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ABSTRACT

In recent years, there has been considerable interest in leveraging the Optimal
Transport (OT) problem for domain adaptation, a strategy shown to be highly ef-
fective. However, a less explored aspect is the choice of the transportation cost
function, as most existing methods rely on the pairwise squared Euclidean dis-
tances for the transportation cost, potentially overlooking important intra-domain
geometries. This paper presents Diffusion-OT, a new transport cost for the OT
problem, designed specifically for domain adaptation. By utilizing concepts and
tools from the field of manifold learning, specifically diffusion geometry, we de-
rive an operator that accounts for the intra-domain relationships, thereby extending
beyond the conventional inter-domain distances. This operator, which quantifies
the probability of transporting between source and target samples, forms the ba-
sis for our transportation cost. We provide proof that the proposed operator is
in fact a diffusion operator, demonstrating that the cost function is defined by
an anisotropic diffusion process between the domains. In addition, to enhance
performance, we integrate source labels into the operator, thereby guiding the
anisotropic diffusion according to the classes. We showcase the effectiveness
of Diffusion-OT through comprehensive experiments, demonstrating its superior
performance compared to recent methods across various benchmarks and datasets.

1 INTRODUCTION

Unsupervised Domain Adaptation (UDA) is a widely explored field within machine learning. In
UDA, given labeled data from a domain denoted as the source domain, we aim to train a model that
will generalize well to unlabeled data from a different domain denoted as the target domain. Optimal
Transport (OT) stands out as a key method for addressing the UDA problem. The essence of the OT
problem lies in finding the most efficient way to transport from one distribution to another while
minimizing a transportation cost. It offers a robust approach to measuring the similarity between
probability density functions and facilitating an optimal mapping between them. This capability
makes it well-suited for UDA tasks, where there is a need for distribution alignment.

An established approach to utilizing OT for UDA is the Optimal Transport for Domain Adaptation
(OTDA) framework (Courty et al., 2016), which directly employs the transport plan to map source
samples to the target domain via barycentric mapping. While OTDA has proven effective in address-
ing the UDA task, the OT solution may not always yield the optimal mapping for maximizing target
accuracy. To improve accuracy, a common practice is to add a regularization term into the OT prob-
lem formulation (Courty et al., 2014; 2016; Flamary et al., 2014). Alternatively, in recent years, the
OT problem has been incorporated into deep learning models. One notable method, termed DeepJ-
DOT (Damodaran et al., 2018), uses the OT problem to address the discrepancy between source and
target distributions, subsequently leveraging the obtained transportation plan to train a feature ex-
tractor implemented through a deep model. Following DeepJDOT, numerous studies have proposed
OT-based deep models, aimed at improving target accuracy in the UDA task. Some have suggested
different OT formulations to be used within the DeepJDOT framework (Fatras et al., 2021; Nguyen
et al., 2022a), while others have introduced entirely new architectures and objective functions (Chen
et al., 2018; Lee et al., 2019; Balaji et al., 2020). While research on utilizing OT for DA tasks is ex-
tensive and constantly evolving, one aspect that remains relatively unexplored is the selection of the
transportation cost function. The transportation cost can take the form of any dissimilarity measure
between samples in the source and target domains. Nevertheless, the predominant choice tends to
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be a distance function, with the most common choice being the squared Euclidean distance, com-
puted between source and target samples. Only a small number of papers have suggested using a
cost function diverging from the typical Euclidean distance measure (Tai et al., 2021; Nguyen et al.,
2022b; Duque et al., 2023). Notably, this exploration of the transportation cost function is even rarer
in the DA context, with only a few studies proposing alternative approaches, such as employing a
weighted Euclidean distance as the transport cost (Li et al., 2020; Xu et al., 2020).

In this paper, we depart from reliance on distance functions as the transportation cost, and instead,
focus on the probability of transportation from source samples to target samples. To achieve this, we
introduce a new transportation cost, which we term Diffusion-OT, based on an operator composed
of three diffusion operators. The construction of the operator uses concepts and tools from the
field of manifold learning, specifically, diffusion geometry (Coifman & Lafon, 2006). Initially, we
construct a graph solely from the source samples, where each node represents a sample in the source
data. From this graph, we build the first diffusion operator, which aims at preserving the local
geometry of the source domain. When source labels are available, they are utilized to further guide
the diffusion process, ensuring that each source sample can only diffuse (transport) to other samples
within the same label category. Subsequently, we build a bipartite graph incorporating both source
and target samples to capture the inter-domain relationships. We construct the second operator from
this graph, which facilitates cross-domain diffusion. For the third diffusion operator, we construct a
graph exclusively from target samples, aimed at capturing intra-domain similarities within the target
domain. Taking the product of the three aforementioned operators forms a composite operator. We
show theoretically that this composite operator is a diffusion operator, demonstrating an anisotropic
diffusion process between the source and target domains. Our analysis underscores that this process
is primarily influenced by the intrinsic geometry of the domains and their discrepancy conveyed by
the Radon-Nikodym (RN) derivative.

Our main contribution. We introduce a new transportation cost, termed Diffusion-OT, which is
based on a composite diffusion operator consisting of three diffusion steps: (i) in the source do-
main, (ii) across domains, and (iii) in the target domain. This framework enables the learning of the
geometries and relationships both between and within the two domains, distinguishing it from con-
ventional approaches by considering both inter-domain distances and intra-domain structures. By
incorporating source label information into our cost, we eliminate the need for regularization terms,
ensuring compatibility with any OT solver and problem formulation, as we demonstrate in Section
5.2. Additionally, the proposed cost is straightforward to compute and is derived directly from the
data, in contrast to competing cost functions that necessitate learning the cost and are thus limited to
deep learning frameworks. Finally, we present experiments that demonstrate the effectiveness of our
method compared to competing approaches. Specifically, by incorporating Diffusion-OT into a deep
domain adaptation framework, we attain superior performance on benchmark datasets compared to
the baseline and other OT-based methods. Additionally, we evaluate our cost on benchmarks of
Motor Imagery (MI), showcasing state-of-the-art (SOTA) results on non-Euclidean data.

2 RELATED WORK

UDA is a subfield of machine learning that addresses the challenges of domain shifts and general-
ization, where a model trained on data from a source domain performs poorly when applied to a
target domain with a different data distribution. Various methods and metrics have been proposed
to align the distributions of source and target domains, including Maximum Mean Discrepancy
(MMD) (Gretton et al., 2012; Pan et al., 2010), Correlation Alignment (CORAL) (Sun et al., 2017),
and Domain Adversarial Neural Networks (DANN) (Ganin et al., 2016), to mention just a few.

The Optimal Transport for Domain Adaptation (OTDA) framework was introduced by Courty et al.
(2016). In addition to the general framework, the authors propose the integration of several regular-
ization terms to improve performance. These include a class-based regularization term (Courty et al.,
2014) and Laplace regularization (Flamary et al., 2014). A notable work is the JDOT framework
introduced in Courty et al. (2017), which presents an optimization problem designed to simulta-
neously optimize both the transportation plan and the classifier. Building upon this concept, the
DeepJDOT framework (Damodaran et al., 2018) further extends the idea by leveraging deep learn-
ing algorithms. In Fatras et al. (2021), the authors proposed enhancing the DeepJDOT framework
by employing Unbalanced Optimal Transport (UOT), yielding improved results. A related work by
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Nguyen et al. (2022a) suggested solving it using Partial Optimal Transport (POT) and presented a
two-stage implementation for the DeepJDOT framework, further enhancing target accuracy, partic-
ularly when coupled with the POT formulation. The OT problem was later incorporated into various
frameworks utilizing deep models and adversarial training (Chen et al., 2018; Lee et al., 2019; Xie
et al., 2019; Balaji et al., 2020), all with the squared Euclidean distance serving as the ground cost.

Few papers in the literature have proposed alternative cost functions diverging from the standard
distance metric. For instance, Tai et al. (2021) introduced an innovative approach termed SLA,
which utilizes the OT formulation as a label assignment method. Gu et al. (2022) introduced a semi-
supervised cost for Heterogeneous DA, with a similar approach proposed in Duque et al. (2023)
for manifold alignment. Asadulaev et al. (2022) proposed a neural network-based framework for
learning task-specific semi-supervised cost functions. Although they do not specifically propose a
transport cost, Yan et al. (2018) and Xu et al. (2019) present innovative approaches to incorporate
both intra-domain and inter-domain relationships within Gromov-Wasserstein-based frameworks.

In the context of UDA, Li et al. (2020) introduced ETD, which employs a weighted Euclidean dis-
tance as the cost function, with weights estimated via an attention mechanism. Similarly, Xu et al.
(2020) proposed RWOT, where the weights are dynamically computed using both spatial prototyp-
ical information and the pseudo-classification probability of target samples. Both methods have
fundamental drawbacks compared to our proposed approach. First, the weights in ETD and RWOT
are learned, rather than directly derived from the data as they are in Diffusion-OT, which limits their
applicability to deep learning frameworks. Furthermore, the costs in ETD and RWOT, including the
learned weights, consider only the inter-domain relationships and source label information, whereas
our cost also incorporates intra-domain relationships for both source and target domains.

By integrating principles from diffusion maps (Coifman & Lafon, 2006) into our approach, we
effectively capture intra-domain relationships and the underlying geometric structure of the data
within our proposed cost. Diffusion maps, initially introduced as a dimensionality reduction tech-
nique, provide a method to analyze and visualize high-dimensional data. The core concept involves
constructing a transition kernel, where transition probabilities are defined by the local similarities
between data points. Diffusion geometry has since been widely applied in various fields, including
data analysis (Coifman & Lafon, 2006), computer vision (Bronstein et al., 2010; Liu et al., 2012),
and medical imaging (Haghverdi et al., 2015; Zheludev et al., 2015), among others.

For a more comprehensive review of the related work and diffusion geometry specifically, see Ap-
pendices A and B, respectively.

3 OPTIMAL TRANSPORT FOR DOMAIN ADAPTATION

We formulate the problem we consider and briefly describe the OTDA framework proposed in
Courty et al. (2016).

Problem formulation. Let X be an input space and Y be a label space. We define a domain as
a distribution D over the input space X . Consider Ns samples {xs

i ∈ X}Ns
i=1 drawn i.i.d from a

source domain Ds, associated with labels {ysi ∈ Y}Ns
i=1, and Nt unlabeled samples {xt

j ∈ X}Nt
j=1,

drawn i.i.d from a target domain Dt. In UDA, the goal is to enable a predictive model f , trained on
labeled source samples, to generalize well to target samples. There are two dominant approaches for
UDA. In the first approach, a mapping function g : X → X is learned to align the source domain
to the target domain, e.g., by minimizing the divergence between them. A predictive model f is
then trained using the mapped source samples, denoted by zsi = g(xs

i ). In the second approach, we
learn an embedding function g : X → Z that maps both domains to a latent space Z of domain-
invariant features. Thus, a predictive model f : Z → Y , trained using the source embeddings {zsi =

g(xs
i )}

Ns
i=1 with labels {ysi }

Ns
i=1 will generalize well on the target embeddings {ztj = g(xt

j)}
Nt
j=1.

OTDA framework. We start by outlining the discrete OT formulation, which is consistently em-
ployed throughout this paper. For any source sample xs

i and target sample xt
j , let c(xs

i , x
t
j) denote the

cost to move a probability mass from xs
i to xt

j , which is typically chosen to be the squared Euclidean
distance. Let C ∈ RNs×Nt be the cost matrix, whose elements are Cij = c(xs

i , x
t
j). The discrete OT

formulation is given by γ∗ = argmin
γ∈Γ

⟨γ,C⟩F , where Γ =
{
γ ∈ RNs×Nt |γ1Nt = a, γT

1Ns = b
}
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denotes the set of transport plans that satisfy conservation of mass, a ∈ RNs and b ∈ RNt are
the empirical distributions of the source and target samples, respectively, and ⟨·, ·, ⟩F denotes the
standard Frobenius inner product.

This optimization problem has been studied for many years and addressed through various algo-
rithms. To date, one of the most commonly employed algorithms is the efficient Sinkhorn algorithm
(Cuturi, 2013), which incorporates entropy regularization into the objective function. This leads
to the following modified problem that can be solved iteratively using linear projections, offering
reduced complexity:

γ∗ = argmin
γ∈Γ

⟨γ,C⟩F + λΩs(γ), (1)

where Ωs(γ) =
∑

i,j γ(i, j) log γ(i, j) is the negative entropy of γ, and λ is a hyperparameter.

The OT problem can be utilized for UDA in both of the aforementioned approaches. Recent deep
learning-based methods, such as Damodaran et al. (2018); Chen et al. (2018); Lee et al. (2019),
incorporate OT into the loss function to learn domain-invariant representations, thereby following
the second approach for UDA. In contrast, the OTDA framework follows the first approach, where,
after solving the OT problem, source samples are transported to the target domain using the obtained
transport plan. The transportation of any source sample xs

i is given by the barycentric mapping
(Courty et al., 2016; Perrot et al., 2016), defined by: zsi = argminx∈X

∑Nt

j=1 γ
∗
ijc(x, x

t
j).

4 DIFFUSION OPTIMAL TRANSPORT

In this work, we present Diffusion-OT, a new cost function for the OT problem, designed specifically
for the UDA setting described in Section 3. Our premise is the manifold assumption, which is widely
spread in modern high-dimensional data analysis and gives rise to an extensive body of work termed
manifold learning (Roweis & Saul, 2000; Tenenbaum et al., 2000; Belkin & Niyogi, 2003; Coifman
& Lafon, 2006). In the UDA setting, it implies that both domains are supported on the same hidden
manifold M embedded in X . When the squared Euclidean distance is used as the transport cost,
whether explicitly stated or not, it is assumed that the source and target domains are embedded in Rd.
The manifold assumption extends this concept, allowing for the possibility that the samples may not
lie within a Euclidean space. Building on this foundation, we propose defining the OT cost matrix
C based on a diffusion operator, composed of three diffusion steps. Notably, the construction of this
operator stems from diffusion geometry (Coifman & Lafon, 2006), which is a prevalent manifold
learning approach (see Appendix B for details).

Initially, we build an operator solely from the source samples, aimed at capturing the local geometry
within the source domain. We construct a graph Gs with Ns nodes, where each node represents a
source sample. Assuming that the hidden manifold M is locally Euclidean, we use the Euclidean
distance to build the affinity matrix of the graph, Ks ∈ RNs×Ns , with a Gaussian kernel:

Ks(i, j) = exp

(
−
∥xs

i − xs
j∥22

ϵs

)
, (2)

where ϵs > 0 is a scale hyperparameter. By employing this local kernel, which quantifies pair-
wise local similarities between data samples, the graph effectively captures the local neighborhood
relationships. Subsequently, we obtain the source diffusion operator, denoted by Ps ∈ RNs×Ns ,
by normalizing the affinity matrix Ks to be row-stochastic, i.e., ensuring that the sum of each row
equals 1. Following this standard normalization (Coifman & Lafon, 2006), the rows of Ps represent
the transition probabilities of a diffusion process on M defined at the source samples {xs

i}
Ns
i=1.

In the second diffusion step, we apply a cross-domain diffusion, which captures the inter-domain
relationships by incorporating both the source and target samples. To this end, we define a bipartite
graph Gc with a vertex set Vc = {vs1, . . . , vsNs

, vt1, . . . , v
t
Nt

} that represents the Ns source samples
and Nt target samples. In this graph, each node vsi has edges only to target nodes, and each node
vtj has edges only to source nodes. Consequently, the graph adjacency matrix consists of two off-
diagonal blocks. For our purpose, we utilize only the Ns × Nt top-right block of the matrix. The
weight of the edge between source node vsi and target node vtj is given by:

Kc(i, j) = exp

(
−
∥xs

i − xt
j∥22

ϵc

)
, (3)
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where ϵc > 0 is a scale hyperparameter. We normalize this kernel matrix to be row-stochastic, and
denote the resulting cross-domain diffusion operator by Q ∈ RNs×Nt .

In the third and last diffusion step, designed to capture intra-domain similarities within the target
domain, we construct the graph Gt exclusively from target samples. This graph comprises Nt nodes,
representing the target samples, and an affinity matrix Kt ∈ RNt×Nt , constructed using a Gaussian
kernel with scale ϵt similarly to Equation 2. After normalizing Kt to be row-stochastic, we obtain
the target diffusion operator, denoted by Pt ∈ RNt×Nt .

The final operator S, which serves as the basis for the transport cost, is defined by:
S = PsQPt. (4)

By construction, S(i, j) is the probability of transporting from source sample xs
i to target sample

xt
j through local neighborhoods. Specifically, S(i, j) encapsulates the probability of (i) diffusing

from source sample xs
i to its source neighbors, (ii) diffusing from these source neighbors to target

samples that are neighbors of xt
j , and finally (iii) diffusing from these target neighbors to xt

j .

Finally, we apply a negative element-wise logarithm to the diffusion probabilities to translate the
notion of similarity into a notion of cost, aligning with the requirements of the OT problem. Thus,
the proposed transportation cost matrix, referred to as Diffusion-OT, is defined by: C = − log(S).

The computational complexity of Diffusion-OT is O(n3); see Appendix C.2 for details.

4.1 THEORETICAL RESULTS

While competing methods typically do not include theoretical insights, our approach is driven by
the following theoretical basis. Specifically, we prove that the proposed operator S is a diffusion
operator and analyze its asymptotic behavior, showing how it aligns with the desired properties.
This analysis provides a deeper understanding of the motivation behind our method. Building on
this, we now transition to examining the diffusion operator in a continuous setting.

Consider infinite source and target datasets, sampled i.i.d from the probability distributions µ and ν,
respectively, defined over the continuous manifold M. Consider a Gaussian kernel kϵ(x, y) with a
scale parameter ϵ. In analogy to the row-stochastic normalization in the discrete case, we define the
continuous source diffusion operator Ps,ϵ by:

Ps,ϵf(y) =

∫
ps,ϵ(x, y)f(x)µ(x)dx =

∫
kϵ(x, y)

ds,ϵ(x)
f(x)µ(x)dx, (5)

where ps,ϵ(x, y) is the normalized kernel, and ds,ϵ(x) =
∫
kϵ(x, y)µ(y)dy.

Similarly, we define the continuous target diffusion operator Pt,ϵ, which operates on the target
domain, by employing Equation 5 with respect to ν and with the normalized kernel pt,ϵ(x, y) =
kϵ(x,y)
dt,ϵ(x)

, where dt,ϵ(x) =
∫
kϵ(x, y)ν(y)dy.

The cross-domain diffusion operator is defined by: Qϵf(y) =
∫ kϵ(x,y)

dt,ϵ(x)
f(x)µ(x)dx. Note that in

this analysis, without loss of generality, we use the same kernel kϵ(x, y) for all three operators.

In the discrete case, applying the diffusion operator defined in Equation 4 to the source sam-
ples necessitates using the transpose of S. Thus, in the continuous case, the diffusion opera-
tor Sϵ, defined as the composition of the three operators Ps,ϵ, Qϵ, and Pt,ϵ, can be expressed as
Sϵf(x) = Pt,ϵQϵPs,ϵf(x).
Proposition 1. Suppose f ∈ C4(M), and suppose µ, ν ∈ C4(M) denote the probability mea-
sures of the source and target domains, respectively, where µ is dominated by ν. Denote the
Radon–Nikodym (RN) derivative by µ

ν . For sufficiently small ϵ, the asymptotic expansion of opera-
tor Sϵ is given by:

Sϵf(x) =
µ

ν
(x)

[
f − m2

m0
ϵ

[
3∆f + 2

(
f
∆
(
µ
ν

)
µ
ν

+ 2∇f∇ log
(µ
ν

))
(6)

− f

(
∆µ

µ
+ 2

∆ν

ν

)]]
(x) +O(ϵ2),
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where ∆,∇ are the Laplace–Beltrami operator and the covariant derivative on M, respectively, and
m0,m2 are two constants defined by the Gaussian kernel and by the manifold M.

The proof appears in Appendix E.

The expression derived in Proposition 1 suggests that the proposed Diffusion-OT method inherently
considers both the domain shift and the intra-domain relationships of the source and target domains.
Specifically, the proposition implies that the proposed diffusion operator leads to an anisotropic
diffusion process on the manifold M, influenced by the manifold geometry (conveyed by the differ-
ential operators ∆ and ∇ w.r.t. the manifold), the source and target domains, and the discrepancy
between the domains, represented by the RN derivative. In the expression, we can identify the
distinct contribution of each term to the diffusion process. The term within the first set of round
parentheses, involving both the first and second derivatives of the RN derivative, characterizes the
inter-domain relationships. Meanwhile, the term within the second set of round parentheses, incor-
porating separate expressions of the second derivative of the source and target domains, represents
the intra-domain similarities within each domain, as well as the local geometry of the domains. To
illustrate this point, we examine a 2D toy example outlined in Appendix C.1.

We remark that if µ(x) = ν(x) for all x ∈ M, indicating no domain shift, the asymptotic expansion
of Sϵ is given by:

Sϵf(x) = f(x)− m2

m0
ϵ

(
3∆f − 3f

∆µ

µ

)
(x) +O(ϵ2), (7)

coinciding with the asymptotic expansion of a diffusion operator on M with distribution µ (Coifman
& Lafon, 2006), applied three times.

4.2 PRACTICAL REMARKS

To incorporate further adaptability to our cost, we integrate explicit neighborhood information into
the intra-domain diffusion operators. The intra-domain kernel is thus defined as follows:

K(i, k) =

{
exp

(
−∥xi−xk∥2

2

ϵ

)
if k ∈ Ni

0 otherwise
, (8)

where Ni is defined as the set of all indices {k} such that the sample xk is within the neighborhood
of sample xi.

In the context of UDA, we assume access to labeled source samples {(xs
i , y

s
i )}

Ns
i=1. To improve

performance, we incorporate source label information into the cost by allowing each source sample
xs
i to diffuse only to other source samples within the same class. Specifically, for each xs

i , the
neighborhood N s

i is defined to include only source samples with the label ysi . Accordingly, the label-
enhanced source kernel is defined by Equation 8, where Ni = {k | ysk = ysi }. This approach stands
in contrast to other methods that propose incorporating source labels by adding a regularization term
to the problem formulation. Such regularization terms often impose constraints on the OT solver or
the learned geometry, potentially restricting the method’s adaptability and performance.

For the target operator Pt, or in scenarios where labels are unavailable in a specific DA setup,
we define the neighborhood Ni as the three nearest neighbors of xi. This allows leveraging local
structure effectively, even in the absence of label information.

The proposed method is summarized in Algorithm 1, provided in the supplementary materials.

5 EXPERIMENTS

In this section, we provide a visual comparison of Diffusion-OT with competing methods using a
toy example (Section 5.1). Additionally, we present experiments on deep domain adaptation tasks
(Section 5.2) and non-Euclidean dataset adaptation (Section 5.3), comparing the performance of
Diffusion-OT against the respective SOTA methods. The source code is available here1.

1The code will be made available on Github upon acceptance.
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(a) Diffusion-OT (b) OT (c) OT-reg (d) OT-Laplace

Figure 1: Two moons illustration for a 40◦ rotation angle. Source samples are marked with circles,
target samples with squares, and the colors of the markers indicate the labels. Each line represents
an entry γ(i, j) in the transportation plan, where the line color corresponds to the label of the source
sample xs

i , and the line intensity reflects the values in the plan. (Best viewed in colors).

5.1 TWO MOONS: VISUAL ILLUSTRATION

We utilize the toy example presented in Courty et al. (2016), which involves two entangled moons as
the source domain, each representing a different class, where the target domain is created by rotating
the source data. As the rotation angle increases, the adaptation problem becomes more challenging.
For additional details on the data, refer to Appendix D.1.

We employ Diffusion-OT with the entropy-regularized OT problem (Cuturi, 2013), as presented
in Equation 1, to derive the transport plan. For comparison, we present results using the baseline
method, which employs the entropy-regularized OT problem solved using the standard cost, referred
to simply as OT. Additionally, due to the limited number of methods proposing alternative transport
costs – particularly those that integrate source label information and can be applied in non-deep
frameworks – we include two regularization approaches: OT-reg (Courty et al., 2016; 2014), which
incorporates source labels, and OT-Laplace (Courty et al., 2016; Flamary et al., 2014), which uses a
Laplace regularization term to preserve data structure. We emphasize that all three methods use the
squared Euclidean distance as the transportation cost. Table 4 in Appendix D.1 summarizes the key
differences between Diffusion-OT and these three competing methods.

In Figure 1, we visualize the plans obtained using the aforementioned methods for a 40◦ rotation
angle, focusing on one target sample at the top edge of the red moon, marked by a bold black square.
For clarity, we plot lines from this target sample to the ten source samples with the highest values
in the corresponding column of the plan. In Figure 1a, we observe that Diffusion-OT has achieved
a nearly optimal plan, with almost all source samples contributing mass to the red-labeled target
sample belonging to the red class, except for one. In OT (Figure 1b), since the transportation cost
is based solely on the pairwise Euclidean distances, the plan results in undesirable mapping, where
most of the mass contributed to the chosen sample comes from source samples associated with the
blue class, even though the target sample is red-labeled. In OT-reg (Figure 1c), the regularization
term promotes group sparsity, encouraging a solution where each target sample receives mass only
from source samples within the same class. In this case, it results in the most undesirable plan,
where all the source samples contributing mass to the chosen target sample are from the opposite
class. In OT-Laplace (Figure 1d), the core idea is that samples with small Euclidean distances before
transportation should remain close after transportation. We observe that the plan merely mirrors
the behavior of the standard OT. The neighborhood information encoded in the regularization is
insufficient to correct the Euclidean cost. We note that there are fewer than ten lines because this
method does not include entropy regularization, resulting in a sparser transportation plan.

This scenario highlights Diffusion-OT’s effectiveness in handling challenging mappings. Diffusion-
OT leverages source labels not as strict constraints, as OT-reg, but to guide the diffusion process
in the source domain, while still accounting for the local geometry of the data. Additionally, it
shows that by taking into account intra-domain relationships, rather than relying solely on pairwise
Euclidean distances, the chosen sample can receive mass from source samples that are remote in
Euclidean terms, as the diffusion distance is effectively incorporated. Indeed, we see that Diffusion-
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OT successfully connects the chosen target sample to the correct, more distant source sample, which
no other method considered. We provide further analysis in Appendix D.1, including a second
scenario (Figure 3), an illustrative examination of the relationship between the diffusion process and
the resulting plan (Figure 4), and a comparison of the target classification error rates across different
angles (Table 5).

5.2 DEEP DOMAIN ADAPTATION

In the following experiments, we incorporate Diffusion-OT into the DeepJDOT framework, pro-
posed by Damodaran et al. (2018). We apply our method to three benchmark domain adaptation
datasets: Digits, Office-Home, and VisDA. One of the key advantages of our method is its adapt-
ability to any OT formulation. To demonstrate this flexibility, we employ different formulations
for each dataset, as detailed below, resulting in a different baseline method across datasets. For
additional information regarding the datasets, framework, training process, model architecture, and
parameters, please refer to Appendix D.2.

Baselines and competing methods. In addition to DeepJDOT (Damodaran et al., 2018), which
utilizes the framework with the standard transport cost, we present comparisons to more recent
methods that leverage the DeepJDOT framework. However, unlike DeepJDOT, which employs
the network simplex flow algorithm, these approaches utilize different OT problem formulations:
Unbalanced OT (UOT), referred to as JUMBOT (Fatras et al., 2021), and Partial OT (POT), termed
as m-POT (Nguyen et al., 2022a), to derive the optimal plan. Notably, all three methods use the
squared Euclidean distance as the transportation cost and differ solely in their approach to obtaining
γ. We also compare our approach to two other OT-based deep models, which propose to employ
a different transportation cost function from the conventional squared Euclidean distance, namely
ETD (Li et al., 2020) and RWOT (Xu et al., 2020). In addition to OT-based methods, we benchmark
our method against established DA baselines, including DANN (Ganin et al., 2016) and ALDA
(Chen et al., 2020). For DeepJDOT (Damodaran et al., 2018), JUMBOT (Fatras et al., 2021), and
m-POT (Nguyen et al., 2022a), all employing the DeepJDOT framework with different OT problem
formulations, we reproduce the results ourselves using the POT (Python Optimal Transport) package
(Flamary et al., 2021), an open-source Python library. Results for DANN (Ganin et al., 2016) and
ALDA (Chen et al., 2020) are sourced from Nguyen et al. (2022a). For the remaining methods, we
rely on the reported results from their respective papers.

Results. Table 1a presents the results for the Digits datasets. Details regarding the model archi-
tecture and parameters for each method are available in Appendix D.2.1. For the digits dataset,
we follow Fatras et al. (2021) and use the UOT formulation to obtain the transportation plan. In
this case, JUMBOT serves as the baseline, and we refer to our method using this formulation as
Diffusion-UOT. The table displays the mean and standard deviation of the target test set over three
runs. Results for each individual run can be found in Table 6 in Appendix D.2.1. The highest accu-
racy is indicated in bold, while the second highest is underlined. Our method achieves the highest
accuracy for SVHN→MNIST and USPS→MNIST. Additionally, it attains the second highest ac-
curacy for MNIST→USPS, followed by RWOT. We acknowledge that this dataset is considered an
easy DA task, and it appears that the generator learns features that are well separated by the classes,
even when using the standard cost. Therefore, the obtained minor improvement is expected.

Table 2 shows the results for the Office-Home dataset. In this experiment, we again incorporate the
proposed cost into the UOT problem formulation to derive the optimal plan, referring to our method
as Diffusion-UOT. Here, DeepJDOT and JUMBOT were reproduced using the original DeepJDOT
framework, while TS-POT was reproduced using a two-stage (TS) implementation, as proposed in
the original paper (Nguyen et al., 2022a). The results are averaged over three runs, with full details,
including the parameters used for each method, provided in Appendix D.2.2. Table 2 summarizes
the target test accuracy for each scenario of the Office-Home dataset. Remarkably, the proposed
method achieves the highest average accuracy across the 12 scenarios and outperforms the tested
existing methods in 10 out of the 12 scenarios. Specifically, it surpasses the baseline JUMBOT,
which was implemented using the UOT formulation with the standard cost, by more than 2%.

Table 1b presents the mean and standard deviation over three runs for the VisDA dataset. In this
experiment, we integrate Diffusion-OT into the POT problem formulation, using the TS implemen-
tation proposed by Nguyen et al. (2022a). Consequently, TS-POT serves as the baseline, and we refer
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Table 1: Target domain accuracy. (a) Results on the Digits dataset, where “Ours” denotes Diffusion-
UOT. (b) Results on the VisDA dataset, where “Ours” denotes TS-Diffusion-POT.

(a)

Method SVHN-MNIST USPS-MNIST MNIST-USPS Avg

DANN 95.80 ± 0.29 94.71 ± 0.12 91.63 ± 0.53 94.05
ALDA 98.81 ± 0.08 98.29 ± 0.07 95.29 ± 0.16 97.46
ETD 97.9 ± 0.4 96.3 ± 0.1 96.4 ± 0.3 96.9
RWOT 98.8 ± 0.1 97.5± 0.2 98.5 ± 0.2 98.3
DeepJDOT 96.04 ± 0.66 97.22 ± 0.23 86.12 ± 0.60 93.13
JUMBOT 98.99 ± 0.06 98.68 ± 0.08 96.93 ± 0.42 98.20
m-POT 98.98 ± 0.08 98.63 ± 0.13 96.04 ± 0.02 97.88
Ours 99.19 ± 0.04 98.87 ± 0.03 97.81 ± 0.30 98.62

(b)

Method Accuracy

DANN 67.63 ± 0.34
ALDA 71.22 ± 0.12
DeepJDOT 69.58 ± 0.34
JUMBOT 72.97 ± 0.26
TS-POT 75.65 ± 0.78
Ours 78.56 ± 0.15

Table 2: Target domain accuracy on the Office-Home dataset.

Method A-C A-P A-R C-A C-P C-R P-A P-C P-R R-A R-C R-P Avg

ResNet-50 34.9 50.0 58.0 37.4 41.9 46.2 38.5 31.2 60.4 53.9 41.2 59.9 46.13
DANN 47.9 67.1 74.9 53.8 63.5 66.4 53.0 44.4 74.4 65.5 53.0 79.4 61.93
ALDA 54.0 74.9 77.1 61.4 70.6 72.8 60.3 51.0 76.7 67.9 55.9 81.9 67.04
ETD 51.3 71.9 85.7 57.6 69.2 73.7 57.8 51.2 79.3 70.2 57.5 82.1 67.29
RWOT 55.2 72.5 78.0 63.5 72.5 75.1 60.2 48.5 78.9 69.8 54.8 82.5 67.63
DeepJDOT 52.0 70.9 76.1 60.5 66.6 69.2 58.4 48.7 75.3 68.9 54.9 79.9 65.12
JUMBOT 55.7 75.0 80.7 65.1 74.5 75.1 65.3 53.3 79.6 74.5 59.3 83.9 70.17
TS-POT 57.4 77.1 81.6 68.3 72.8 76.5 67.4 55.1 80.6 75.4 59.9 84.0 71.36
Diffusion-UOT 57.2 78.0 82.1 70.2 74.9 78.8 68.1 56.5 82.0 75.6 60.9 84.8 72.43

to our method as TS-Diffusion-POT. DeepJDOT and JUMBOT were reproduced using the original
DeepJDOT framework, while TS-POT was reproduced using the TS implementation. Additional
details regarding the TS implementation and the parameters used for each method are available in
Appendix D.2.3. We observe that employing the TS implementation with the POT formulation is
highly effective for this dataset, as TS-POT obtained significantly higher accuracy than the other
competing methods. Notably, incorporating Diffusion-OT into this framework further enhances per-
formance, increasing accuracy by nearly 3% on average. In Figure 5 in Appendix D.2.3, we analyze
the t-SNE representation of the VisDA target features obtained from the deep model trained with
Diffusion-OT, comparing them to those learned using the baseline method, TS-POT.

5.3 DOMAIN ADAPTATION FOR NON-EUCLIDEAN DATA

In this section, we depart from employing OT to learn domain-invariant features and instead directly
utilize the optimal plan to transport source features into the target domain. We evaluate the proposed
method on electroencephalogram (EEG) data, addressing both binary and multi-class classification
tasks. Specifically, we apply our approach to two Motor Imagery (MI) benchmarks from the BCI
Competition IV. The first dataset, dataset I from Blankertz et al. (2007), is referred to as MI1, and the
second dataset, IIa from Tangermann et al. (2012), is referred to as MI2. We follow the methodolo-
gies of Barachant et al. (2011; 2013); Zanini et al. (2017); Rodrigues et al. (2018); Yair et al. (2019),
and solve the DA problem on the (non-Euclidean) Riemannian manifold of Symmetric Positive Def-
inite (SPD) matrices. For all experiments in this section, we utilize the entropy-regularized problem
formulation (Cuturi, 2013), referring to our methods as Diffusion-OT. The baseline method, which
uses this formulation with the standard transport cost, is labeled as OT in the tables. Additionally,
we include a comparison with OT-reg (Courty et al., 2016; 2014), a regularization approach that
incorporates source labels into the problem formulation, which we consider as a secondary baseline.
For detailed information on the framework, datasets, pre-processing, and parameters used, please
refer to Appendix D.3.
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Table 3: Binary classification accuracy on two BCI datasets. (a) Results for the cross-subject task.
(b) Results for the leave-one-subject-out task.

(a)

Method MI1 MI2 Avg

CSP-LDA 57.23 58.70 57.97
RA-MDRM 64.98 66.60 65.79
EA-CSP-LDA 66.85 65.00 65.93
MEKT-R 70.99 68.73 69.86
METL 71.81 69.06 70.44
OT 63.83 64.59 64.21
OT-reg 67.17 67.26 67.22
Diffusion-OT 72.24 70.41 71.33

(b)

Method MI1 MI2 Avg

CSP-LDA 59.71 67.75 63.73
RA-MDRM 69.21 70.91 70.06
EA-CSP-LDA 79.79 73.53 76.66
MEKT-R 83.42 76.31 79.87
METL 83.14 76.00 79.57
WBT 85.21 74.31 79.76
Diffusion-WBT 87.29 77.24 82.26

Results. To facilitate a meaningful comparison with SOTA methods limited to two-class scenarios,
we evaluate our proposed method on a binary classification task. In Appendix D.3.2, we present
multi-class classification experiments compared against baseline methods. For this evaluation, we
utilize both BCI datasets; specifically, for the MI2 dataset, we select the left hand (class 1) and the
right hand (class 2) as the two classes of interest. Our method is benchmarked against baseline
algorithms commonly employed in BCI classification, namely CSP-LDA (Grosse-Wentrup & Buss,
2008), RA-MDRM (Zanini et al., 2017), and EA-CSP-LDA (He & Wu, 2019). Additionally, we
compare our approach to two SOTA methods: MEKT (Zhang & Wu, 2020) and METL (Cai et al.,
2022). Results for CSP-LDA, RA-MDRM, EA-CSP-LDA, and METL are obtained from the tables
presented in Cai et al. (2022), while results for MEKT are sourced from the original paper (Zhang
& Wu, 2020).

Table 3a presents the results for the cross-subject task. In this experiment, each subject, in turn,
serves as the target domain, with the remaining subjects alternately acting as the source domain.
Accuracy is computed by training a linear SVM classifier on the transformed source mappings and
evaluating it on the target mappings. The results show the average target accuracy across source
subjects, averaged over all subjects. The proposed method achieved the highest accuracy for both
datasets, improving the baselines OT and OT-reg by 7% and 4%, respectively. Detailed subject-wise
results appear in Table 9 and Table 10 in Appendix D.3.1, along with the experimental parameters.

In Table 3b, we present the results for the leave-one-subject-out task, where each subject alternately
acts as the target domain while all others are used as source domains. We apply the multi-source
OT-based DA framework from Montesuma & Mboula (2021), referred to as WBT, and denote our
method as Diffusion-WBT. The table reports the average target accuracy, computed by training a
linear SVM classifier on all the transported source representations and evaluating it on the target
samples. Interestingly, the baseline method (WBT with the standard cost) outperformed all compet-
ing methods on dataset MI1. Notably, incorporating the proposed cost resulted in further accuracy
improvements, achieving the highest performance across both datasets. For details on the framework
and the experimental parameters, see Appendix D.3.1.

6 CONCLUSIONS

In this work, we introduce a novel transportation cost of OT for DA, constructed using diffusion
geometry tools. Our experimental results highlight that Diffusion-OT achieves superior performance
compared to other methods across various UDA tasks. We acknowledge a fundamental limitation of
our method; since it incorporates inter-domain relationships, it operates under the assumption that
both source and target domains reside in the same space. While this assumption is common to all
DA methods, we believe that Diffusion-OT has the potential to be extended to other applications,
which we view as directions for future work.
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anonymized, and do not include any personal information. We do not foresee any negative societal
impact arising from our research. Furthermore, we ensure transparency in our methodologies and
report our findings honestly. We have no conflicts of interest to disclose related to this research.

8 REPRODUCIBILITY STATEMENT

The source code will be made available on GitHub upon acceptance. To ensure reproducibility, the
datasets used in our experiments, along with detailed preprocessing steps, are outlined in Appendix
D, which also includes information on the architecture, hyperparameters, training protocols, and
more. Our theoretical foundations, including the assumptions and proofs regarding the proposed
operator S, can be found in Appendix E.
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SUPPLEMENTARY MATERIALS

A RELATED WORK

In the OTDA framework, proposed by Courty et al. (2016), the authors suggest the integration of
several regularization terms to improve performance, including a class-based regularization term
(Courty et al., 2014) that utilizes source label information. By employing specific parameter con-
figurations, the optimization problem can be effectively addressed using the Sinkhorn algorithm
(Cuturi, 2013). The authors also proposed applying graph regularization on the transported samples
(Flamary et al., 2014). While this regularization, termed Laplace regularization, considers neigh-
borhood information prior to transportation, it is limited to Euclidean geometry. Furthermore, their
optimization problem is quadratic, rendering it unsolvable by efficient algorithms and resulting in
high computational complexity. Consequently, it is impractical for incorporation into deep models
or application to large datasets.

DeepJDOT (Damodaran et al., 2018) enhances the OTDA framework by employing deep models.
This approach addresses two significant drawbacks in the OTDA framework. Firstly, handling large
datasets becomes infeasible with OTDA due to the quadratic increase in complexity with the number
of samples n, and the fact that it involves computations with n×n matrices. Conversely, DeepJDOT
can train deep models using mini-batches, making it suitable for large datasets. Secondly, OTDA
predominantly employs the squared Euclidean distance as the transportation cost, and, as a result, it
often performs poorly on non-Euclidean datasets. In contrast, although the DeepJDOT framework
also uses the squared Euclidean distance as the cost, it operates in a latent space learned by a deep
model, potentially enabling superior performance on non-Euclidean data.

Few papers in the literature have proposed alternative cost functions diverging from the standard
distance metric. For instance, Tai et al. (2021) introduced an innovative approach termed SLA,
which utilizes the OT formulation as a novel label assignment method. In this approach, each ele-
ment (i, k) in the transportation cost matrix is associated with the probability that sample i belongs
to class k. The method presented in Gu et al. (2022) is a semi-supervised approach that assumes
the availability of a set of source-target pairs, termed keypoints. Using these keypoints, the authors
propose to compute a relation score for all source and target samples, which is subsequently used to
construct the cost matrix. A related semi-supervised approach is presented in Duque et al. (2023) for
manifold alignment. This method similarly relies on prior correspondence knowledge between some
source and target samples to align the domains, with inter-domain distances computed solely from
these corresponding pairs. While they propose applying a diffusion process to capture intra-domain
relationships, they later compute the Cosine distance between submatrices of the obtained proba-
bility matrices, which serves as their final cost. Consequently, their semi-supervised transportation
cost lacks a notion of probability. The Gromov-Wasserstein distance is typically used to align dis-
tributions by leveraging only their intra-domain pairwise similarities. However, some works have
proposed innovative approaches to incorporate inter-domain relationships as well. For example, Yan
et al. (2018) introduce a semi-supervised DA method that adds a regularization term to the optimiza-
tion problem. This term incorporates cross-domain distances, computed in the target domain after
transportation, and relies on target labels. Alternatively, Xu et al. (2019) present a graph-matching
method that learns an embedding space for the nodes, enabling the computation of inter-domain
relationships, which are included in the optimization via an additional term.

In the context of UDA, Li et al. (2020) introduced ETD, which utilizes a weighted Euclidean distance
for the cost function. They proposed leveraging an attention mechanism to learn the correlation be-
tween source and target samples, subsequently using this correlation as the weights in their proposed
transportation cost. The OT distance is then employed as the training objective, serving as a quan-
tification of the domain discrepancy. The work in Xu et al. (2020) also proposed using a weighted
Euclidean distance as the transportation cost. In that method, termed RWOT, the element (i, k) in
the weight matrix quantifies the probability that sample i belongs to class k. This probability is
dynamically computed based on both spatial prototypical information and the pseudo-classification
probability of target samples.
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B BACKGROUND ON DIFFUSION GEOMETRY

Let {xi}Ni=1 be a given set of data samples on a hidden manifold M with a metric g. Constructing
a graph is a common strategy for approximating the manifold’s structure (Roweis & Saul, 2000;
Tenenbaum et al., 2000; Belkin & Niyogi, 2003; Coifman & Lafon, 2006). By leveraging a local
kernel, which quantifies pairwise local similarities between data samples, this graph captures local
neighborhood relationships, facilitating effective representation of the underlying manifold geome-
try. Consider a weighted graph G = (V,E) with a vertex set V = {v1, . . . , vN}, where each node
vi ∈ V corresponds to the sample xi. Let K ∈ RN×N be an affinity matrix, whose (i, j)-th element
encodes the weight of the edge between nodes vi and vj and is given by:

K(i, j) = h

(
d2g(xi, xj)

ϵ

)
, (9)

where dg(·, ·) is a distance function induced by the metric g, ϵ > 0 is a scale hyperparameter, and h
is a positive function with exponential decay.

Next, the affinity matrix K is normalized to be row-stochastic:

P(i, j) =
K(i, j)

d(i)
, (10)

where d(i) =
∑
j

K(i, j). The matrix P is often viewed as a diffusion operator (Coifman & Lafon,

2006), as P(i, j) defines a transition probability from node i to node j of a Markov chain on the
graph. Analogously, P can be viewed as the transition probabilities of a diffusion process defined at
the data samples {xi}Ni=1 on the manifold M (Coifman & Lafon, 2006).

C DIFFUSION OPTIMAL TRANSPORT – ADDITIONAL INFORMATION

C.1 THE DIFFUSION PROCESS – SIMULATION

In this section, we illustrate the behavior of the proposed diffusion operator, and more specifically,
the expression outlined in Proposition 1, through a toy example. Consider the 2D space [0, 1]2,
where the source domain µ is represented by a uniform distribution over the entire space, and the
target domain ν is concentrated along a 1D contour. Specifically, 20% of the target data are sampled
from a uniform distribution over [0.1]2. For the remaining 80% of the target samples, the coordinates
are generated as follows. The first dimension x1 is computed as the sum of two variables sampled
from uniform distributions: u1 ∈ U [0.02, 0.98] and u2 ∈ U [−0.02, 0.02], giving x1 = u1+u2. The
second dimension x2 is generated with x2 = 0.4 sin(2πu1)+0.5, where u1 is the same variable used
for x1. Figure 2a presents the target domain, estimated using Kernel Density Estimation (KDE).

To illustrate the behavior of the proposed operator, we compute the diffusion operator S, which
contains the probabilities of transporting from the uniform source samples to the target samples
concentrated on the contour, as presented in Equation 4. Figure 2b visualizes the resulting vector
field on the space [0, 1]2, as induced by S. As expected, we observe that for all source samples, the
average direction induced by the diffusion operator is toward the 1D contour. In Figures 2c and 2d,
we examine two specific cases. Figure 2c demonstrates the proposed diffusion process initiated at a
source sample located on the contour with high target probability density, marked by the black star
in the figure. As the source distribution is uniform, by definition, the RN derivative value at this
initial sample is small. We observe an anisotropic diffusion that rapidly spreads along the contour
where the target density is high. In Figure 2d, we illustrate the proposed diffusion process, with
initialization at a source sample located off the contour. Similar to the previous case, we observe
an anisotropic diffusion directed toward regions with high probability density. In this scenario, due
to the location of the starting point, we see diffusion propagation towards the contour, resulting in a
noticeable asymmetry in the diffusion process.

This example demonstrates that the anisotropic diffusion implicitly balances inter-domain and intra-
domain relationships. For instance, in Figure 2c, when the chosen source sample is located in a dense
region of the target domain – indicating a high probability of belonging to the target – the diffusion
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(a) (b) (c) (d)

Figure 2: (a) The PDF of the target domain, colored by PDF values. (b) Visualization of the vector
field induced by the proposed diffusion operator. (c) and (d) show the PDF of the target domain
projected to 2D, colored by the proposed diffusion process initiated at high-density and low-density
regions, respectively. (Best viewed in colors).

assigns more weight to the geometry of the target domain, spreading along the contour. In contrast,
in Figure 2d, when the source sample is outside the contour where the target distribution is sparse,
the anisotopic diffusion first draws it toward the denser region, utilizing inter-domain relations.

C.2 COMPUTATIONAL COMPLEXITY OF DIFFUSION-OT

The most commonly used transport cost, the pairwise squared Euclidean distances, has a computa-
tional complexity of O(n2), assuming balanced datasets. In contrast, our proposed cost involves the
following steps:

• Computing pairwise distances for three matrices: O(n2).

• Applying the exponential function to the matrices: O(n2).

• Normalizing the matrices to be row-stochastic: O(n2).

• Multiplying the three probability matrices: O(n3).

• Applying the logarithm to the final diffusion operator: O(n2).

As noted in Appendix D, we often use doubly-stochastic normalization instead of row-stochastic
normalization, employing the Sinkhorn algorithm. Since the complexity of Sinkhorn is also O(n2),
this does not increase the overall complexity. In total, the computational complexity of the proposed
cost is O(n3). While higher than the traditional cost, our method avoids the need for a regularization
term, which can often add to the optimization complexity.

Additionally, we note that up to the fourth step, the computation involves three n×n matrices rather
than one, resulting in higher memory requirements.

Algorithm 1 Diffusion-OT

Input: {((xs
i , y

s
i )}

Ns
i=1, {xt

j}
Nt
j=1, ϵs, ϵc, ϵt.

1: Compute the intra-domain kernel of the source, Ks, using Equation 8 and supervised neighbor-
hood information.

2: Compute the intra-domain kernel of the target, Kt, using Equation 8 with a three nearest neigh-
bors neighborhood.

3: Compute the cross-domain kernel Kc according to equation 3.
4: Compute the row-stochastic probability matrices, Ps,Pt and Q, according to Equation 10.
5: Compute the diffusion matrix S according to Equation 4.
6: Apply element-wise negative logarithm C = − log(S).
7: Return the cost matrix C.
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D EXPERIMENTAL DETAILS

General remarks. For all experiments, we employed the label-enhanced kernel for the source
diffusion operator:

Ks(i, k) =

{
exp

(
−∥xs

i−xs
k∥

2
2

ϵs

)
if ysk = ysi

0 otherwise
. (11)

For all three diffusion operators Ps,Q,Pt, before computing the Gaussian kernels, we conducted
median normalization on the distance matrix. After computing the kernels, we performed doubly-
stochastic normalization on the square matrices Ps and Pt using the Sinkhorn algorithm, as sug-
gested in Landa et al. (2021). The matrix Q, which may not necessarily be square, was normalized to
be row-stochastic. Unless specified otherwise, we employed the Sinkhorn algorithm (Cuturi, 2013)
to solve the OT problem, utilizing the publicly available POT package (Flamary et al., 2021). All
the experiments were conducted on Nvidia DGX A100.

D.1 TWO MOONS: VISUAL ILLUSTRATION

In this experiment, we analyze the resulting transportation plan and evaluate the performance of
Diffusion-OT compared to competing methods using the toy example from Courty et al. (2016). We
use sklearn to generate two entangled moons, each with 50 samples and Gaussian noise added with
a standard deviation of 0.05. The target domain is generated by rotating the source data. As the
rotation angle increases, the adaptation problem becomes more challenging.

We compare Diffusion-OT with the entropy-regularized OT problem (Courty et al., 2016; Cuturi,
2013), referred to as OT, which serves as the baseline method. Additionally, due to the limited
number of methods proposing alternative transport costs – particularly those that integrate source
label information and can be applied in non-deep frameworks – we include two regularization ap-
proaches: OT-reg (Courty et al., 2016; 2014), which incorporates source label information, and
OT-Laplace (Courty et al., 2016; Flamary et al., 2014), which uses a Laplace regularization term
to preserve data structure. Notably, all three methods use the squared Euclidean distance as the
transportation cost. Table 4 summarizes the key differences between Diffusion-OT and these three
competing methods. While the first two characteristics in the table are straightforward, the last two
may require further clarification. OT-Laplace’s optimization relies on simplifying the regularization
term under the assumption of Euclidean geometry. For non-Euclidean geometries, the intra-domain
distances, inter-domain distances, and barycentric mapping become too complex to optimize, limit-
ing it to Euclidean settings. While the squared Euclidean distance is commonly used as the transport
cost in OT and OT-reg, both methods can handle non-Euclidean geometries, as demonstrated in
Section 5.3. The specific optimization processes proposed for OT-reg and OT-Laplace restrict their
applicability to other formulations or solvers. In contrast, our Diffusion-OT, which is a new trans-
port cost rather than a regularization term, is versatile and applicable to any problem formulation or
solver, as shown in Section 5.2.

Table 4: Summary of key differences between Diffusion-OT and competing methods.

OT OT-reg OT-Laplace Diffusion-OT

Intra-domain relationship integration ✓ ✓
Label information utilization ✓ ✓
Supports non-Euclidean geometry ✓ ✓ ✓
Versatile OT compatibility ✓ ✓

To analyze the differences between the methods, we visualize the obtained plans for a 40◦ rotation
angle, focusing on two arbitrary target samples that demonstrate the typical advantages of Diffusion-
OT over the other methods. We obtain the optimal plan for Diffusion-OT and the other three meth-
ods as follows. For Diffusion-OT, we first compute the proposed cost and then use the entropy-
regularized OT problem (Cuturi, 2013) to derive the transportation plan γ. For the other methods,
we calculate the standard transportation cost – the squared Euclidean pairwise distances – and then
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(a) Diffusion-OT (b) OT (c) OT-reg (d) OT-Laplace

Figure 3: Two moons illustration for a 40◦ rotation angle. Source samples are marked with circles,
target samples with squares, and the colors of the markers indicate the labels. Each line represents
an entry γ(i, j) in the transportation plan, where the line color corresponds to the label of the source
sample xs

i , and the line intensity reflects the values in the plan. (Best viewed in colors).

solve the OT problem using entropy regularization, label regularization, and Laplace regularization
to obtain the transportation plans for OT, OT-reg, and OT-Laplace, respectively.

Figure 3 presents the plan values for a target sample located in the middle of the blue moon, marked
by a bold black square. For clarity, we plot lines from this target sample only to ten source samples
with the highest values in the corresponding column of the plan. In Diffusion-OT (Figure 3a), we
observe the desired optimal plan, where all lines connected to the chosen target sample originate
from the same blue class, even though a red-labeled source sample is closer. This outcome is due
to incorporating label information into the diffusion process. In OT (Figure 3b), the transportation
cost is based solely on the pairwise Euclidean distances between source samples (circles) and target
samples (squares). As a result, the blue-labeled target sample receives mass from the closest source
samples, including those associated with the other red class. In OT-reg (Figure 3c), the regularization
term promotes group sparsity, encouraging a solution where each target sample receives mass only
from source samples within the same class. As a result, this method also provides the desired plan
in this case. In OT-Laplace (Figure 3d), the core idea is that samples with small Euclidean distances
before transportation should remain close after transportation, and vice versa. As a result, the blue-
labeled target sample receives mass not only from the nearby red-labeled source sample, but also
from a more distant blue-labeled source sample. We note that there are fewer than ten lines because
this method does not include entropy regularization, resulting in a sparser transportation plan.

Cost analysis. To illustrate the connection between the diffusion process and the resulting trans-
portation plan, we present in Figure 4a the average direction of transport from each target point to
the source domain, as induced by the diffusion operator S, for a 60◦ rotation angle. Although the
standard OT cost lacks a probability notion, we present a comparable visualization in Figure 4b, by
applying the exponential function to the negative cost matrix and normalizing the resulting matrix
to be column-stochastic. The diffusion induced by the cost aligns with the resulting plan values
depicted in Figures 1 and 3. For example, all target points within the blue dashed ellipse in Figure
4a are directed toward the correct red moon of the source. Conversely, in Figure 4b, most target
points are directed toward the closer but incorrect blue moon of the source. Similarly, all target
points within the red dashed ellipse in Figure 4a, including the chosen point shown in Figure 3, are
directed toward the correct blue moon of the source, even though closer source samples, labeled red,
are present. It is worth noting that, while the presented directions correspond to the target samples,
the Diffusion-OT cost relies solely on source label information. In contrast, in Figure 4b, the same
target points are directed incorrectly, with many directed toward the wrong red source samples. For
clarity, only these two areas are highlighted in the figures; however, additional regions, such as
the bottom-left edge of the blue target moon and the center of the red target moon, could also be
analyzed similarly. This example demonstrates how the proposed method effectively controls the
resulting transportation plan by guiding the diffusion process toward the desired directions.

Classification results. In addition to the visual illustration, we evaluate the performance of the
methods across various rotation angles. Table 5 presents the target classification error rates for
these different angles. For the evaluation, we follow the OTDA framework (Courty et al., 2016).
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(a) Diffusion-OT (b) OT

Figure 4: Visualization of the vector field induced by the Diffusion-OT cost and the standard OT
cost, for a 60◦ rotation angle. (Best viewed in colors).

This involves computing the optimal plan using Diffusion-OT or one of the competing methods,
transporting the source samples to the target domain via barycentric mapping, and then training an
SVM classifier with a Gaussian kernel on the source data. The classifier is subsequently tested on
the target samples. It is evident that Diffusion-OT achieves significantly higher accuracy than the
baseline and the two regularization approaches across all tested angles.

Table 5: Two moons data. Target error rates for different rotation angles, obtained by training an
SVM classifier with a Gaussian kernel on the transported source data.

rotation angle Diffusion-OT OT OT-reg OT-Laplace

10◦ 0 0 0 0
20◦ 0 0 0 0
30◦ 0 0 0 0.02
40◦ 0 0.05 0.09 0.14
50◦ 0 0.15 0.14 0.16
60◦ 0.08 0.19 0.2 0.21
70◦ 0.21 0.26 0.27 0.31
80◦ 0.3 0.33 0.34 0.36
90◦ 0.35 0.38 0.38 0.42

D.2 DEEP DOMAIN ADAPTATION

In the following section, we outline the framework utilized in the experiments presented in Section
5.2. For these experiments, we adopt the framework introduced by Damodaran et al. (2018). This
framework, termed DeepJDOT, comprises two components: an embedding function, denoted by
g : X → Z , which aims to learn features optimizing both classification accuracy and domain
invariance, and a classification function, denoted by f : Z → Y , which predicts the labels based on
the learned features.

The DeepJDOT objective, which operates on a minibatch of size m, is given by:

min
γ,f,g

m∑
i

L(ysi , f(g(xs
i )) +

m∑
i,j

γi,j
(
η1∥g(xs

i )− g(xt
j)∥22 + η2L(ysi , f(g(xt

j))
)
, (12)

where L is the cross-entropy loss, η1 and η2 are hyperparameters, and γ is the optimal plan.
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The training process follows an alternating optimization scheme. Initially, the parameters of both
the feature extractor g and the classifier f are fixed. The fixed-parameter models are denoted as f̂
and ĝ. Subsequently, the OT problem is solved with the associated cost matrix Ci,j = η1∥ĝ(xs

i ) −
ĝ(xt

j)∥22 + η2L(ysi , f̂(ĝ(xt
j)). Finally, the optimization proceeds by fixing the obtained plan, γ, and

optimizing the model on the mini-batch using Stochastic Gradient Descent (SGD). The objective
function for this training phase is defined by Equation 12.

In our experiments, we propose to derive the plan using the Diffusion-OT cost. We solve the OT
problem with the associated cost Ci,j = −η1 log(Si,j) + η2L(ysi , f̂(ĝ(xt

j)), where:

Si,j =
∑

k|ys
k=ys

i

∑
l∈N t

j

Ps(i, k)Q(k, l)Pt(l, j). (13)

The probability matrices Ps,Q and Pt, are obtained by applying a row-stochastic normalization to
the kernels defined in Equations 11, 3 and 8, respectively. However, in this case, the kernels are
applied in the latent space, using the source and target representations {ĝ(xs

i )}mi=1 and {ĝ(xt
j)}mj=1,

where m denotes the batch size. For the source and target kernels, we compute the kernels by
employing the Cosine distance, while for the cross-domain we use the Euclidean distance. N t

j

denotes the neighborhood of xt
j , determined by the three nearest neighbors in the features space.

ϵs, ϵc and ϵt are scale hyper-parameters. In all deep experiments, we set ϵs = ϵc = ϵt = 1.

Once the plan is obtained, we fix γ̂ and train f and g using Equation 12. We note that for simplicity
in handling derivatives, we omit the use of Diffusion-OT in the second phase of training, and utilize
Equation 12 as is, although integrating the Diffusion-OT cost remains a viable option.

Datasets. The Digits dataset comprises three widely-used digit datasets, serving as the different
domains: (i) MNIST (28x28 grayscale images of handwritten digits), (ii) USPS (16x16 grayscale
images of digits derived from scanned handwritten letters), and (iii) SVHN (32x32 colored images of
digits with diverse backgrounds and fonts collected from Google Street View). All datasets consist
of 10 classes, corresponding to the digits 0 through 9. The Office-Home dataset is composed of
images from four distinct domains, each representing a specific visual style and content distribution.
The four domains are Art (A), Clipart (C), Product (P), and Real-World (R), all with 65 classes. The
VisDA-2017 dataset comprises synthetic and real-world images across 12 diverse classes and often
serves as a benchmark for domain adaptation in computer vision. In our experimental setup, we
designate the training set containing synthetic images as the source domain, while the validation set,
consisting of real images, serves as the target domain.

D.2.1 DIGITS

For the digits experiments, we adopt the architecture proposed by Damodaran et al. (2018). The
generator g is a CNN model trained from scratch, with convolutional layers containing 32, 32, 64,
64, 128, and 128 filters, followed by a fully connected (FC) layer of 128 hidden units and a Sigmoid
activation function. Layer normalization is applied after each convolution layer. The classifier f
is an FC layer with 10 units, corresponding to the number of classes. We maintain a batch size of
m = 500 for both the source and target datasets. We construct balanced batches for the source
training set by utilizing the labels, ensuring an equal number of samples for each class. The models
are optimized using the Adam optimizer. Initially, the training is performed on the source data using
cross-entropy loss for 10 epochs. Subsequently, the models are trained for 100 epochs using both
the source and target data, with the objective as described above.

For the proposed method, Diffusion-UOT, we use a learning rate lr = 0.001. We set the hyperpa-
rameters η1 = 1, η2 = 1 for the objective function, ϵ = 1 for all the Gaussian kernels constructing
our diffusion operator, and λ = 0.02, τ = 1 for the unbalanced Sinkhorn problem. For the repro-
duced methods we use the parameters reported in the original papers. For all reproduced methods,
we use a learning rate lr = 0.0002. For DeepJDOT, we use η1 = 0.001, η2 = 0.0001. For JUM-
BOT, we use η1 = 0.1, η2 = 0.1 for the objective function, and λ = 0.1, τ = 1 for the unbalanced
Sinkhorn problem. We note that since we struggled to reproduce the m-POT results for this specific
dataset, Table 1a presents the m-POT results reported in the original paper (Nguyen et al., 2022a).
We ran each method 3 times, Table 6 presents the results for each run.
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Table 6: Accuracy for Digits dataset over three seeds for (a) DeepJDOT (b) JUMBOT and (c)
Diffusion-UOT (ours).

(a)

Run SVHN-MNIST USPS-MNIST MNIST-USPS

1 95.81 96.96 86.05
2 95.53 97.34 86.75
3 96.78 97.36 85.55

(b)

Run SVHN-MNIST USPS-MNIST MNIST-USPS

1 99.05 98.64 96.66
2 98.99 98.62 97.41
3 98.93 98.77 96.71

(c)

Run SVHN-MNIST USPS-MNIST MNIST-USPS

1 99.15 98.90 97.81
2 99.23 98.87 98.11
3 99.19 98.84 97.51

D.2.2 OFFICE-HOME

For this dataset, the generator g is a pre-trained ResNet50 with the final FC layer removed, and the
classifier f consists of an FC layer. We construct balanced batches for the source training set by
utilizing the labels, ensuring an equal number of samples for each class. The models are optimized
using the SGD optimizer with a learning rate of 0.001. Given that our cost incorporates source
neighborhood information based on source labels, it is required for each mini-batch to contain at
least two samples from every class. Notably, this dataset comprises 65 classes. Thus, we employ
a batch size of m = 195, and train the model for 4000 iterations. For all reproduced methods,
we follow the original papers by using a batch size of m = 65 and training the model for 10000
iterations.

For the proposed method, Diffusion-UOT, we set the hyperparameters η1 = 0.01, η2 = 2. for
the objective function, ϵ = 1 for all the Gaussian kernels constructing our diffusion operator, and
λ = 0.02, τ = 0.5 for the unbalanced Sinkhorn problem. For the reproduced methods, we use the
parameters reported in the original papers. For DeepJDOT, we set η1 = 0.01 and η2 = 0.05 for
the objective function. For JUMBOT and TS-POT, we use η1 = 0.01, η2 = 0.5 for the objective
function. For JUMBOT, we use λ = 0.01, τ = 0.5 for the unbalanced Sinkhorn problem. For
TS-POT, we set the fraction of mass to 0.6, and the number of mini-batches k to 2.

D.2.3 VISDA

Similar to the approach taken with the Office-Home dataset, we utilize a pre-trained ResNet50 as
the generator g, with the classifier f implemented as an FC layer. For all methods, we use a batch
size m = 72. We construct balanced batches for the source training set by utilizing the labels,
ensuring an equal number of samples for each class. The models are optimized using the SGD
optimizer with a learning rate of 0.0005, and trained for 10000 iterations. We employ the two-
stage (TS) implementation proposed by Nguyen et al. (2022a) for our method and for TS-POT. In
this implementation, the OT problem is initially solved using a batch size of k × m on the CPU,
leveraging its ability to handle larger matrices. After obtaining the optimal plan, the gradient step
is executed on the GPU with a batch size of m. To utilize the large plan in loss functions computed
on smaller batch sizes, an adaptation to the original loss function is proposed. For more details, see
Nguyen et al. (2022a).

For the proposed method, TS-Diffusion-POT, we set the hyperparameters η1 = 0.01, η2 = 1 for the
objective function, ϵ = 1 for all the Gaussian kernels constructing our diffusion operator. For the
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Table 7: Accuracy for Office-Home dataset over three seeds for (a) DeepJDOT (b) JUMBOT (c)
TS-POT and (d) Diffusion-UOT (ours).

(a)

Run A-C A-P A-R C-A C-P C-R P-A P-C P-R R-A R-C R-P Avg

1 51.8 70.7 76.4 59.7 66.9 69.1 57.6 49.1 75.3 69.4 54.6 80.1 65.07
2 52.2 71.1 76.2 60.8 67.2 69.5 58.8 48.4 75.4 68.7 54.8 79.8 65.22
3 51.9 70.9 75.8 60.9 65.9 68.9 58.8 48.7 75.2 68.6 55.3 79.8 65.06

(b)

Run A-C A-P A-R C-A C-P C-R P-A P-C P-R R-A R-C R-P Avg

1 55.7 75.0 80.7 65.3 74.3 75.1 65.3 53.1 79.5 74.6 59.3 83.8 70.16
2 56.0 74.6 80.7 64.4 74.3 74.9 65.5 53.4 79.6 74.5 59.4 83.9 70.11
3 55.5 75.4 80.6 65.5 74.9 75.1 65.2 53.3 79.7 74.4 59.2 84.0 70.23

(c)

Run A-C A-P A-R C-A C-P C-R P-A P-C P-R R-A R-C R-P Avg

1 57.7 76.3 81.7 68.4 73.7 76.9 67.3 55.2 80.6 75.4 60.2 83.7 71.43
2 58.4 77.4 81.4 67.9 72.5 76.2 67.4 54.8 80.7 75.4 59.1 84.2 71.29
3 56.3 77.5 81.7 68.7 72.2 76.5 67.7 55.3 80.4 75.5 60.4 84.1 71.36

(d)

Run A-C A-P A-R C-A C-P C-R P-A P-C P-R R-A R-C R-P Avg

1 57.0 77.2 82.4 69.8 74.8 79.4 68.0 56.7 82.2 75.3 60.5 84.6 72.33
2 57.0 78.3 82.0 70.3 74.9 78.4 68.2 56.4 82.0 75.7 61.2 84.5 72.40
3 57.6 78.4 81.8 70.6 74.9 78.7 68.2 56.3 82.0 75.8 61.0 85.2 72.55

TS implementation, we set s = 0.5 as the fraction of mass for the partial OT problem, and k = 2
as the number of mini-batches. For the reproduced methods, we use the parameters reported in the
original papers. For DeepJDOT, we use η1 = 0.005 and η2 = 0.1 for the objective function. For
JUMBOT and TS-POT, we use η1 = 0.005 and η2 = 1 for the objective function. For JUMBOT,
we use λ = 0.01, τ = 0.3 for the unbalanced Sinkhorn problem. For TS-POT, we set the fraction of
mass to 0.75, and k = 1 for the TS implementation. In Tables 8, we present the results per class for
TS-Diffusion-POT and the competing methods.

Additionally, we analyze the t-SNE representation of the VisDA target features obtained from the
deep model trained with Diffusion-OT, compared to those learned using TS-POT (Nguyen et al.,
2022a), the baseline for this dataset. For better visualization, we randomly sampled 10% of the
samples from each class before applying t-SNE.

While the deep model is designed to learn representations that are both domain-invariant and op-
timized for source classification accuracy, resulting in well-separated classes for both methods (as
shown in the figure), the visualization still highlights differences between the methods. These dif-
ferences help explain why Diffusion-OT achieves better target accuracy compared to the standard
transportation cost. For example, in Figure 5a, which shows the TS-POT features, the ”knife” class
(colored magenta and circled by a red dashed line) completely overlaps with the ”skateboard” class
(colored black). In contrast, Figure 5b, which presents features obtained using TS-Diffusion-POT,
shows that these classes are well-separated. Additionally, the TS-POT model appears to have learned
a representation with more than the expected 12 clusters. For instance, the cluster circled by a gold
dashed line in Figure 5a does not correspond to any specific class. In contrast, while TS-Diffusion-
POT does not achieve perfect separation between classes (as expected, given the approximately
78.5% target accuracy), the label associated with each cluster is easily identifiable.
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Table 8: Accuracy for VisDA dataset per class over three seeds for (a) DeepJDOT (b) JUMBOT (c)
TS-POT and (d) TS-Diffusion-POT (ours).

(a)

Run Avg plane bicycle bus car horse knife mcycle person plant sktbrd train truck Avgclass

1 69.66 88.6 59.2 70.1 67.2 87.6 4.0 90.4 68.3 93.5 49.6 88.4 31.2 66.5
2 69.88 91.3 57.8 69.0 72.5 84.5 1.9 89.9 61.1 91.9 64.2 84.9 30.5 66.6
3 69.21 87.8 57.1 70.9 69.0 87.2 3.2 91.7 70.2 92.3 46.8 87.5 25.2 65.7

(b)

Run Avg plane bicycle bus car horse knife mcycle person plant sktbrd train truck Avgclass

1 72.84 93.0 53.4 76.9 76.6 89.8 2.1 94.5 76.2 94.4 71.2 89.7 18.4 69.7
2 72.81 93.7 56.9 75.5 71.8 90.5 3.5 94.2 77.6 96.1 60.6 89.0 27.4 69.7
3 73.27 89.7 57.0 74.8 77.3 90.6 1.5 93.9 74.6 94.4 69.9 90.3 24.6 69.9

(c)

Run Avg plane bicycle bus car horse knife mcycle person plant sktbrd train truck Avgclass

1 75.08 94.4 66.6 78.8 73.2 93.4 1.9 95.2 73.9 94.8 79.8 88.4 31.6 72.7
2 76.54 95.1 61.4 82.1 75.2 91.9 67.1 94.8 79.2 96.2 80.0 89.8 13.7 77.2
3 75.32 93.1 68.8 81.6 74.7 93.8 2.1 94.4 75.1 95.9 76.7 90.8 26.4 72.8

(d)

Run Avg plane bicycle bus car horse knife mcycle person plant sktbrd train truck Avgclass

1 78.48 95.0 58.6 82.3 76.9 95.5 67.6 95.1 79.2 95.3 84.2 89.7 26.9 78.9
2 78.74 95.0 64.3 85.2 77.2 95.5 68.7 94.0 78.6 94.7 82.8 88.9 25.7 79.2
3 78.47 94.8 61.7 85.5 75.9 95.7 70.8 94.1 79.3 95.2 82.8 87.8 25.9 79.1

(a) (b)

Figure 5: t-SNE visualization of VisDA features, learned from (a) the TS-POT model and (b) the
TS-Diffusion-POT model (ours).

D.3 DOMAIN ADAPTATION FOR NON-EUCLIDEAN DATA

In the following section, we outline the framework utilized in the experiments presented in Section
5.3.

Previous studies (Barachant et al., 2011; 2013; Zanini et al., 2017; Rodrigues et al., 2018) have
demonstrated the efficacy of using the empirical covariance matrices of the EEG recordings as an
informative feature representation for this type of data. Following this established approach, we
adhere to the framework introduced by Yair et al. (2019), which solves the DA problem using OT
on the (non-Euclidean) Riemannian manifold of Symmetric Positive Definite (SPD) matrices.
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Consider the source data samples and labels as {(Xs
i , y

s
i )}

Ns
i=1 and the target data samples as

{Xt
j}

Nt
j=1. Each data sample Xi is a covariance matrix, which is an SPD matrix that lies on the Rie-

mannian manifold of SPD matrices M ⊂ Rd×d, where d is the number of EEG channels. Applying
Algorithm 1 with the Log-Euclidean metric (Arsigny et al., 2006), we derive the Diffusion-OT cost.
Next, we solve the OT problem using the Sinkhorn algorithm (Cuturi, 2013), as described in Section
3. Subsequently, leveraging the obtained optimal plan γ, we map the source features into the target
domain. This mapping can be computed using the barycentric mapping (Courty et al., 2016; Perrot
et al., 2016), as described in Section 3.

When utilizing the Log-Euclidean metric to compute the cost function, the barycenter can be repre-
sented as the weighted Riemannian mean, expressed by the following closed-form:

Zs
i = exp

 Nt∑
j=1

γi,j log
(
Xt

j

) , (14)

where exp(·) and log(·) are the matrix exponential and logarithm. The framework is summarized in
Algorithm 2.

Algorithm 2 Diffusion-OT on the Riemannian manifold of SPD matrices

Input: {(Xs
i , y

s
i )}

Ns
i=1, {Xt

j}
Nt
j=1, ϵs, ϵc, ϵt.

1: Compute the Diffusion-OT cost C by applying Algorithm 1 to the source and target matrices.
2: Obtain the optimal plan γ by applying the Sinkhorn algorithm.
3: Compute the barycentric mappings of the source samples using equation 14.
4: Return the source mappings.

Since the representations, {Zs
i}

Ns
i=1 and {Xt

j}
Nt
j=1, are covariance matrices that lie on the Riemannian

manifold of SPD matrices M, prior to conducting any linear computation, such as training a linear
classifier, we project both the source and target covariance matrices onto the tangent space TMM,
using the logarithmic map:

LogM(Zi) = log(Zi)− log(M), (15)
where M represents the Riemannian mean of all the covariance matrices.

Datasets. The MI1 dataset (Blankertz et al., 2007) contains EEG recordings from 7 subjects uti-
lizing 59 electrodes. Subjects were instructed to perform two out of three MI tasks: imagining the
movement of the left hand, the right hand, or the foot. Our evaluation focuses exclusively on the
calibration data, comprising 100 trials for each subject. EEG signals were recorded at 1000 Hz,
bandpass-filtered between 0.05 Hz and 200 Hz, and down-sampled to 100 Hz. The MI2 dataset
(Tangermann et al., 2012) consists of EEG recordings from 9 subjects using 22 electrodes. The ex-
periments include four MI tasks: the imagination of moving the left hand (class 1), right hand (class
2), both feet (class 3), and tongue (class 4). The recordings in MI2 of each subject contain two ses-
sions, recorded on separate days, with 72 trials conducted for each MI task in each session, resulting
in 288 trials per session. EEG signals were sampled at 250 Hz and bandpass-filtered between 0.5
Hz and 100 Hz. In both datasets, subjects were presented with a cue at each trial, instructing them
to imagine the corresponding MI task.

Pre-processing. We apply the same pre-processing pipeline proposed in Zhang & Wu (2020) to both
datasets. Initially, we extract a 3-second time window, spanning from t = 0.5s to t = 3.5s following
the cue. Next, a bandpass (BP) filter ranging from 8 Hz to 30 Hz is applied to the data. Following
this, we compute the empirical covariance matrix of each trial. Finally, centroid alignment (CA)
(Zanini et al., 2017; Zhang & Wu, 2020) is applied to each set of covariance matrices, representing
a domain, according to:

X
(k)
i =

(
M(k)

)− 1
2

X̃
(k)
i

(
M(k)

)− 1
2

, (16)

where X̃
(k)
i denotes the empirical covariance of trial i of the k-th subject, and M(k) represents the

Riemannian mean of the collection of covariance matrices of the k-th subject. The pre-processed set
of each subject is denoted by {X(k)

i }Ni=1, where N is the total number of trials, possibly with the set
of corresponding class labels {yi}Ni=1.
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D.3.1 BINARY CLASSIFICATION

Single-source domain adaptation. In the cross-subject experiment, we apply Algorithm 2, where
each subject, in turn, serves as the target domain, with the remaining subjects alternately acting
as the source domain. Accuracy is computed by initially mapping the obtained source and target
representations onto a tangent space, following Equation 15, and subsequently training a linear
SVM classifier on the transformed source mappings and evaluating it on the target mappings. The
presented results showcase the average target accuracy across source subjects.

For the cross-subject task, we employed the Sinkhorn algorithm with entropy regularization λ =
0.02. For the first dataset, MI1, we used the following scale parameters for the probability kernels
to produce the results shown in Table 3a: ϵs = 0.4, ϵc = 1, and ϵt = 1. For the second dataset, MI2,
the scale parameters for the probability kernels were set as follows: ϵs = 0.9, ϵc = 2, and ϵt = 2.

In Tables 9 and 10, we present the accuracy per subject on this task, including a comparison with the
SOTA method, MEKT (Zhang & Wu, 2020), utilizing their provided source code for our analysis.

Table 9: Binary classification accuracy for the cross-subject task on MI1, presented per subject.

1 2 3 4 5 6 7 Avg STD

MEKT-R 71.58 65.58 64.25 65.58 83.33 64.67 81.92 70.99 8.33
Diffusion-OT 70.92 63.5 63.25 69.75 86.33 72.67 79.25 72.24 8.3

Difference -0.66 -2.08 -1.0 4.17 3.0 8.0 -2.67 1.25 3.92

Table 10: Binary classification accuracy for the cross-subject task on MI2, presented per subject.

1 2 3 4 5 6 7 8 9 Avg STD

MEKT-R 74.57 50.69 84.55 64.06 53.39 64.06 59.38 86.55 74.31 67.95 12.84
Diffusion-OT 75.52 53.39 83.94 67.27 57.55 65.02 63.8 91.06 76.13 70.41 12.28

Difference 0.95 2.7 -0.61 3.21 4.16 0.96 4.42 4.51 1.82 2.46 1.8

Multi-source domain adaptation. For the leave-one-out task, we utilize the Wasserstein Barycenter
Transport (WBT) framework, proposed in Montesuma & Mboula (2021). This method involves
transporting all source samples to an intermediate domain, termed Wasserstein Barycenter Transport
(WBT), before subsequently transferring the source samples from WBT to the target domain using
standard OTDA. For the transportation of the source samples to the WBT only, we utilized the label-
enhanced kernel in Equation 11 for both the source domain and the WBT, leveraging the available
labels. For simplicity, we initially map both the source and target covariance matrices onto a tangent
space, using Equation 15, and then apply the WBT algorithm with the Euclidean metric. Notably, we
utilize Diffusion-OT instead of the standard cost for all OT applications within the WBT framework,
including transportation from each source domain to WBT and from the Wasserstein barycenter of
sources to the target domain. The results for these experiments appear in Table 3b.

For both datasets, we set λb = 0.02 for transporting all the source domains to the WBT and λ = 0.1
for transporting samples from the WBT to the target domain. In the latter case, we apply max
normalization to the cost matrix before using the Sinkhorn algorithm. For the first dataset, MI1,
the scale parameters for the probability kernels used to transport all source domains to the WBT
are ϵbs = 0.05, ϵbc = 0.3, and ϵbt = 0.05. For the transportation from the WBT to the target
domain, the parameters are ϵs = 0.05, ϵc = 0.02, and ϵt = 0.03. For the second dataset, MI2,
the scale parameters for the probability kernels used to transport all source domains to the WBT are
ϵbs = 0.01, ϵbc = 0.3, and ϵbt = 0.01. For the transportation from the WBT to the target domain, the
parameters are ϵs = 0.3, ϵc = 0.02, and ϵt = 0.02.

In Tables 11 and 12, we present the accuracy per subject on this task, including a comparison with
the SOTA method, MEKT (Zhang & Wu, 2020).
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Table 11: Binary classification accuracy for the leave-one-out task on MI1, presented per subject.

1 2 3 4 5 6 7 Avg STD

MEKT-R 86.5 69.5 73.5 89.0 94.0 89.5 91.5 84.79 9.43
Diffusion-OT 90.0 78.0 75.0 92.0 96.0 87.0 93.0 87.29 7.91

Difference 3.5 8.5 1.5 3.0 2.0 -2.5 1.5 2.5 3.28

Table 12: Binary classification accuracy for the leave-one-out task on MI2, presented per subject.

1 2 3 4 5 6 7 8 9 Avg STD

MEKT-R 93.06 49.31 95.83 73.61 56.25 70.83 70.14 94.44 83.33 76.31 16.76
Diffusion-OT 91.67 51.39 97.92 75.0 61.81 70.14 68.06 96.53 82.64 77.24 16.14

Difference -1.39 2.08 2.09 1.39 5.56 -0.69 -2.08 2.09 -0.69 0.93 2.38

D.3.2 MULTI-CLASS CLASSIFICATION

In this section, we assess the performance of Diffusion-OT in a multi-class classification task using
the MI2 dataset, taking into account all four classes available in the dataset. In addition to the base-
line methods, OT and OT-reg (Courty et al., 2016; 2014; Yair et al., 2019), we compare Diffusion-OT
to standard DA methods, including CORAL (Sun et al., 2017), SA (Fernando et al., 2013), and TCA
(Pan et al., 2010).

For all the multi-class classification experiments we employ the Sinkhorn algorithm with entropy
regularization parameter λ = 0.1 and apply Algorithm 1 with ϵs = 3, ϵc = 0.1, ϵt = 0.1. For
the reproduced methods, OT and OT-reg, we apply median normalization to the cost matrix before
applying the Sinkhorn algorithm. We set λ = 0.005 for the entropy parameter. For OT-reg, we
use η = 10 for the label regularization, as suggested in the original paper (Yair et al., 2019). For
CORAL, SA, and TCA, we utilize the ADAPT package (de Mathelin et al., 2021) with the default
parameters.

Table 13a shows the results for the cross-session task. In this experiment, for each subject, the first
session (day) serves as the source domain, while the second session serves as the target domain,
and vice versa. The reported target accuracy represents the average accuracy across both sessions,
obtained as follows: First, we apply Algorithm 2 to obtain the transported source samples. Next, we
map both the target and the transported source covariance matrices to a tangent plane, as described
in Equation 15. We then train a linear SVM on the mapped source samples and test it on the target
samples. Following Zanini et al. (2017); Yair et al. (2019), we present results for five subjects out
of the available nine, as the remaining subjects exhibited poor results and were considered invalid
in those works. We observe that the proposed method achieves the highest accuracy for three out of
the five subjects. For subject 1, however, it shows lower accuracy compared to the baseline OT-reg.
This is the only instance across all experiments where we do not achieve an improvement over the
baseline. Notably, Diffusion-OT yields the highest average accuracy, surpassing OT and OT-reg by
over 6% and 2%, respectively. Detailed results for all subjects appear in Table 14.

In Table 13b, we present the results for the cross-subject task, analogous to the results shown in Table
3a for the binary classification case. Same as in the cross-session task, only the five valid subjects
are considered. Our method achieves the highest accuracy across all subjects and demonstrates an
average performance that significantly exceeds both baseline methods Detailed results for all nine
subjects can be found in Table 15.

E PROOFS

Lemma 1. The asymptotic expansion of a single-domain diffusion operator, defined in Equation 5,
is expressed as follows:

Pϵf(x) = f(x)− m2

m0
ϵ

(
∆f − f

∆µ

µ

)
(x) +O(ϵ2). (17)
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Table 13: Multi-class classification accuracy on dataset MI2. (a) Results for the cross-session task.
(b) Results for the cross-subject task.

(a)

Method 1 3 7 8 9 Avg

CORAL 82.3 87.7 80.9 83.0 72.9 81.35
SA 83.7 87.8 81.4 83.9 74.8 82.33
TCA 71.0 78.1 64.6 77.8 70.1 72.33
OT 84.0 85.9 81.1 76.4 68.2 79.13
OT-reg 85.2 84.5 81.1 85.4 78.1 82.88
Ours 84.7 86.5 84.5 88.9 81.4 85.21

(b)

Method 1 3 7 8 9 Avg

CORAL 53.1 58.2 52.0 52.5 53.3 53.82
SA 58.6 63.2 53.8 59.3 58.2 58.63
TCA 59.1 61.2 49.4 60.7 52.7 56.64
OT 57.2 65.4 59.7 57.5 52.7 58.51
OT-reg 63.2 69.7 63.8 66.1 62.1 64.97
Ours 66.7 75.1 69.4 73.4 65.5 70.03

Table 14: Comparison of cross-session multi-class classification on the MI2 dataset.

Subject CORAL SA TCA OT OT-reg Diffusion-OT

1 82.29 83.68 71.01 84.03 85.24 84.72
2 50.35 51.91 44.27 56.08 57.99 58.85
3 87.67 87.85 78.13 85.94 84.55 86.46
4 57.47 59.9 37.5 58.51 57.81 60.24
5 41.32 41.67 28.47 46.7 45.14 44.27
6 47.4 50.87 36.81 52.95 50.69 48.61
7 80.9 81.42 64.58 81.08 81.08 84.55
8 82.99 83.85 77.78 76.39 85.42 88.89
9 72.92 74.83 70.14 68.23 78.13 81.42
Avg 67.03 68.44 56.52 67.77 69.56 70.89

Proof of Lemma 1. According to Lemma 8 from Coifman & Lafon (2006), given an isotropic ker-
nel kϵ(x, y) = h

(
∥x−y∥2

ϵ

)
with an exponential decay, and an operator Tϵ defined by Tϵg(x) =∫

M kϵ(x, y)g(y)dy, the asymptotic expansion of Tϵ for all g ∈ C3(M) and for all x ∈ M is given
by:

Tϵg(x) = m0g(x)−m2ϵ (∆g(x)− w(x)g(x)) +O(ϵ2), (18)
where ∆ is the Laplace–Beltrami operator on M, m0,m2 are two constants depending on the kernel
h, and w(x) is a potential function.

For the diffusion operator Pϵ defined in Equation 5, we use g(x) = f(x)µ(x)
dϵ(x)

, and from Equation 18
we get:

Pϵf(x) = m0
f(x)µ(x)

dϵ(x)
−m2ϵ

(
∆

(
f(x)µ(x)

dϵ(x)

)
− w(x)

f(x)µ(x)

dϵ(x)

)
+O(ϵ2), (19)

where dϵ(x) =
∫
Kϵ(x, y)µ(y)dy.

Similarly, we use g(x) = µ(x) in Equation 18, and obtain that the asymptotic expansion of dϵ is
given by:

dϵ(x) = m0µ(x)−m2ϵ (∆µ(x)− w(x)µ(x)) +O(ϵ2)

= m0µ(x)

(
1− m2

m0
ϵ

(
∆µ

µ
− w

)
(x)

)
+O(ϵ2) (20)

By applying the Taylor expansion of 1
1−x and neglecting terms of order O(ϵ2) and higher, we obtain:

(dϵ)
−1(x) = (m0µ(x))

−1

(
1 +

m2

m0
ϵ

(
∆µ

µ
− w

)
(x)

)
+O(ϵ2) (21)
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Table 15: Comparison of cross-subject multi-class classification on the MI2 dataset.

Subject CORAL SA TCA OT OT-reg Diffusion-OT

1 43.66 49.57 51.91 49.1 54.24 57.99
2 27.19 27.82 27.58 27.79 28.23 27.44
3 47.34 53.34 50.59 52.89 57.7 62.08
4 35.31 34.71 32.82 37.7 38.85 39.29
5 30.96 30.57 29.42 32.79 33.26 33.51
6 33.18 32.54 32.08 34.13 34.09 34.42
7 39.69 41.41 40.82 44.95 48.11 52.21
8 44.67 52.07 51.81 47.73 55.53 62.04
9 42.76 48.67 45.5 42.45 51.68 54.94
Avg 38.31 41.19 40.28 41.06 44.63 47.1

Multiplying Equation 21 by f and subsequently applying the Laplace–Beltrami operator yields:

fµ

dϵ
(x) =

f

m0

(
1 +

m2

m0
ϵ

(
∆µ

µ
− w

)
(x)

)
+O(ϵ2) (22)

∆

(
fµ

dϵ

)
(x) =

∆f

m0
+

m2

m2
0

ϵ∆

(
f

(
∆µ

µ
− w

))
(x) +O(ϵ2) (23)

Finally, by substituting Equations 22 and 23 into Equation 19, and neglecting terms of order O(ϵ2),
we derive the asymptotic expansion of the operator Pϵ:

Pϵf(x) = f(x)− m2

m0
ϵ

(
−f

∆µ

µ
+ wf +∆f − wf

)
(x) +O(ϵ2)

= f(x)− m2

m0
ϵ

(
∆f − f

∆µ

µ

)
(x) +O(ϵ2)

Lemma 2. The asymptotic expansion of the cross-domain diffusion operator, defined by:

Qϵf(y) =

∫
kϵ(x, y)

dt,ϵ(x)
f(x)µ(x)dx, (24)

is expressed as follows:

Qϵf(x) = f(x)
µ

ν
(x)− m2

m0
ϵ

(
∆
(
f
µ

ν

)
− f

µ

ν

∆ν

ν

)
(x) +O(ϵ2). (25)

Proof of Lemma 2. For the cross-domain diffusion operator defined in Equation 24, with ϵc as the
scale hyperparameter of the cross-domain Gaussian kernel, we substitute g(x) = fµ

dt,ϵc
(x) into Equa-

tion 18, and obtain:

Qϵcf(x) = m0
fµ

dt,ϵc
(x)−m2ϵc

(
∆

(
fµ

dt,ϵc

)
(x)− w(x)

fµ

dt,ϵc
(x)

)
+O(ϵ2c), (26)

where dt,ϵc(x) =
∫
kϵc(x, y)ν(y)dy.

Similarly, we substitute g(x) = ν(x) to Equation 18, and obtain the asymptotic expansion of dt,ϵc :

dt,ϵc(x) = m0ν(x)−m2ϵc (∆ν(x)− w(x)ν(x)) +O(ϵ2c). (27)
We utilize the Taylor expansion as in Equation 21, leading to the derivation:

(dϵc)
−1(x) = (m0ν(x))

−1

(
1 +

m2

m0
ϵc

(
∆ν

ν
− w

)
(x)

)
+O(ϵ2c). (28)
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Multiplying Equation 28 by f and subsequently applying the Laplace–Beltrami operator yields:

fµ

dϵc
(x) =

fµ

m0ν

(
1 +

m2

m0
ϵc

(
∆ν

ν
− w

)
(x)

)
+O(ϵ2c). (29)

∆

(
fµ

dϵc

)
(x) =

1

m0
∆
(
f
µ

ν

)
+

m2

m2
0

ϵc∆

(
f
µ

ν

(
∆ν

ν
− w

))
(x). (30)

Finally, by substituting Equations 29 and 30 into Equation 26 and neglecting terms of order O(ϵ2),
we derive the asymptotic expansion of the operator Qϵc :

Qϵcf(x) = f
µ

ν
(x)− m2

m0
ϵc

(
−f

µ

ν

∆ν

ν
+ f

µ

ν
w +∆

(
f
µ

ν

)
− f

µ

ν
w

)
(x) +O(ϵ2c)

= f
µ

ν
(x)− m2

m0
ϵc

(
∆
(
f
µ

ν

)
− f

µ

ν

∆ν

ν

)
(x) +O(ϵ2c).

Proposition 1. Suppose f ∈ C4(M), and suppose µ, ν ∈ C4(M) denote the probability mea-
sures of the source and target domains, respectively, where µ is dominated by ν. Denote the
Radon–Nikodym (RN) derivative by µ

ν . For sufficiently small ϵ, the asymptotic expansion of opera-
tor Sϵ is given by:

Sϵf(x) =
µ

ν
(x)

[
f − m2

m0
ϵ

[
3∆f + 2

(
f
∆
(
µ
ν

)
µ
ν

+ 2∇f∇ log
(µ
ν

))
(6)

− f

(
∆µ

µ
+ 2

∆ν

ν

)]]
(x) +O(ϵ2),

where ∆,∇ are the Laplace–Beltrami operator and the covariant derivative on M, respectively, and
m0,m2 are two constants defined by the Gaussian kernel and by the manifold M.

Proof of Proposition 1. The proposed diffusion operator is defined by the composition Sϵf(x) =
Pt,ϵtQϵcPs,ϵsf(x), where ϵ = (ϵs, ϵc, ϵt).

We start by defining the function g(x) = Ps,ϵsf(x). Substituting the asymptotic expansion of the
source diffusion operator, as derived in Equation 17, into Equation 25, we obtain:

QϵcPs,ϵsf(x) =
µ

ν

(
f − m2

m0
ϵs

(
∆f − f

µ

µ

))
(x)− m2

m0
ϵc

(
∆
(
f
µ

ν

)
− f

µ

ν

)
(x) +O(ϵ2)

= f
µ

ν
(x)− m2

m0

(
ϵs
µ

ν
∆f + ϵc∆

(
f
µ

ν

)
− f

µ

ν

(
ϵs
∆µ

µ
+ ϵc

∆ν

ν

))
+O(ϵ2),

(31)

where all terms with order O(ϵ2) were neglected.

Remark that assuming ϵs = ϵc = ϵ yields:

QϵPs,ϵf(x) = f
µ

ν
(x)− m2

m0
ϵ

(
µ

ν
∆f +∆

(
f
µ

ν

)
− f

µ

ν

(
∆µ

µ
+

∆ν

ν

))
(x) +O(ϵ2). (32)

Next, we define the function g(x) = QϵcPs,ϵsf(x), and substitute Equation 32 into the asymptotic
expansion of the target diffusion operator, as defined in Equation 17:

Pt,ϵtQϵcPs,ϵsf(x) = f
µ

ν
(x)− m2

m0

(
ϵs
µ

ν
∆f + ϵc∆

(
f
µ

ν

)
− f

µ

ν

(
ϵs
∆µ

µ
+ ϵc

∆ν

ν

))
− m2

m0
ϵt

(
∆
(
f
µ

ν

)
− f

µ

ν

ν

ν
+ f

µ

ν

ν

ν

)
(x) +O(ϵ2)

= f
µ

ν
(x)− m2

m0

(
ϵs
µ

ν
∆f + (ϵc + ϵt)∆

(
f
µ

ν

)
− f

µ

ν

(
ϵs
∆µ

µ
+ (ϵc + ϵt)

∆ν

ν

)
(x) +O(ϵ2), (33)
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where all terms with order O(ϵ2) were neglected.

Assuming ϵs = ϵc = ϵ we get:

Pt,ϵtQϵcPs,ϵsf(x) = f
µ

ν
(x)− m2

m0
ϵ

(
µ

ν
∆f + 2∆

(
f
µ

ν

)
− f

µ

ν

(
∆µ

µ
+ 2

∆ν

ν

))
(x) +O(ϵ2).

(34)
Finally, by utilizing:

∆
(
f
µ

ν

)
=

µ

ν
∆f + f∆

(µ
ν

)
+ 2∇f∇

(µ
ν

)
, (35)

we yield the expression:

Sϵf(x) = f
µ

ν
(x)−m2

m0
ϵ

(
3
µ

ν
∆f + 2f∆

(µ
ν

)
− f

µ

ν

(
∆µ

µ
+ 2

∆ν

ν

)
+ 4∇f∇

(µ
ν

))
(x)+O(ϵ2).

(36)

Lastly, for a more comprehensive analysis, we utilize the property ∇f
f = ∇ log(f) to derive the

expression presented in Proposition 1.
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