
Large-Scale Recurrent Neural Networks with Fully
Homomorphic Encryption for Privacy-Enhanced Speaker

Identification
Anonymous

Redacted
Redacted
Redacted
Redacted

Anonymous
Redacted
Redacted
Redacted
Redacted

Abstract—Temporal classification tasks such as speaker identification
are often performed by recurrent neural networks (RNNs) that observe
potentially private (sensitive) data in order to provide service. Although
encrypting this data safeguards it during storage and transit, decryption
for computation introduces a potential vulnerability. Fully homomorphic
encryption (FHE) is a privacy enhancing technology that supports
computation over encrypted data. A neural network with multiple RNN
layers and attention over encrypted data for this task is presented.
Using GPU acceleration and novel contributions: (1) a RNN quantization
procedure with ternarized parameters and binarized activations, and (2)
a ciphertext-ciphertext multiplication method for attention that reduces
required computation by 50%, yields the first published multi-layer RNN
with attention over encrypted data. This marks a significant step toward
practical privacy-enhanced temporal classification.

Index Terms—speaker identification, fully homomorphic encryption,
recurrent neural networks, attention, quantization

I. INTRODUCTION

Over the past two decades, machine learning as a service has
surged into a global industry. With advancements in computer hard-
ware and the proliferation of rich, accessible data, there is a rising
demand for advanced tools like AI-driven chatbots and personal
assistants which amplifies the importance of ensuring data privacy
during storage, transmission, and computation. Fully homomorphic
encryption (FHE) is a privacy enhancing technology that can be
used to protect data during computation, allowing the same services
mentioned above to be performed over encrypted data. For instance,
FHE enables the ability to send encrypted samples of speech to third-
party AI-driven voice assistants, with the assurance that the data can
never be observed in the clear, and receive an encrypted answer (e.g.
speaker ID) that only the holder of the private key can decrypt.

A significant body of literature focuses on the execution of
neural networks over encrypted data, such as convolutional neural
networks and simple logistic regression [1]. However, there is limited
research in the area of recurrent neural networks (RNNs) [2, 3]. The
characteristics of RNNs that make them powerful over sequential
data and good models for temporal classification tasks (TCTs) serve
as limitations in most FHE schemes. Primarily, RNNs contain deep
recurrence relationships. In FHE, security relies on the presence of
noise in each ciphertext [4], which grows with each consecutive
mathematical operation, and can become large enough to prevent
proper decryption. Consequently, even short RNN architectures are
difficult to implement. Secondly, FHE operations are orders of
magnitude slower than their plaintext counterparts, making RNNs,
which are usually latency-sensitive, simply too inefficient to be useful.

We acknowledge the support of the redacted

Considering the widespread use of RNNs and attention to model
end-to-end TCTs [5–7], this work centers on providing a path
towards efficient large-scale attention-based RNN evaluation over
encrypted data non-interactively, where the server performs the full
inference without any aid from the client. We focus on the CGGI
[8] mathematical foundation for FHE since it possesses an efficient
bootstrapping method (an operation that reduces accumulated noise in
ciphertexts). This enables unlocking limitless depth, a crucial feature
for RNNs, while minimizing latency. The bootstrapping operation
can also be accelerated by GPUs [9]. Using CGGI necessitates
exploring quantization methods for RNNs, a challenging task due
to the inherent amplification of noise along the time dimension in
RNNs. Furthermore, since CGGI does not contain native ciphertext-
ciphertext multiplication, and the attention model [10], which serves
as an important aggregation layer in RNNs, relies on multiplication
between activations to measure relative importance, there remains an
additional challenge of finding a practical way to multiply ciphertexts.

To address these challenges, we present the four-step quantization
procedure for RNNs. The procedure utilizes quantization-aware
training to sequentially transform a full-precision vanilla RNN into
a quantized version with binarized activations (±1) and ternarized
parameters (0,±1). The procedure employs a novel method for
calculating ternarization thresholds and utilizes an innovative gradient
scaling technique to address vanishing/exploding gradient issues,
preventing degradation of successful RNN quantization. We also
present a novel multiplication method between ciphertexts that
encrypt values in {−1, 1}. While the state of the art [11] uses
two bootstrapping operations, our method uses only one due to the
simplified domain of encrypted values.

We evaluate the speaker identification task over the FHE-encrypted
VoxCeleb1 [12] test dataset using a 12.6M parameter, multi-layer,
stacked vanilla RNN with multi-headed self-attention. Our model
achieves superior latency while supporting two orders of magnitude
more parameters than the state of the art for RNN evaluation [2]. It
also processes encrypted inputs between 130 and 426 timesteps (1-4 s
of speech), an order of magnitude larger time window than [2].

This paper is organized as follows. Section II provides background
information. Section III introduces two major contributions. Section
IV discusses experimental results, and section V compares our
methods to the state of the art.

II. BACKGROUND

A. Fully Homomorphic Encryption over the Torus

Fully homomorphic encryption (FHE), pioneered by Gentry [13],
is a class of encryption technologies that allow unlimited compu-

tation on encrypted data. Prior to Gentry’s breakthrough, various
schemes limited operations to either addition or multiplication, or
constrained the number of consecutive operations on ciphertexts [14].
Gentry’s scheme allowed both addition and multiplication, and his
development of a bootstrapping procedure to decrease the noise
in a ciphertext unlocked the possibility of an unlimited number of
consecutive arithmetic operations. FHE security relies on the hardness
of the Learning With Errors (LWE) problem [4], foundational in
lattice cryptography, with its strength set by the security parameter
λ. Encrypted messages contain sampled noise that is large enough to
guarantee LWE hardness and small enough to ensure correctness after
decryption. However, every operation increases noise, potentially
making correct decryption impossible without bootstrapping.

Bootstrapping is the most computationally expensive FHE opera-
tion. The CGGI [8] foundation of FHE provides one of the fastest
bootstrapping procedures, known as programmable bootstrapping
(PBS) [11]. PBS reduces noise in ciphertexts while evaluating a
lookup table (LUT) representing any arbitrary function over signed
integers. This is critical in neural networks, enabling non-linear
activation functions and allowing unlimited depth in RNNs due to
noise reduction. To correctly construct a LUT, the negacyclic property
is key. For example, consider the sign function,

sign(x) =

{
+1 if x ≥ 0,

−1 otherwise.
(1)

For a function f(x) over p-bit signed integers where x ∈ [0, N − 1]
and N = 2p−1, PBS evaluates f(x) for x ∈ [0, N − 1] and −f(x)
for x + N . The LUT for the sign function is constructed with N
values, [f(0) = 1, ..., f(N − 1) = 1], and PBS extends it to 2N
values, where f(x+N) = −f(x), covering x ∈ [−N,N − 1].

CGGI supports ciphertext addition, ciphertext-plaintext scalar mul-
tiplication, and LUT evaluation. In our setup, clients FHE-encrypt
their input data and send it to the server, which keeps inputs
and activations encrypted while using plaintext model parameters
and FHE operations to perform inference. The server returns the
encrypted results for client decryption, ensuring only the input data
remains private. CGGI supports (un)signed integers up to eight bits to
maintain precision and efficiency [15]. Using larger bit-widths causes
inaccuracies unless CGGI parameters are adjusted, but increasing the
parameters to correct this reduces efficiency. Combined with its lack
of right-shift and division support, this requires low-bit, non-fixed-
point integer quantization for RNN evaluation over encrypted data.

B. Quantization of RNNs for CGGI Evaluation

In neural networks, quantization is generally employed to reduce
memory storage and improve computational efficiency [16]. Our use
case is one of necessity. Several studies that evaluate neural networks
using CGGI, exclusive of RNNs, employ various quantization meth-
ods. For instance, REDsec [17], TAPAS [18], and FHE-DiNN [19]
utilize binarization for activation quantization, transforming values
into ±1 using the sign function defined in Equation 1. TAPAS and
REDsec use ternarization for parameter quantization, mapping values
to {−1, 0, 1}. Equation 2 defines a method to ternarize x ∈ R given
a ternarization threshold τ ∈ R>0.

ternary(x, τ) =

{
0, if |x| ≤ τ,

sign(x), otherwise.
(2)

Simply transforming all floating-point (FP) inputs, activations, and
parameters in a neural network to binary or ternary values after train-
ing introduces substantial quantization noise (i.e., |x− sign(x)| ≫ 0

for |x| ≫ 1 or |x| ≪ 1), which can lead to significant accuracy loss
[16]. RNNs, in particular, contain a feedback loop that can magnify
any added noise with each additional timestep, further intensifying
the problem of quantization noise. This issue is theoretically demon-
strated by LAB [20], which proves that binarization without scaling
causes RNNs to explode along the time dimension. Quantization-
aware training (QAT), as utilized by REDsec and TAPAS, addresses
this issue by injecting quantization noise during the forward step in
training. This process introduces non-differentiable nodes that quan-
tize and immediately dequantize values. Straight-through estimation,
a part of QAT, allows gradients to pass through these nodes during
backpropagation, enabling the network to maintain its parameters,
activations, and gradients in FP. This approach allows the network to
learn effectively and generalize to the presence of any quantization
noise, thereby retaining accuracy despite the added noise [16].

While QAT can mitigate quantization noise, vanishing and ex-
ploding gradients in RNNs remain challenging. Consequently, RNN
quantization research focuses on fixed-point quantization [21] and
incorporating normalization layers after quantization [22]. However,
normalization layers convert quantized integers back to FP, which
CGGI does not support. Fixed-point arithmetic lacks support unless
each p-bit value is represented by a ciphertext per bit [2, 17, 18]. This
allows simple right-shift operations but results in poor performance
due to complex circuits with numerous PBS operations over cipher-
text arrays. Thus, we seek a quantization method for RNNs that:
(1) enables single-ciphertext representation of inputs and activations
during evaluation, allowing one PBS per activation and enhancing
efficiency; (2) employs QAT to retain accuracy despite significant
quantization noise; and (3) leverages low-bit quantization to minimize
the required bit-width of the message space during accumulation. To
our knowledge, no such method exists. Section III-A presents an
algorithm that meets these objectives.

III. CONTRIBUTIONS

A. A Novel Quantization Procedure for RNNs

The four-step quantization procedure sequentially quantizes a
(un)trained vanilla RNN by binarizing activations, ternarizing inputs,
and ternarizing parameters through QAT at each step. Algorithm 1
details the procedure. We discuss two important features below.

1) Ternarization threshold: As defined in Equation 2, ternarization
involves setting a threshold τ . Algorithm 1 implements ternarization
at the layer level, where τl is computed over a set of values X in each
layer l, which, for instance, can represent the input dataset D for the
input layer, or the set of model parameters θl in layer l. Liu et al. [24]
suggest setting τl = 0.75 ·E(|X |), where E(·) is the expected value,
and | · | is the absolute value. Conversely, Zhu et al. [25] propose
setting τl = t ·max(X), with t as a constant scalar hyperparameter.
Our novel approach combines these methods by setting:

τl = t · E(|X |), (3)

where t is the ternarization scale, a hyperparameter in Algorithm
1. This generalization provides flexibility in adjusting τl, as we have
empirically found that varying t with the expected value, rather than
the maximum, improves model performance.

2) Gradient scaling: Inspired by straight through estimation [16],
we adopt a custom activation function that employs the sign function
(Equation 1) during the forward pass and the tanh derivative dur-
ing backpropagation, termed sign-with-tanh-derivative in Algorithm
1. This approach facilitates effective quantization of values while
maintaining a smooth loss landscape during training. However, the

Algorithm 1: Four-Step Quantization for RNNs
Input : Vanilla RNN model M0, trained or untrained, input

dataset D, ternarization scale t.
Output: Quantized RNN with binary activations and ternary

inputs/parameters M4.

Step 1: Train a Vanilla RNN
1 Change activations in M0 to tanh.
2 M1 ← train(M0).

Step 2: Binarize Activations
3 Change activations in M1 to sign-with-tanh-derivative.
4 M2 ← train(M1).
5 if exploding/vanishing gradients then
6 Increase batch size.
7 Repeat lines 3 - 4.
8 if model is still not training then
9 foreach RNN layer in M3 do

10 Set temperature scale sl for gradient scaling.
11 Repeat line 3.
12 Repeat line 4 while applying gradient scaling.

Step 3: Ternarize Inputs
13 D ← ternary(D, τI) where τI = t · E(|D|).
14 M3 ← train(M2).

Step 4: Ternarize Model Parameters
15 foreach layer l in M3 w/ parameter distribution θl do
16 τl ← t · E(|θl|) /* eq. 3 */
17 foreach RNN layer l in M3 do
18 Set temperature scale sl for gradient scaling.
19 M4 ← train(M3) while applying (1) gradient scaling and (2)

ternarization in the forward step.
20 if model fails to train then
21 Increase number of parameters in each layer of M0 by

3x, as suggested by Mishra et al. [23].
22 Repeat lines 1 - 19.

sign function can introduce significant quantization noise, as noted
in section II-B. To mitigate exploding or vanishing gradients within
the constraints of CGGI evaluation, we introduce a novel gradient
scaling technique. Unlike conventional methods that scale both
forward and backward computations [26], our innovation lies in
exclusively applying a scaling factor 1/s to the affected gradients
during backpropagation, while preserving the integrity of forward
step values. Here, the scaling factor 1/s, where s is referred to as the
temperature scale—a hyperparameter in Algorithm 1—is applied to
the gradients of all the pre-activations in the RNN layer. This method
effectively stabilizes gradients without compromising the network’s
adherence to binary activations, essential for CGGI evaluation.

Algorithm 1 results in a quantized RNN with binary activations
and ternary inputs and parameters, effectively limiting the required
bit-width for precise pre-activation representation. This approach
enables a single ciphertext representation and the use of a single
PBS operation per activation during encrypted inference. Moreover,
integrating QAT ensures robust model performance, thereby suc-
cessfully fulfilling the objectives outlined in section II-B. In the
following section, we investigate a way to multiply ciphertexts to
enable encrypted attention, an important aggregation layer in RNNs.

B. Multiplication of Binarized Ciphertexts

Within CGGI, the external product operation facilitates the multi-
plication of LWE ciphertexts with those of a different encryption type,
specifically GGSW [8]. To perform multiplication between LWE

TABLE I: Binary Multiplication Truth Table. Refer to equation 4
for a definition of m.

x y x− y m · (x− y) x · y
+1 +1 0 0 +1
+1 −1 +2 +2m −1
−1 +1 −2 −2m −1
−1 −1 0 0 +1

ciphertexts, circuit bootstrapping (CBS) must be used to convert an
LWE ciphertext to a GGSW ciphertext. However, CBS is a compu-
tationally expensive operation [8], and would dramatically increase
the execution time of circuits that are abundant in multiplications. In
[11], an inner product between LWE ciphertexts is proposed, called
BFV-like multiplication, though noisy. Using a mathematical identity,
the authors also propose a general way of multiplying two LWE
ciphertexts through two PBS operations. While this method can be
performed across a much larger message domain, limiting the domain
to {-1,1} offers some advantages.

We present a novel multiplication method between binarized
ciphertexts that requires only one PBS. As shown in the third
column of Table I, subtracting two binary values x, y ∈ {−1,+1}
results in three distinct values {0,+2,−2}. As a result, the third
column can be mapped to the last column by a LUT (x − y →
x · y) and used to evaluate a single PBS. However, the values in
column 3 are numerically close with respect to the p-bit plaintext
message space. Since ciphertexts contain noise, accumulation of noise
from operations prior to multiplication could build and become large
enough to offset x − y by a small amount, causing an incorrect
output. Scaling by m from Equation 4 separates the values, as shown
in column 4. This allows 2m or −2m, for example, to align with
the centers of the second and third regions in LUTmult, as defined
in Equation 5, respectively. These regions contain repetitions of the
correct output value, ensuring error robustness.

m = 3 · 2p−5 (4)

LUTmult = [{+1}N/4, {−1}N/4, {+1}N/4, {−1}N/4] (5)

where p ≥ 5 is the bit-width of the plaintext message space, N =
2p−1, and {x}r = x repeated r times. In our implementation, we
utilize an 11-bit message space, resulting in m = 192.

IV. EXPERIMENTAL RESULTS

We evaluate the SpeakerID RNN (Figure 1) for the speaker
identification (SID) task over the VoxCeleb1 [12] test set. VoxCeleb1
is considered a large-scale dataset for various speaker tasks, including
SID (a multi-class problem to classify speakers from raw audio).
VoxCeleb1 contains 1251 speakers and 153,516 utterances recorded
in-the-wild. On average, there are 123 utterances per speaker, each
8.2 s long. Drawing inspiration from [7, 12], each speech sample
is preprocessed into log-mel spectrograms using 80 mel-scale bins,
25ms frames, a 10ms stride, and a 16 kHz sampling rate. It is then
normalized, stacked by four frames, and downsampled by a factor of
3 to create input vectors with 320 elements for each timestep. We
utilize the default VoxCeleb1 data split [12]. During each training
epoch, 4 s samples are drawn at random from each full length sample.
Validation is performed similarly, while testing is performed over full
length samples. We measure top-1 and top-5 accuracy to evaluate
model performance as in [12].

Motivated by [7], the SpeakerID RNN model (Figure 1) contains
two RNN layers, with the outputs of the first RNN downsampled by
a factor of 2. Inspired by [27], a multi-headed, self-attention module,
comprised of two feed-forward (FF) layers, is applied to all of the
second RNN outputs to perform aggregation. The last FF layers

Fig. 1: The SpeakerID RNN model. DS (by 2) refers to downsample
by a factor of 2, FF refers to feed-forward. Numbers underneath FF
and RNN refer to number of units. Consists of 12,644,352 parameters.

classify speakers based on the flattened outputs from the attention
module. The model activations are tanh, the outputs are fed into
a softmax, and cross-entropy loss is used as the training objective.
Adam optimization and a batch size of 512 are used. In step 1 of
Algorithm 1, default parameter initialization settings for RNNs are
used and we apply the learning rate scheduler from [28] with 5400
warmup steps, a model size of 1536, and L2 regularization at 10−4.
Steps 2-3 use a fixed learning rate of 10−4, while step 4 switches
to a cosine schedule starting at 2 · 10−6, decaying by 10−1 after
100 epochs, with no regularization. TensorFlow v2.10.1 and QKeras
v0.9 [29] are used to train, quantize, and evaluate plaintext models.
For encrypted evaluation with CGGI, we use a customized Concrete-
Core library which includes bug fixes enabling multi-GPU support
[9]. A machine with two AMD EPYC 7763 CPUs, two Nvidia A100
GPUs, 512 GB RAM, and Ubuntu v22.10 performs our evaluations.
CGGI parameters from [15] ensuring 128-bit security are used, with
an 11-bit plaintext message space to handle large accumulations. To
prevent overflow in the final layer, we divide each dot product into
64 smaller summations. After decryption, the plaintexts are summed
and fed into a softmax. The source code is available [30].

Table II presents the plaintext test accuracy results (columns 2-3)
for the SpeakerID RNN after each step in Algorithm 1. We utilize
a ternarization scale t = 1.6 for parameters, t = 0.7 for inputs,
and a temperature scale s = 5 when required. The results in step
1 showcase the full precision accuracy, which achieves comparable
(1.54% better) top-1 accuracy than [12] over the same dataset and
SID task. Performing the next three steps in the quantization proce-
dure results in decreases in top-1 and top-5 accuracies of -25.04% and
-14.47%, respectively—a promising significance result since this is
the first successful quantization of RNNs using binary activations
and ternary parameters without scaling of weights/activations
and normalization, allowing the arithmetic to be purely integer
and not fixed-point. Furthermore, the positive change between start
and end validation accuracies in each step (column 4) emphasizes
the importance of step-wise quantization with QAT. In contrast,
combining steps 2-4 into a single step yields only 12.94% accuracy,
approximately 30% less than using the four-step approach. Thus,
using all four steps in sequence significantly enhances accuracy
compared to commonly used single-step quantization.

Using the quantized parameters from step 4, the evaluation over
encrypted data yields encrypted and plaintext accuracies of 28%
and 53% for top-1, and 44% and 78% for top-5, respectively, over
the encrypted VoxCeleb1 test set. The decreased encrypted accuracy
can largely be attributed to integer accumulation overflowing the
plaintext modulus in the FF(2048) layer. Notably, for a correctly
classified, 1.9 s (188 timesteps) utterance, our evaluation exhibits
a latency of 531 s. In comparison, the one-layer, 300-unit, 25-
timestep RNN (without attention) in SHE [2] contains approximately
180K parameters and exhibits a latency of 576 s. Our model, with
two orders of magnitude more parameters than SHE, successfully
evaluates encrypted utterances between 130 and 426 timesteps (an
order of magnitude more timesteps than SHE) and yet achieves

TABLE II: Accuracy results of SpeakerID RNN over VoxCeleb1
[12] with the four-step quantization process. ∆Top-1 refers to the
gain in top-1 validation accuracy from the beginning of the step to
the end for an example training run.

Test Acc. Val. Acc.

Step Top-1 Top-5 ∆Top-1

1 82.04% 92.52% -
2 77.36% 90.28% +31.67%
3 74.16% 88.64% +7.77%
4 57.00% 78.05% +17.20%

superior latency. This achievement is largely attributed to our use of
a single-ciphertext representation, significantly reducing computation
requirements. Moreover, we observe a linear drop in latency as the
number of GPUs increases. Concrete-Core distributes PBS operations
across multiple GPUs, with each GPU performing an equal amount
of PBS operations, in parallel, to its number of streaming multipro-
cessors (SMs). The A100 GPU contains 108 SMs, and empirically,
we found that a single A100 can perform 100 PBS operations in
75ms. Thus, about 2888 GPUs would be required to parallelize all
groups of PBS operations in the 1.9 s sample above, bringing the
latency down from 531 s to an estimated 25 s, an order of magnitude
from plaintext latency.

V. RELATED WORK

Only two studies have explored non-interactive evaluation of
RNNs over encrypted data [2, 3], while none incorporate attention
mechanisms. SHE [2] investigates a single-layer, 300-unit RNN with
180,000 parameters over 25 timesteps using the Penn Treebank
dataset [31], relying on a fixed-point quantization scheme. This
requires multiple ciphertexts per value, leading to high latency
due to complex circuits, despite achieving good accuracy. In con-
trast, Podschwadt et al. [3] employ the CKKS FHE scheme [32],
which eliminates the need for quantization, but the high cost of
bootstrapping forces partitioning RNNs along the time dimension,
disrupting feedback loops and resulting in 19.5 minutes of latency
per sample, unsuitable for real-time tasks. Other studies have explored
neural networks over encrypted data [17–19], though not specifically
focusing on RNNs. TAPAS [18] and REDsec [17] use fixed-point
quantization, requiring multi-ciphertext representations and resulting
in significant latency. FHE-DiNN [19] uses post-training quantization,
but is ill-suited for RNNs due to quantization noise amplified by
feedback loops, which static methods fail to mitigate.

VI. CONCLUSION AND FUTURE WORK

To move towards practical temporal classification over encrypted
data, this paper introduces a four-step quantization method for
RNNs. Successfully applied to the SpeakerID RNN, a large-scale,
multi-layer vanilla RNN with attention, the method employs pure
integer arithmetic (non-fixed-point), binary activations, and ternary
inputs/parameters. For efficient attention evaluation over encrypted
data, a novel ciphertext multiplication method between binary ci-
phertexts is proposed, yielding a 50% reduction in latency. Using
these methods and the CGGI FHE scheme, we evaluate speaker
identification on the encrypted VoxCeleb1 dataset, achieving superior
latency over the state of the art [2]. Notably, the evaluation involves a
model with two orders of magnitude more parameters and an order of
magnitude more timesteps. This paper marks the first evaluation of:
(1) speaker identification over encrypted data using RNNs, and (2)
RNNs with attention over encrypted data. Future work will address
message space overflow affecting encrypted accuracy.

REFERENCES

[1] R. Podschwadt, D. Takabi, P. Hu, M. H. Rafiei, and Z. Cai, “A survey
of deep learning architectures for privacy-preserving machine learning
with fully homomorphic encryption,” IEEE Access, vol. 10, pp. 117 477–
117 500, 2022.

[2] Q. Lou and L. Jiang, “SHE: A Fast and Accurate Deep
Neural Network for Encrypted Data,” in NeurIPS 2019, ser.
Advances in Neural Information Processing Systems, vol. 32,
2019. [Online]. Available: https://proceedings.neurips.cc/paper/2019/
file/56a3107cad6611c8337ee36d178ca129-Paper.pdf

[3] R. Podschwadt and D. Takabi, “Non-interactive Privacy Preserving
Recurrent Neural Network Prediction with Homomorphic Encryption,”
in 2021 IEEE 14th International Conference on Cloud Computing
(CLOUD), Sep. 2021, pp. 65–70. [Online]. Available: https://ieeexplore.
ieee.org/abstract/document/9582263

[4] O. Regev, “On lattices, learning with errors, random linear codes, and
cryptography,” in 37th ACM STOC. Baltimore, MD, USA: Association
for Computing Machinery, May 2005, pp. 84–93. [Online]. Available:
https://doi.org/10.1145/1060590.1060603

[5] H. Sak, A. Senior, K. Rao, O. İrsoy, A. Graves, F. Beaufays, and
J. Schalkwyk, “Learning acoustic frame labeling for speech recognition
with recurrent neural networks,” in 2015 IEEE International Conference
on Acoustics, Speech and Signal Processing (ICASSP), 2015, pp. 4280–
4284.

[6] W. Chan, N. Jaitly, Q. Le, and O. Vinyals, “Listen, attend and spell: A
neural network for large vocabulary conversational speech recognition,”
in 2016 IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP), 2016, pp. 4960–4964.

[7] Y. He, T. N. Sainath, R. Prabhavalkar, I. McGraw, R. Alvarez, D. Zhao,
D. Rybach, A. Kannan, Y. Wu, R. Pang, Q. Liang, D. Bhatia, Y. Shang-
guan, B. Li, G. Pundak, K. C. Sim, T. Bagby, S. y. Chang, K. Rao, and
A. Gruenstein, “Streaming End-to-end Speech Recognition for Mobile
Devices,” in 2019 IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP), 2019, pp. 6381–6385.

[8] I. Chillotti, N. Gama, M. Georgieva, and M. Izabachène, “TFHE:
Fast Fully Homomorphic Encryption Over the Torus,” Journal of
Cryptology, vol. 33, no. 1, pp. 34–91, Jan. 2020. [Online]. Available:
https://doi.org/10.1007/s00145-019-09319-x

[9] I. Chillotti, M. Joye, D. Ligier, J.-B. Orfila, and S. Tap, “CONCRETE:
Concrete Operates oN Ciphertexts Rapidly by Extending TfhE,” in
WAHC 2020–8th Workshop on Encrypted Computing & Applied Homo-
morphic Cryptography, vol. 15, 2020, for bug-fix version, use concrete-
core from https://github.com/irskid5/concrete-core.

[10] D. Bahdanau, K. Cho, and Y. Bengio, “Neural Machine Translation
by Jointly Learning to Align and Translate,” in 3rd International
Conference on Learning Representations, ICLR 2015, Conference Track
Proceedings, Y. Bengio and Y. LeCun, Eds., San Diego, CA, USA,
May 2015. [Online]. Available: http://arxiv.org/abs/1409.0473

[11] I. Chillotti, D. Ligier, J.-B. Orfila, and S. Tap, “Improved Programmable
Bootstrapping with Larger Precision and Efficient Arithmetic Circuits
for TFHE,” in Advances in Cryptology – ASIACRYPT 2021,
M. Tibouchi and H. Wang, Eds. Singapore, Singapore: Springer
International Publishing, 2021, pp. 670–699. [Online]. Available:
https://link.springer.com/chapter/10.1007%2F978-3-030-92078-4 23

[12] A. Nagrani, J. S. Chung, and A. Zisserman, “Voxceleb:
A Large-Scale Speaker Identification Dataset,” in Interspeech
2017, 18th Annual Conference of the International Speech
Communication Association, F. Lacerda, Ed. Stockholm, Sweden:
ISCA, August 2017, pp. 2616–2620, for default dataset
split, see tensorflow.org/datasets/catalog/voxceleb. [Online]. Available:
https://doi.org/10.21437/Interspeech.2017-950

[13] C. Gentry, “Fully homomorphic encryption using ideal lattices,” in
Proceedings of the Forty-First Annual ACM Symposium on Theory
of Computing, ser. STOC ’09. New York, NY, USA: Association
for Computing Machinery, 2009, p. 169–178. [Online]. Available:
https://doi.org/10.1145/1536414.1536440

[14] P. Martins, L. Sousa, and A. Mariano, “A Survey on Fully Homomorphic
Encryption: An Engineering Perspective,” ACM Computing Surveys,
vol. 50, no. 6, p. Article 83, 2017. [Online]. Available: https:
//doi.org/10.1145/3124441

[15] L. Bergerat, A. Boudi, Q. Bourgerie, I. Chillotti, D. Ligier, J.-
B. Orfila, and S. Tap, “Parameter Optimization and Larger Preci-
sion for (T)FHE,” Journal of Cryptology, vol. 36, no. 3, p. 28,

Jun. 2023, for used parameter set, see table 8, row 12 in
https://eprint.iacr.org/archive/2022/704/20220620:172436.

[16] A. Gholami, S. Kim, Z. Dong, Z. Yao, M. W. Mahoney, and K. Keutzer,
“A Survey of Quantization Methods for Efficient Neural Network
Inference,” in Low-power computer vision : improve the efficiency of
artificial intelligence, 1st ed. Boca Raton, FL: Chapman and Hall/CRC,
2022, pp. 291–326.

[17] L. Folkerts, C. Gouert, and N. G. Tsoutsos, “REDsec: Running En-
crypted Discretized Neural Networks in Seconds,” in Proceedings of
the Network and Distributed System Security Symposium (NDSS), San
Diego, California, March 2023.

[18] A. Sanyal, M. Kusner, A. Gascon, and V. Kanade, “TAPAS: Tricks to
Accelerate (encrypted) Prediction As a Service,” in Proceedings of the
35th International Conference on Machine Learning (ICML), D. Jennifer
and K. Andreas, Eds., vol. 80. PMLR, 2018, pp. 4490–4499. [Online].
Available: https://proceedings.mlr.press/v80/sanyal18a.html

[19] F. Bourse, M. Minelli, M. Minihold, and P. Paillier, “Fast Homomorphic
Evaluation of Deep Discretized Neural Networks,” in Advances in
Cryptology – CRYPTO 2018. Springer International Publishing, 2018.
[Online]. Available: https://doi.org/10.1007/978-3-319-96878-0 17

[20] L. Hou, Q. Yao, and J. T. Kwok, “Loss-aware Binarization of Deep
Networks,” in Proceedings of the 5th International Conference on
Learning Representations (ICLR), Toulon, France, April 2017. [Online].
Available: https://openreview.net/forum?id=S1oWlN9ll

[21] L. Hou and J. T. Kwok, “Loss-aware Weight Quantization of Deep
Networks,” in Proceedings of the 6th International Conference on
Learning Representations (ICLR), Vancouver, BC, Canada, May 2018.
[Online]. Available: https://openreview.net/forum?id=BkrSv0lA-

[22] L. Hou, J. Zhu, J. T. Kwok, F. Gao, T. Qin, and T. Liu, “Normalization
Helps Training of Quantized LSTM,” in Proceedings of the 33rd
International Conference on Neural Information Processing Systems.
Curran Associates Inc., 2021, pp. 7346–7356.

[23] A. Mishra, E. Nurvitadhi, J. J. Cook, and D. Marr, “WRPN: Wide
Reduced-Precision Networks,” in Proceedings of the 6th International
Conference on Learning Representations (ICLR), Vancouver, BC,
Canada, May 2018. [Online]. Available: https://openreview.net/forum?
id=B1ZvaaeAZ

[24] B. Liu, F. Li, X. Wang, B. Zhang, and J. Yan, “Ternary Weight
Networks,” in 2023 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), 2023, pp. 1–5. [Online].
Available: https://doi.org/10.1109/icassp49357.2023.10094626

[25] C. Zhu, S. Han, H. Mao, and W. J. Dally, “Trained Ternary
Quantization,” in Proceedings of the 5th International Conference on
Learning Representations (ICLR), Toulon, France, April 2017. [Online].
Available: https://openreview.net/forum?id=S1\ pAu9xl

[26] P. Wang, X. Xie, L. Deng, G. Li, D. Wang, and Y. Xie, “HitNet:
hybrid ternary recurrent neural network,” in Proceedings of the 32nd
International Conference on Neural Information Processing Systems, ser.
NIPS’18. Curran Associates Inc., 2018, p. 602–612.

[27] N. N. An, N. Q. Thanh, and Y. Liu, “Deep CNNs With Self-Attention for
Speaker Identification,” IEEE Access, vol. 7, pp. 85 327–85 337, 2019.

[28] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
L. Kaiser, and I. Polosukhin, “Attention Is All You Need,” ArXiv, no.
1706.03762, 2017. [Online]. Available: https://arxiv.org/abs/1706.03762

[29] C. N. Coelho, A. Kuusela, S. Li, H. Zhuang, J. Ngadiuba, T. K.
Aarrestad, V. Loncar, M. Pierini, A. A. Pol, and S. Summers, “Automatic
heterogeneous quantization of deep neural networks for low-latency in-
ference on the edge for particle detectors,” Nature Machine Intelligence,
vol. 3, no. 8, pp. 675–686, Aug. 2021.

[30] Anonymous, “redacted,” 2024, for training and quantization, see
redacted. [Online]. Available: Redacted

[31] M. P. Marcus, B. Santorini, and M. A. Marcinkiewicz, “Building a Large
Annotated Corpus of English: The Penn Treebank,” Computational
Linguistics, vol. 19, no. 2, pp. 313–330, 1993. [Online]. Available:
https://aclanthology.org/J93-2004

[32] J. H. Cheon, A. Kim, M. Kim, and Y. Song, “Homomorphic Encryption
for Arithmetic of Approximate Numbers,” in Advances in Cryptology –
ASIACRYPT 2017, T. Takagi and T. Peyrin, Eds. Springer International
Publishing, 2017, pp. 409–437.

