749 0.770 0.723 0.646
BME 0.979 0.992 0.980 0.993 0.973
Chinatown 0.969 0.964 0.959 0.951 0.977
Crop 0.753 0.754 0.758 0.722 0.738
EOGHorizontalSignal 0.544 0.569 0.522 0.605 0.442
EOGVerticalSignal 0.467 0.503 0.472 0.434 0.392
EthanolLevel 0.480 0.468 0.484 0.382 0.424
FreezerRegularTrain 0.983 0.996 0.983 0.956 0.991
FreezerSmallTrain 0.893 0.875 0.872 0.933 0.982
Fungi 0.967 0.958 0.946 1.000 0.527
GestureMidAirD1 0.637 0.608 0.615 0.608 0.431
GestureMidAirD2 0.508 0.479 0.515 0.546 0.362
GestureMidAirD3 0.346 0.492 0.300 0.285 0.292
GesturePebbleZ1 0.878 0.930 0.884 0.919 0.378
GesturePebbleZ2 0.842 0.873 0.848 0.899 0.316
GunPointAgeSpan 0.994 0.987 0.968 0.994 0.984
GunPointMaleVersusFemale 1.000 1.000 1.000 0.997 0.994
GunPointOldVersusYoung 1.000 1.000 1.000 1.000 1.000
HouseTwenty 0.944 0.917 0.941 0.933 0.782
InsectEPGRegularTrain 1.000 1.000 1.000 1.000 1.000
InsectEPGSmallTrain 1.000 1.000 1.000 1.000 1.000
MelbournePedestrian 0.954 0.959 0.956 0.944 0.942
MixedShapesRegularTrain 0.915 0.917 0.922 0.905 0.911
MixedShapesSmallTrain 0.884 0.861 0.856 0.860 0.813
PickupGestureWiimoteZ 0.800 0.823 0.760 0.740 0.620
PigAirwayPressure 0.524 0.630 0.683 0.510 0.413
PigArtPressure 0.962 0.966 0.966 0.928 0.808
PigCVP 0.803 0.815 0.870 0.788 0.649
PLAID 0.551 0.561 0.549 0.555 0.495
PowerCons 0.967 0.961 0.972 0.900 0.933
Rock 0.660 0.700 0.700 0.580 0.580
SemgHandGenderCh2 0.952 0.963 0.962 0.890 0.882
SemgHandSubjectCh2 0.897 0.860 0.891 0.789 0.593
SemgHandMovementCh2 0.944 0.952 0.942 0.920 0.820
SmoothSubspace 0.967 0.980 0.993 0.960 0.913
UMD 1.000 1.000 0.993 0.993 0.993

Avg 0.826 0.832 0.827 0.806 0.761

Table S11: Accuracies on All Datasets of the UCR Archive

2.5 ABLATION

TEST contains two contrastive learning strategies: instance-wise contrast and feature-wise contrast,
and can use different text embedding vectors as prototypes, we show the impact of these strategies.

2.5.1 CONTRASTIVE LEARNING STRATEGIES

As shown in Table S12 and S13, both two contrastive learning strategies can increase the accuracy.

ETTm1 ETTm2 ETTh1 ETTh2 Electricity Traffic Weather ILI
Instance-wise 0.621 0.550 0.755 0.630 0.493 0.453 0.580 0.612 0.293 0.396 0.788 0.620 0.463 0.349 3.301 4.535
Feature-wise 0.741 0.559 0.793 0.634 0.699 0.493 0.585 0.628 0.286 0.390 0.821 0.629 0.453 0.388 3.139 5.931
TEST 0.353 0.382 0.293 0.334 0.414 0.431 0.331 0.380 0.162 0.253 0.430 0.295 0.229 0.271 2.195 1.045

Table S12: Long-term Forecasting Results (MSE, MAE). TEST uses different contrastive learning
stragegy. All the results are averaged from 4 different prediction lengths, that is {24, 36, 48, 60} for
ILI and {96, 192, 336, 720} for the others. The results are average.

TEST Instance-wise Feature-wise TimesNet N-BEATS ETSformer DLinear FEDformer Stationary Autoformer Informer Reformer
SMAPE 11.927 13.525 16.987 11.829 11.851 14.718 13.639 12.840 12.780 12.909 14.086 18.200
MASE 1.613 2.111 3.265 1.585 1.599 2.408 2.095 1.701 1.756 1.771 3.010 4.223
OWA 0.861 1.051 1.480 0.851 0.855 1.172 1.051 0.918 0.930 0.939 1.230 1.775

Table S13: Short-term Forecasting Task on M4. The prediction lengths are in [6, 48] and results are
averaged from several datasets.

2.5.2 TEXT PROTOTYPES

The number and the type of text prototypes will lead to different results.
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As shown in Table S14. We randomly select 1, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22 prototypes. The
accuracy and number are basically positively correlated. The results of 10 prototypes are almost
optimal.

As shown in Table S15. We randomly select 10 prototypes 10 times. The accuracy is basically
consistent. Therefore, the type of prototypes has almost no impact on the results.

1 2 4 6 8 10 12 14 16 18 20 22
SMAPE 30.901 20.201 17.415 16.997 13.820 11.927 11.710 11.638 11.094 11.098 10.953 10.885
MASE 6.590 4.515 3.910 3.595 2.580 1.613 1.408 1.195 1.301 1.306 1.471 1.310
OWA 3.779 2.050 1.451 1.484 0.990 0.861 0.872 0.801 0.910 0.902 0.838 0.830

Table S14: Short-term Forecasting Task on M4. The results are reported with different number of
text prototypes.

1 2 3 4 5 6 7 8 9 10 Avg. Std.
SMAPE 11.907 11.920 11.927 11.926 11.925 11.925 11.950 11.890 11.728 11.910 11.901 0.059
MASE 1.612 1.610 1.653 1.603 1.619 1.620 1.625 1.623 1.613 1.591 1.617 0.016
OWA 0.870 0.872 0.872 0.872 0.872 0.872 0.849 0.862 0.876 0.870 0.868, 0.009

Table S15: Short-term Forecasting Task on M4. The results are reported with different types of text
prototypes.

Considering why the type of text prototype does not significantly affect results, we figure that in high
dimensional space, almost all vectors are pairwise orthogonal Hopcroft & Kannan (2013). Which
means that, in high-dimensional space, it is easy to generate a large number of almost orthogonal
vectors to represent different attributes. Thus, randomly selecting the same number of vectors, the
represented space size and expressed number of features are almost the same. Therefore, the key is
the number rather than the type.

In terms of probability, “two vectors orthogonal” is equivalent to “two vectors perpendicular” is
equivalent to “two vectors uncorrelated” is equivalent to “cos θ = 0”. For a n-dimensional space,
randomly two vectors have: ∀ϵ, limn→∞ P (| cos θ| > ϵ) = 0. As shown in Figure S2, as the
dimension increases, the probability of two random vectors being similar decreases. For LLM,
n > 1024, P (θ = 0) < 0.00001.

Figure S2: Probability Density of the Angle between Two Random Vectors in n-dimensional Space
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