Under review as a conference paper at ICLR 2024

A APPENDIX

The appendix is organized as follows

e Sec. A.1 shows the details of the target and style datasets used in our downstream evaluations.

e Sec. A.2 provides insight on how to select an external style dataset by analyzing their style
representations.

e Sec. A.3 includes additional information on the pre-training settings used in our experiments.

e Sec. A.4 includes detailed information on the downstream task settings used in our experiments.
e Sec. A.5 shows additional experiments on downstream performance using SimCLR and BYOL.
e Sec. A.6 reports few-shot classification performance of MoCo v2 equipped with SASSL.

e Sec. A.7 includes ablation studies to better understand the effect of each component of NST in
the downstream performance.

e Sec. A.8 covers the computational requirements of our proposed method.

e Sec. A.9 covers recent work on semantic-aware data augmentation and neural style transfer, and
discusses their differences with our proposed method.

A.1 TARGET AND STYLE DATASETS

We provide the details of the image datasets used in our experiments. Table 4 covers both target and
style datasets, including their size and splits.

Table 4: Target and Style Datasets. Additional details on data split and number of samples of the
image datasets used in our experiments.

Dataset Task Train Split ~ Val. Split ~ Test Split
ImageNet Pre-training, Target, Style 1,281,167 - 50,000
ImageNet 1% Target 12,811 - 50,000
i_Naturalist 2021 Target, Style 2,686,843 — 500, 000
Diabetic Retinopathy Detection Target, Style 35,126 10,906 42,670
Describable Textures Dataset Target, Style 1,880 1,880 1,880
Painter by Numbers Style 79,433 — 23,817

A.2 STYLE DATASET SELECTION

Our transfer learning results in Section 5 demonstrate that SASSL achieves improved or comparable
downstream performance across multiple datasets by incorporating NST as data augmentation. This
raises an important question: how can we select an external style dataset to ensure downstream
accuracy improvement? Here, we delve into the similarity between datasets in terms of their styles
and establish its connection to the performance improvement gained by using them as external style
references.

We focus on the linear-probing scenario as it freezes the representation model, forcing the classifi-
cation head to rely on the representations learned during pre-training (rather than updating them as
is the case with fine-tuning) to distinguish between the target categories.

As an example, in our linear probing experiments presented in Table 2, when Diabetic Retinopathy
is used as the target dataset, the downstream accuracy achieved via SASSL + MoCo v2 is compara-
ble to that of the default MoCo v2 algorithm, meaning there is no improvement in performance. We
hypothesize that this is because the style representations of Diabetic Retinopathy are significantly
different from those of the pre-training (ImageNet) and style datasets. Therefore, learning represen-
tations that are invariant to such a distinct set of styles does not contribute to distinguishing between
target classes.

To support our hypothesis, we visualize the relationship between style representations using low-
dimensional embeddings generated via t-SNE (Van der Maaten & Hinton, 2008) to capture the
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Figure 4: t-SNE visualization of style representations. Two-dimensional embeddings of the style
representations of different datasets, extracted by the Fast Style Transfer method. Style embeddings
of the Diabetic Retinopathy dataset (marked in yellow) form clusters that do not overlap with the
rest of datasets, while embeddings from the remaining datasets are close to each other.

similarity between styles of different datasets. Style representations of each dataset, corresponding
to vectors of length 100, are obtained using an InceptionV3 feature extractor, as done by the FastSt
algorithm. Next, we randomly select 1,800 style representations from each class and compute their
two-dimensional embeddings using a perplexity of 30, early exaggeration of 12, and initializing the
dimensionality reduction using PCA. We compute embeddings using 2,048 iterations.

Figure 4 depicts the low-dimensional embeddings obtained via t-SNE from all datasets used in our
transfer learning experiments. The low-dimensional representation shows that the style representa-
tions from Diabetic retinopathy are significantly distinct from those of the rest of datasets, including
ImageNet. This aligns with our hypothesis, suggesting that SASSL improves transfer learning when
the pre-training and style references are similar to those of the target dataset. From the perspective
of t-SNE embeddings, this implies that pre-training and style datasets must have a good overlap with
the target dataset for SASSL to improve downstream performance.

A.3 ADDITIONAL EXPERIMENTAL DETAILS

All of our experiments were implemented in Tensorflow (Abadi et al., 2016). All our models were
pre-trained on 64 TPUs using a batch size of 4,096. Both the MoCo v2 models pre-trained using
the default augmentation and our proposed SASSL approach do not use a dictionary queue.

We used a ResNet-50 (He et al., 2016) as our representation backbone. For our projection head,
we used a Multilayer perceptron with 4,096 hidden features, and an output dimensionality of 256.
Our left tower used a prediction network with the same architecture as the projector, similar to the
setup used in BYOL (Grill et al., 2020). Our right tower was a momentum encoder, having the same
encoder and projector as the left tower, but whose parameters were an exponential moving average
of the corresponding parameters in the left tower and were not trained via gradient descent. Similar
to previous works, we used a momentum which started at 0.996, and which followed a cosine decay
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schedule ending at 1.0. For the pretraining loss, we used the InfoNCE loss with a temperature of
0.1, similar to what was done in both MoCo v2 and SimCLR.

For our pretraining augmentations, we followed the setup used in BYOL (Grill et al., 2020). The
operations used and their hyperparameters (in order of application) are as follows:

1. Random cropping and rescaling to 224 x 224 with the area chosen randomly between 0.08 and
1.0 of the original image and with a logarithmically distributed axis ratio between 3/4 and 4/3.
This was applied with a probability of 1.0 since it was necessary to get a fixed image shape.

2. Random horizontal flipping with a probability of 0.5 that it will be applied.

3. Random color jitter. Color jitter consists of 4 independent transformations, each of which is
applied in a random order with randomly chosen values. This transform is described in greater
detail in Chen et al. (2020a) and Grill et al. (2020). We used the same configuration as used in
those papers.

4. Random grayscaling with a probability of 0.2 that it will be applied.

5. Random blurring with a kernel width distributed randomly between 0.1 and 2.0 pixels. Similar
to Grill et al. (2020), we used a probability of 1.0 for the left view, and a probability of 0.1 for
the right view.

6. Random solarization, which was only applied to the right view with a threshold of 0.5 and a
probability of 0.2 that it will be applied.

When using SASSL, we applied style transfer after random cropping and before random horizontal
flipping. Our default hyperparameters for SASSL were blending and interpolation factors drawn
randomly from a uniform distribution between 0.1 and 0.3, and a probability of 0.8 that style transfer
will be applied.

For optimization, we used the LARS optimizer (You et al., 2017) with a cosine decayed learning
rate warmed up to 4.8 over the course of the first 10 epochs. Similar to previous works, we used
a trust coefficient of 0.001, exempted biases and batchnorm parameters from layer adaptation and
weight decay, and used a weight decay of 1.5 x 1075,

A.4 DOWNSTREAM TRAINING AND TESTING SETTINGS

For performance evaluation on downstream tasks, all our models were trained on 64 TPUs, but
using a batch size of 1, 024. In this section, we provide additional details of the downstream training
configuration used in our experiments. These cover data augmentation, optimizer and scheduler
settings for both linear probing and fine-tuning scenarios.

Linear Probing Settings. We base our linear probing settings on those used by well-established
SSL methods (Grill et al., 2020; Chen et al., 2020a; Kornblith et al., 2019) with some changes on
the optimizer settings. We also adapt the augmentation pipeline based on the target dataset.

In all our linear probing experiments, the optimization method corresponds to SGD with Nesterov
momentum using a momentum parameter of 0.9. We use an initial learning rate of 0.2 and no weight
decay. We use a cosine scheduler with no warmup epochs and a decay factor of 10~6. Similarly to
previous work, for datasets including a validation split, we trained the linear probe on the training
and validation splits together, and evaluated on the testing set.

For small target datasets (ImageNet 1%, Retinopathy, and DTD), models were trained for 5,000
iterations using a batch size of 1,024, which is consistent with the 20, 000 iterations using a batch
size of 256 reported by previous methods. No data augmentation is applied during training. In-
stead, during both training and testing, images are resized to 224 pixels along the shorter dimension
followed by a 224 x 224 center crop and then standardized using the ImageNet statistics.

For iNat21, comprised by 2.6 million training images, we train the linear probe for 90 epochs. We
empirically found that longer training significantly improved the downstream classification perfor-
mance both for our proposed SASSL pipeline as well as the default augmentation pipeline.

Similarly, for ImageNet, comprised by 1.2 million training images, we also train the linear probe for
90 epochs. Additionally, we included random cropping, horizontal flipping and color augmentations
(grayscale, solarization and blurring) during training.
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Table 5: SimCLR and BYOL Downstream classification performance on ImageNet. Classi-
fication accuracy of SimCLR and BYOL equipped with our proposed style transfer augmentation
approach (SASSL). Top-1 and top-5 accuracy reported on a single random seed.

Method Top-1 Acc. (%)  Top-5 Acc. (%)
SimCLR (default) 68.62 88.7
SASSL + SimCLR (Ours) 69.58 89.01
BYOL (default) 74.09 91.83
SASSL 4 BYOL (Ours) 75.13 92.12

Table 6: Few-shot classification performance. One-shot and ten-shot classification performance
of representations extracted via SASSL + MoCo v2 pretrained on ImageNet.

Method Top-1 Acc. (%) One-shot  Top-1 Acc. (%) Ten-shot
MoCo v2 (default) 19.56 45.05
SASSL + MoCo v2 (Ours) 20.55 46.73

Fine-tuning Settings. Our fine-tuning configuration follows the one used for linear-probing. In all
cases, We use SGD with Nesterov momentum using a momentum parameter of 0.9. Training uses an
initial learning rate of 0.2 and no weight decay. We use a cosine scheduler with no warmup epochs
and a decay factor of 1076, Similarly to previous work, for datasets including a validation split, we
fine-tune the model on the training and validation splits together, and evaluate on the testing set.

The number of training iterations and data augmentation depend on the target dataset, and are iden-
tical to those used for linear probing. Note that we do not run a hyperparameter sweep for selecting
either the weight decay or initial learning rate, i.e., these remain fixed for all experiments.

A.5 DOWNSTREAM TASK PERFORMANCE ON OTHER SSL METHODS

We extend the downstream performance experiments reported in Sec. 5.1 by evaluating SASSL’s
impact on two other well-established SSL methods: SimCLR and BYOL. We pre-trained a ResNet-
50 backbone using each method, both with and without SASSL, and then evaluated the resulting
models on the ImageNet dataset using linear probing. In both cases, we employed the default pre-
training and linear probing configurations provided by each method. SASSL was implemented with
its recommended hyperparameters (blending and interpolation factor between 0.1 and 0.3, probabil-
ity 0.8, and Painter by Numbers as external style dataset). The pre-training and fine-tuning settings
for SimCLR and BYOL adhered to their default configurations.

Table 5 shows the top-1 and top-5 downstream classification accuracy. Results shows that SASSL
consistently improves the downstream classification accuracy of both SimCLR and BYOL, suggest-
ing its effectiveness across different SSL techniques.

A.6 FEW-SHOT CLASSIFICATION

To further demonstrate the enhanced representation learning capabilities of SASSL, we con-
ducted additional experiments on another downstream task: few-shot classification. We eval-
uated SASSL + MoCo v2 representations against the default MoCo v2 representations in the
context of one-shot and ten-shot settings on the challenging ImageNet dataset. Note that we
use the official TensorFlow Dataset’s partitions, namely imagenet2012_fewshot/1lshot and
imagenet2012_fewshot/10shot.

Table 6 presents the classification accuracy in both scenarios. Results reveal that SASSL boosts
few-shot classification top-1 accuracy by over 1% in both cases. This aligns with our classification
experiments, suggesting that SASSL promotes more general image representations.
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A.7 ADDITIONAL ABLATION STUDIES

Effect of the Style Representation in Downstream Performance. We conduct additional exper-
iments to better understand the effect of the style representation z, in the downstream task perfor-
mance of models pre-trained via SASSL. Specifically, we replace the style latent code, originally
taken from a style image, by (i) i.i.d. Gaussian noise z; ~ N (u, X), and (ii) the style representation
of the content image z; = z.. Note that latter case is equivalent to using the stylization model 7 as
an autoencoder, since no style is imposed over the feature maps of the content image.

In both cases, we pre-train and linearly probe a ResNet-50 backbone on ImageNet using MoCo v2
equipped with SASSL. All training and downstream task settings follow our default configurations,
as covered in the Appendix Section A.3 and A.4. We also use the default blending and interpolation
factors «, 5 ~ U(0.1,0.3).

Table 7 shows the linear probing performance obtained by the two scenarios of interest. As refer-
ence, we also include the performance of MoCo v2 with the default data augmentation, as well as
MoCo v2 via SASSL using an external style dataset (Painter by Numbers). Results show that using
noise as style representation boosts top-1 accuracy by 0.24% with respect to the default data aug-
mentation, while using the content as style reference improves performance by 0.8%. This implies
that using noise as style representation hinders performance with respect to just encoding the input
image. On the other hand, using an external style dataset boosts up performance by 2.4%, which is
a significantly larger improvement over the two scenarios of interest.

Results suggest that the style reference has a strong effect on the downstream performance of the pre-
trained models. Either by replacing the latent representation of a style image by noise or removing
the style alignment process and keeping the compression induced by the Stylization network 7 (by
forcing z; = z.), the improvement provided by our proposed data augmentation is significantly
smaller than that obtained with our full technique using external style images.

Effect of the Number of Stylized Layers in Downstream Accuracy. we conduct an ablation study
to investigate the impact of the number of layers stylized during pre-training. We examine three
scenarios: (i) stylizing the first two residual blocks (four layers corresponding to Residual blocks 1
and 2), (ii) stylizing the first four residual blocks (eight layers corresponding to Residual blocks 1 to
4), and (iii) stylizing all residual layers (ten layers corresponding to Residual layers 1 to 5).

For each scenario, we pre-trained and linearly probed a ResNet-50 on ImageNet using SASSL +
MoCo v2 with its optimal configuration (blending and interpolation between 0.1 and 0.3, using
Painter by Numbers as the external style dataset). To provide a clear comparison, we compared the
classification accuracy of these three models to the model trained without feature alignment (using
the stylization network as an autoencoder), and our complete SASSL + MoCo v2 model (stylizing
all layers). Note that the latter stylizes all residual and upsampling blocks (a total of thirteen layers).

The results indicate a gradual improvement in accuracy as the number of stylized layers increases.
Stylizing only the first four layers yielded no significant improvements, resulting in approximately
the same accuracy as the model pre-trained without feature alignment. Stylizing the first eight layers
enhanced top-1 classification accuracy by 0.34% over the model with no feature alignment. Finally,
stylizing the first ten layers improved accuracy by 0.52%. These findings suggest that deeper layers
have a more pronounced impact on accuracy improvement. Additionally, the model pre-trained with
full stylization achieved a 1.61% improvement over the model with no feature alignment, indicating
that the stylization occurring in the upsampling layers plays a dominant role in the gains provided
by SASSL.

This study suggests that significant improvements can be achieved by solely stylizing deeper layers,
potentially reducing the computational demands of SASSL while still enabling the extraction of
robust image representations.

A.8 COMPUTATIONAL REQUIREMENTS

We conducted additional experiments to compare the runtime of our proposed method against the
default augmentation pipeline. We measured the throughput (augmented images per second) of
SASSL relative to MoCo v2’s data augmentation. The throughput was calculated by averaging
100 independent runs on 128 x 128-pixel images with a batch size of 2,048. We also report the
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Table 7: Effect of the Style Representation in Downstream Performance. Different style repre-
sentation settings are analyzed when pretraining a ResNet-50 backbone via MoCo v2. Performance
reported on a single random seed.

Augmentation Configuration Style Dataset ~ Top-1 Acc. (%)  Top-5 Acc. (%)
Baseline — - 72.97 90.86
Gaussian Noise
zo ~ N(p, ) 73.21 91.17

Probability: p = 0.8,

?éir% Blending: o € [0.1,0.3] zo =z 73.77 91.64
Interpolation 8 € [0.1, 0.3] PBN
75.38 92.21
(external)

Table 8: Effect of the Number of Stylized layers in Downstream Performance. Downstream
classification accuracy of a ResNet-50 backbone pretraining via SASSL + MoCo v2, where NST is
applied to a different number of layers. Performance reported on a single random seed.

Augmentation Configuration Style Dataset Top-1 Acc. (%)  Top-5 Acc. (%)

Baseline - — 72.97 90.86
Zs = Zc 73.77 91.64

PBN (external)
Stylize first 4 layers 73.75 91.58

Probability: p = 0.8,
?83% Blending: a € [0.1,0.3] St;?zf é‘i’;ﬁeg’fgé)ers 74.00 91.76
Interpolation: 8 € [0.1,0.3]

PBN (external)
Stylize first 10 layers 427 ILT4
PBN (external) 75.38 92.21

relative change, which indicates the percentage decrease in throughput compared to the default data
augmentation. All experiments were carried out on a single TPU.

Table 9 summarizes the throughput comparison. SASSL reduces throughput by approximately 20%
due to the computational overhead of stylizing large batches, which involves running a forward
pass of the NST model. However, empirical evidence shows that SASSL achieves up to a 2%
performance improvement. We believe this represents a favorable trade-off between performance
and runtime.

A.9 COMPARISON TO RECENT DATA AUGMENTATION WORK

Neural Style Transfer Augmentation for Self-Supervised Learning. Recent work has explored
the use of NST in self-supervised classification models to impose invariances towards improved
classifiaction accuracy. Geirhos et al. (2018) studies how CNNs are biased towards texture in the
context of supervised learning. Their main hypothesis is that CNN classifiers trained via supervised
learning are biased towards texture. This is distinct from our approach, since we focus on preserving
semantic information in self-supervised learning by exclusively distorting the style component of
pre-training samples. More precisely, we decouple content and style in order to exclusively distort
the style to obtain stronger self-supervised image representations. While both works rely on NST,

Table 9: SASSL runtime. Comparison of the throughput (processed images/second) of SASSL +
MoCo v2’s data augmentation pipeline vs. the default MoCo v2’s pipeline.

Method Throughput (images/second) ~ Relative Change (%)
MoCo v2 (default) 37.45 —
SASSL v2 + MoCo v2 (Ours) 29.48 21.28
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their method uses it to create a stylized dataset (Stylized-ImageNet), whereas our approach is to
incorporate style transfer in the augmentation pipeline to create stylized images on-the-fly while
controlling their effect via blending and interpolation hyperparameters.

Similarly, Jackson et al. (2019) propose employing NST as a data augmentation technique for su-
pervised learning, where the style reference is drawn from a normal distribution. In contrast, our
experiments demonstrate that this approach hinders performance in the context of SSL. SASSL uti-
lizes precomputed style representations from external datasets or samples from the content datasets
themselves (in-batch stylization), resulting in improved or on-par downstream performance across
style datasets. Furthermore, their approach solely considers the blending of style representations,
overlooking the distortions introduced by the stylization network itself. Our work reveals that the
compression generated by the stylization network, even without using a style representation, leads
to a loss of information about the structure (edges and small image details) of pre-training images,
deteriorating downstream performance. This is the rationale behind SASSL’s reliance on both pixel
interpolation and feature blending.

Zheng et al. (2019) utilize NST to create additional samples for supervised learning, using only
eight style images. It’s important to note that their approach does not incorporate NST as data
augmentation; instead, the stylized images are fixed and added to the original training dataset. Ad-
ditionally, their experiments are limited to a single classification dataset (Caltech). This contrasts
sharply with our method, which proposes different stylization strategies (external and in-batch) and
ways to control the stylization effect (via ablation and interpolation) to augment data on-the-fly in
order to enhance SSL performance. While both methods share the use of style NST, their tasks and
approaches are distinct.

Semantic-Aware Data Augmentation in Self-Supervised Learning. Purushwalkam & Gupta
(2020) suggest an augmentation strategy based on natural (temporal) transformations that occur
in videos as an alternative to learning from occluded (cropped) images from object-centric datasets.
In contrast, our approach utilizes neural style transfer to decouple images into content and style, al-
lowing us to apply transformations exclusively to the style of pre-training samples while preserving
the content information. Their approach relies on datasets generated on video frames to incorporate
temporal invariance, while SASSL can be used on standard image datasets, enabling its integration
to default augmentation pipelines.

On the other hand, Lee et al. (2021) propose to include an auxiliary loss for SSL methods to cap-
ture the difference between augmented views, leading to better downstream performance on datasets
where the task relies on information that may have been lost due to invariances introduced by ag-
gressive augmentation. While their method modifies the pre-training loss and requires the use of
data augmentation parameters to learn representations, SASSL does not require any additional loss
components or auxiliary information from each applied augmentation to function. Our method com-
plements the default data augmentation pipeline with a content-preserving transformation to obtain
more general representations.

Finally, Bai et al. (2022) propose an alternative SSL augmentation pipeline to prevent the loss of se-
mantic information in the learned representations by encouraging learning from weakly augmented
views and gradually transitioning to strongly augmented views. The method avoids semantic shifts
caused by aggressive image transformations by leveraging the tendency of SSL models to mem-
orize clean views during early pre-training stages and by proposing a multi-stage augmentation
pipeline to generate weak and strongly augmented views. Differently, our approach does not re-
quire additional augmented views or dynamic control over the loss weights during training. SASSL
utilizes a content-preserving transformation that only modifies stylistic characteristics (color and
texture), leaving the natural image structure and objects unchanged. Our approach incorporates a
transformation into the default augmentation pipeline without altering the loss function or instance
discrimination strategy.
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