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ABSTRACT

Recent studies revealed that using third-party models may lead to backdoor threats,
where adversaries can maliciously manipulate model predictions based on back-
doors implanted during model training. Arguably, backdoor trigger inversion
(BTI), which generates trigger patterns of given benign samples for a backdoored
model, is the most critical module for backdoor defenses used in these scenarios.
With BTI, defenders can remove backdoors by fine-tuning based on generated
poisoned samples with ground-truth labels or deactivate backdoors by removing
trigger patterns during the inference process. However, we find that existing BTI
methods suffer from relatively poor performance, i.e., their generated triggers are
significantly different from the ones used by the adversaries even in the feature
space. We argue that it is mostly because existing methods require to ‘extract’
backdoor features at first, while this task is very difficult since defenders have no
information (e.g., trigger pattern or target label) about poisoned samples. In this
paper, we explore BTI from another perspective where we decouple benign features
instead of decoupling backdoor features directly. Specifically, our method consists
of two main steps, including (1) decoupling benign features and (2) trigger inver-
sion by minimizing the differences between benign samples and their generated
poisoned version in decoupled benign features while maximizing the differences
in remaining backdoor features. In particular, our method is more efficient since
it doesn’t need to ‘scan’ all classes to speculate the target label, as required by
existing BTI. We also exploit our BTI module to further design backdoor-removal
and pre-processing-based defenses. Extensive experiments on benchmark datasets
demonstrate that our defenses can reach state-of-the-art performances. Our codes
are available at https://github.com/xuxiong0214/BTIDBF.

1 INTRODUCTION

Deep neural networks (DNNs) play an important role in many mission-critical applications (Li
et al., 2014; He et al., 2022; Bai et al., 2022; Sun et al., 2023; Li et al., 2023a; Yao et al., 2024).
Currently, training a well-performed model is generally consuming or even expensive, requiring many
high-quality samples and computational resources. Accordingly, many developers will directly adopt
open-sourced DNNs from third-party model zoos (e.g., Hugging Face) for their further development.

However, recent studies (Gu et al., 2019; Li et al., 2022c; Dong et al., 2023) revealed that using
third-party models may lead to backdoor threats, where adversaries can maliciously manipulate the
prediction of backdoored DNNs with pre-defined trigger patterns, based on backdoors implanted
during training. In particular, attacked DNNs behave normally on benign samples. As such, these
attacks are very stealthy since model users can hardly notice them based on their local benign samples.

Currently, there are also some defenses (Huang et al., 2022; Wang et al., 2022b; Guo et al., 2023a;
Wang et al., 2023; Gao et al., 2023a) designed to reduce backdoor threats. Arguably, backdoor trigger
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Figure 1: The main pipeline of existing backdoor trigger
inversion (BTI). In general, they need to train a generator
for each class (K in total) at first since defenders have
no prior knowledge of backdoor attacks (i.e., trigger
patterns and the target label). After that, they decouple
backdoor features based on trained generators.
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Figure 2: The t-SNE visualization of
different samples involved in exist-
ing backdoor trigger inversion (BTI)
for IAD. The recovered poisoned
samples generated by existing BTI
methods (i.e., FeatureRE and Uni-
corn) are significantly different from
ground-truth poisoned samples.

inversion (BTI) is the most critical module for backdoor defenses for the scenarios of using third-party
models. In general, BTI aims to recover trigger patterns of given benign samples that can activate
the backdoor in attacked models. With BTI, defenders can ‘unlearn’ and fix hidden backdoors via
generated poisoned images (i.e., benign samples containing their corresponding trigger patterns)
with the ground-truth instead of target labels; Defenders can also pre-process suspicious samples by
removing trigger patterns before feeding them into model prediction to prevent backdoor activation.

However, we find that existing BTI methods suffer from two main problem, including (1) low
inversion efficiency and (2) low similarity between inversed and ground-truth triggers even in the
feature space. We argue that these limitations are all because they need to approximate and decouple
backdoor features at first to separate benign and backdoor features, as required by BTI. Specifically,
these methods need to ‘scan’ all potential classes to speculate the target label since defenders have no
prior knowledge about attacks and poisoned samples. These processes are time-consuming since each
scan requires iteratively solving a particular optimization problem (as shown in Figure 1); Defenders
also need to assign a particular poisoning form (e.g., x′ = m · x + (1 −m) · t) to approximate
backdoor features, no matter in the input space (Wang et al., 2019) or the hidden feature space (Wang
et al., 2022b; 2023). However, the approximation could be inaccurate in many cases, leading to low
similarity between inversed and ground-truth poisoned samples (as shown in Figure 2).

In this paper, we explore the feature decoupling of BTI from another perspective. Instead of directly
approximating backdoor features, we decouple benign features to separate backdoor ones, inspired
by (Qi et al., 2023b) to some extent. This approach is motivated by defenders having local benign
samples directly related to benign features. In general, our method consists of two main steps. In
the first step, we decouple benign features by optimizing the objective that the suspicious model can
make correct predictions on benign samples via only benign features, whereas using the remaining
ones will lead to wrong predictions. In the second step, we train a backdoor generator by minimizing
the differences between benign samples and their generated poisoned version in decoupled benign
features while maximizing the differences in remaining poisoned features. After that, we also exploit
our BTI module to further design backdoor-removal and pre-processing-based defenses. Specifically,
we fine-tune the attacked model with generated poisoned images whose label is marked as their
ground-truth label instead of the target one to ‘unlearn’ and remove model backdoors; We train a
purification generator to approximate the inverse function of backdoor generator, based on which
to pre-process suspicious samples before feeding them into model prediction to deactivate hidden
backdoors. In particular, we design an enhancement method for them by repeatedly updating their
generators based on the results of their target objects (i.e., purified model and samples).

In conclusion, the main contributions of this paper are four-fold. (1) We reveal the low efficiency and
low similarity nature of existing backdoor trigger inversion (BTI) methods and their main reasons. (2)
Based on our analyses, we propose the first BTI that decouples benign features instead of backdoor
features in the first step. Accordingly, our BTI method is fundamentally more efficient and reliable. (3)
We also exploit our BTI module to further design simple yet effective pre-processing-based defense
and adopt it for unlearning backdoor. (4) We conduct comprehensive experiments on benchmark
datasets to verify the effectiveness of our methods and their resistance to potential adaptive attacks.
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2 RELATED WORK

2.1 BACKDOOR ATTACKS

Backdoor attacks are emerging yet critical training-phase security threats when the model training
includes third-party resources (Li et al., 2022b; Lan et al., 2024; Liang et al., 2024). In general, the
attacked models behave normally on benign testing samples; However, adversaries can maliciously
manipulate their predictions whenever testing samples contain adversary-specified trigger patterns.
The latent connection between trigger patterns and malicious predictions is called backdoor. In
general, existing attacks can be divided into two main categories, as follows.

Backdoor Attacks with Poisoned Labels. These attacks are currently the most classical and effective
methods, where the assigned target labels of poisoned samples differ from their ground-truth label.
BadNets (Gu et al., 2019) is the first and the most representative backdoor attack with poisoned
labels, where almost all follow-up attacks were designed based on its paradigm. Specifically, BadNets
randomly selected a few benign samples from the original dataset and turned them into poisoned
samples by stamping the backdoor trigger onto the (benign) image and changing their label with an
attacker-specified target label. These generated poisoned samples associated with remaining benign
ones will be released to victim users as the poisoned dataset. Besides, it also discussed all-to-all
attack mode whose target label is related to the ground-truth label of poisoned samples. The follow-up
attacks mainly focused on how to design trigger patterns and escape existing backdoor defenses. For
example, (Chen et al., 2017) introduced trigger transparency to BadNets to ensure attack stealthiness;
BppAttack (Wang et al., 2022c) exploited image quantization and dithering to design more stealthy
and effective trigger patterns; WaNet (Nguyen & Tran, 2021) is the most effective sample-specific
backdoor attack whose trigger patterns are sample-specific instead of sample-agnostic, although this
concept was first introduced in IAD (Nguyen & Tran, 2020) and ISSBA (Li et al., 2021d). As such,
it can circumvent many existing defenses; Most recently, (Qi et al., 2023a) also discussed how to
circumvent existing backdoor defenses by breaking their latent separability assumption.

Backdoor Attacks with Clean Labels. (Turner et al., 2019) revealed that attacks with poisoned
labels are fundamentally not stealthy to some extent, although their trigger patterns can be invisible.
Specifically, dataset users can easily break these attacks by finding and removing samples whose
labels are mismatched. To address this problem, they proposed to poison samples only from the target
class. In particular, they conducted adversarial attacks or GAN modification before adding trigger
patterns to reduce the effects of ‘robust features’ that could hinder learning trigger patterns. After
that, (Zhao et al., 2020) exploited universal adversarial perturbations (Moosavi-Dezfooli et al., 2017)
as trigger patterns to further improve attack effectiveness; Most recently, (Gao et al., 2023b) proposed
to modify ‘hard’ instead of random samples for designing better clean-label attacks. Both (Zhao
et al., 2020) and (Gao et al., 2023b) were designed based on the paradigm of (Turner et al., 2019).

Recently, a few works also exploited backdoor attacks for positive purposes (Lin et al., 2021; Li et al.,
2022a; 2023b; Guo et al., 2023b; Tang et al., 2023a; Ya et al., 2024), which are out of our scope.

2.2 BACKDOOR DEFENSES

Currently, there are also some defenses designed to reduce backdoor threats. In general, existing
backdoor defenses consists of five main categories, including (1) input-level backdoor detection
(Zeng et al., 2021a; Huang et al., 2023; Guo et al., 2023a), (2) poison suppression (Li et al., 2021a;
Huang et al., 2022; Tang et al., 2023b), (3) backdoor-removal defenses (Li et al., 2021b; Zeng et al.,
2022; Li et al., 2024), (4) pre-processing-based defenses (Liu et al., 2017; Doan et al., 2020; Li
et al., 2021c), and (5) model-level backdoor detection (Guo et al., 2022; Xiang et al., 2023; Wang
et al., 2024a). In this paper, we focus only on backdoor-removal and pre-processing-based defenses
since we target the scenarios of using third-party model and detection-based methods cannot directly
purified suspicious objects (i.e., models and samples).

Backdoor-Removal Defenses. These defenses directly removed backdoors contained in the suspi-
cious DNNs. For example, (Li et al., 2021b) exploited knowledge distillation with a purified teacher
model to guide the fine-tuning of the attacked student model; (Zeng et al., 2022) adopted the implicit
gradients to re-train attacked models; (Chai & Chen, 2022) masked model weights that are sensitive
to the trigger; (Wang et al., 2022b) decoupled the backdoor features and flipped them for defense.
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Pre-Processing-based Defenses. These defenses modified input testing samples before feeding them
into the suspicious model to destroy potential trigger patterns. Accordingly, the attacked model can
still generate correct predictions on poisoned images since modified trigger patterns can no longer
activate its backdoors. (Liu et al., 2017) proposed the first pre-processing-based defenses where they
adopted pre-trained auto-encoder for modification. After that, (Li et al., 2021c) and (Zeng et al.,
2021b) exploited other classical transformations (e.g., spatial transformations) for pre-processing.

Backdoor Trigger Inversion. As described in the introduction, backdoor trigger inversion (BTI) is a
critical module for many backdoor defenses. In general, we can separate existing BTI methods into
two main categories based on the inversion spaces (i.e., pixel, and feature space). Neural cleanse
(Wang et al., 2019) is the first BTI. It generated potential trigger patterns (and their masks) via
universal adversarial perturbations in the pixel space. After that, many subsequent methods were
designed based on it. For example, (Tao et al., 2022) developed a new optimization method without
using a mask; (Hu et al., 2022) reduced training iterations by encouraging a diverse set of trigger
candidates; (Shen et al., 2021) uses K-arm optimization to reduce computational resources. Currently,
the most advanced BTI methods were developed in the feature space (Wang et al., 2022b; 2023).
Besides, two recent research (Zheng et al., 2023; Feng et al., 2023) discussed how to conduct BTI in
the feature space under self-supervised learning, inspired by neural cleanse (Wang et al., 2019).

3 METHODOLOGY

3.1 PRELIMINARIES

The Main Pipeline of (Poisoning-based) Backdoor Attacks. Let D = {(xi, yi)}Ni=1 denotes the
benign training set containing N samples, where xi ∈ X is i-th image, yi ∈ Y = {1, . . . ,K}
is its label, and K is the number of classes. The adversaries will generate a poisoned dataset
Dp, based on which to train the attacked model either with standard loss or adversary-specified
one. Specifically, Dp consists of two main parts, including the modified version of a selected
subset (i.e., Ds) of D and a benign subset Db, i.e., Dp = Dm ∪ Db, where Db ⊂ D, Dm =

{(x′, y′)|x′ = GX(x), y′ = GY (y), (x, y) ∈ Ds}, γ ≜ |Ds|
|D| is the poisoning rate, and GX&GY

are adversary-specified poisoned image generator and poisoned label generator, respectively. For
example, GX(x) = (1−α)⊙ x+α⊙ t, where α ∈ {0, 1}C×W×H , t ∈ X is the trigger pattern,
and ⊙ is the element-wise product in BadNets (Gu et al., 2019); GY (y) = yt where the target label
yt ∈ Y in all-to-one attacks, while GY (y) = (y + 1) mod K in all-to-all attacks. In the inference
process of the backdoored model, given an ‘unseen’ image x̂ with ground-truth label ŷ, the model
will predict x̂ as ŷ while predicting its poisoned version GX(x̂) as GY (ŷ).

Threat Model. In this paper, we focus on backdoor defenses via backdoor trigger inversion when
using third-party pre-trained models. We assume the defenders have full access to the suspicious
model and a few local benign samples, whereas they have no information about the attack.

Defender’s Goals. In general, defenders have two main goals for the module of backdoor trigger
inversion (BTI), including reliability and efficiency. Reliability requires that the generated poisoned
samples are similar to the ground-truth ones in the feature space, while efficiency hopes the BTI
is fast. For backdoor-removal and pre-processing-based defenses built via our BTI, we expect the
model to finally predict benign and poisoned testing samples to their ground-truth class (i.e., with
high benign accuracy and low attack success rate).

3.2 BACKDOOR TRIGGER INVERSION VIA DECOUPLING BENIGN FEATURES (BTI-DBF)

Following the most classical setting in existing defenses (Huang et al., 2022; Wang et al., 2022b;
2023), we treat a model f as having two disjoint parts, including fully-connected layers Sb and its
previous (convolutional) layers Sa, i.e., f(x) ≜ Sb ◦Sa(x). Sa is the mapping from the input feature
space to the feature space while Sb denotes the one from the feature space to the output space.

In general, our BTI-DBF method consists of two main steps, (1) decoupling benign features and (2)
trigger inversion by minimizing the differences between benign samples and their generated poisoned
version in decoupled benign features while maximizing the differences in remaining backdoor features.
The main pipeline of our method is shown in Figure 3. Please find more technical details of our
BTI-DBF module and defenses based on it in the following parts.
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Figure 3: The main pipeline of our backdoor trigger inversion via decoupling benign features (BTI-
DBF), as well as our backdoor-removal (dubbed ‘BTI-DBF (U)’) and pre-processing-based (dubbed
‘BTI-DBF (P)’) defenses designed based on BTI-DBF. In general, our BTI-DBF has two main steps,
including (1) decoupling benign features with benign samples in the feature space generated by
convolutional layers Sa and (2) trigger inversion by minimizing the differences between benign
samples and their generated poisoned version in decoupled benign features while maximizing the
differences in remaining backdoor features; For BTI-DBF (U), we fine-tune the attacked model with
poisoned images generated by our BTI-DBF whose labels are marked as their ground-truth labels to
‘unlearn’ backdoors; For BTI-DBF (P), we train a purification generator to approximate the inverse
function of BTI-DBF’s backdoor generator. The purification generator will pre-process all testing
samples before feeding them into DNNs for predictions.

3.2.1 DECOUPLING BENIGN FEATURES

Intuitively, a suspicious model should make correct predictions on benign samples using only benign
features, whereas using the remaining ones will lead to wrong predictions.

Specifically, let m be the mask having the same dimension as that of all features Sa(·), whose
elements are all in the range of [0, 1]. We use the maskm to select benign features (in a soft way).
The closer the element value is to 1, the more likely the corresponding feature is benign. Given a few
local benign samples (with correct annotation), i.e., Dl = {(xi, yi)}Mi=1, the optimization process of
our feature decoupling can be formulated as follows:

argmin
m

∑
(x,y)∈Dl

[L(Sb ◦ (Sa(x)⊙m), y)− L(Sb ◦ (Sa(x)⊙ (1−m)), y)] , (1)

where L is the loss function (e.g., cross-entropy) and ⊙ is the element-wise product.

Arguably, our method is more reliable than existing BTI methods since we only rely on benign
samples without needing to assign a particular poisoning form for approximation. Besides, our
approach can automatically adjust the percentage of identified benign features without manually
choosing the ratio. In particular, our method is highly efficient since we don’t need to ‘scan’ all
classes (as required by existing BTI methods) to determine potential target labels.

3.2.2 BACKDOOR TRIGGER INVERSION VIA DECOUPLED FEATURES

Once we obtain the feature mask m via Eq.(1), we can train a backdoor generator Gθ : X → X
to generate the poisoned version of any benign samples. In general, the benign samples and their
poisoned version should have similar values in benign features but inconsistent values in the remaining
backdoor features. Accordingly, we can formulate this optimization problem as follows:

min
θ

∑
(x,y)∈Dl

(∥(Sa(x)− Sa(Gθ(x)))⊙m∥ − ∥(Sa(x)− Sa(Gθ(x)))⊙ (1−m)∥) ,

s.t. ∥x−Gθ(x)∥ ≤ τ, ∀(x, y) ∈ Dl,

(2)

where τ > 0 is a hyper-parameter and ∥ · ∥ is a distance metric (e.g., ℓ2-norm).
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Notice that the backdoor generator Gθ generates poisoned samples instead of trigger patterns for
simplicity. We can easily obtain the trigger pattern of image x by Gθ(x)− x.

3.3 BACKDOOR DEFENSES VIA OUR BTI-DBF

In this section, we discuss how to further design backdoor-removal and pre-processing-based defenses
based on our BTI-DBF module. The input-level backdoor detection derived directly by our pre-
processing-based defense is demonstrated in Appendix A

3.3.1 BACKDOOR-REMOVAL DEFENSE VIA BTI-DBF

Given the trained backdoor generator Gθ of BTI-DBF, we can fine-tune the attacked model fw with
generated poisoned images whose labels are marked as their ground-truth labels instead of target
ones to ‘unlearn’ and remove model backdoors. Specifically, we require that both benign images and
their generated poisoned versions can be correctly predicted as their ground-truth label while each
pair lies closely in the feature space, as follows:

min
w

∑
(x,y)∈Dl

L(fw(x), y) + L(fw(Gθ(x)), y) + ∥Sa(x)− Sa(Gθ(x))∥ . (3)

In particular, as an enhancement, we can conduct the unlearning process and update our backdoor
generator alternately to further improve its performance. More details are in Appendix B.1.

3.3.2 PRE-PROCESSING-BASED DEFENSE VIA BTI-DBF

To purify the poisoned samples, we need to train a purification generator Ĝψ : X → X . In general,
given the backdoor generator Gθ, we can approximate its inverse function to obtain the purification
generator. Specifically, we need to ensure that (1) the purification can remove backdoor triggers while
(2) it does not influence benign samples. In this paper, we design a purification loss Lp and a benign
loss Lb to approach them, respectively. The training of Ĝψ can be denoted as follows:

min
ψ

∑
(x,y)∈Dl

Lp + Lb, (4)

where

Lp = L(f(Ĝψ(Gθ(x))), y) +
∥∥∥Sa(x)− Sa(Ĝψ(Gθ(x)))

∥∥∥+
∥∥∥x− Ĝψ(Gθ(x))

∥∥∥ , (5)

Lb = L(f(Ĝψ(x)), y) +
∥∥∥Sa(x)− Sa(Ĝψ(x))

∥∥∥+
∥∥∥x− Ĝψ(x)

∥∥∥ . (6)

Similarly, we can also alternately update our purification generator and backdoor generator to further
improve the defense performance. Please find more details in Appendix B.2.

4 EXPERIMENTS

4.1 MAIN SETTINGS

Datasets and DNNs. We conduct experiments on three benchmark datasets, including CIFAR-10
(Krizhevsky, 2009), GTSRB (Houben et al., 2013), and (a subset of) ImageNet (Deng et al., 2009).
The ImageNet subset contains 100 classes. We evaluate our methods with ResNet-18 (He et al., 2016)
on all datasets. We exploit U-Net (Ronneberger et al., 2015) as the structure of all generators. We
randomly select 5% benign training samples as the local dataset for all defenses. Please refer to
Appendix C.1 for more dataset details and Appendix D for results with more DNNs.

Evaluation Metrics. We adopt the distance between recovered poisoned samples and their ground-
truth ones in the feature space to evaluate the reliability of BTI since existing backdoor attacks exhibit
generalization in the input space (Qiao et al., 2019). Besides, we adopt the training time to assess
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Table 1: The reliability evaluation of BTI methods on CIFAR-10. We adopt feature distance (FD)
between recovered poisoned samples and their ground-truth ones and detection success rate (DSR,
%) about whether BTI can correctly identify the target class for measurement. Among all methods,
the best results are marked in boldface while failed cases (i.e., DSR < 50%) are marked in red.

BTI→
Attack↓, Metric→

NC Pixel THTP FeatureRE Unicorn BTI-DBF

FD DSR FD DSR FD DSR FD DSR FD DSR FD DSR

BadNets 8.20 100 71.12 100 24.51 100 22.52 82 18.34 100 7.81 100
Blended 6.49 100 3.24 100 5.39 96 33.10 92 2.19 96 1.79 100
WaNet 0.41 16 0.36 16 0.31 28 0.85 18 0.50 86 0.15 100
IAD 0.09 18 0.10 16 0.09 24 0.13 22 0.09 18 0.03 100
LC 0.09 100 0.14 100 0.11 94 0.24 88 0.37 100 0.09 100

BppAttack 11.75 16 12.31 22 12.24 18 11.79 16 12.38 34 6.38 98

their efficiency. Following the most classical setting in backdoor-related works (Li et al., 2022b), we
adopt the benign accuracy (BA) and attack success rate (ASR) to evaluate all defenses. The higher
the BA, the lower the ASR, the better the defense.

Baseline Selection for BTI. We compare our BTI-DBF with five representative and advanced BTI
methods, including (1) Neural Cleanse (dubbed ‘NC’) (Wang et al., 2019), (2) THTP (Hu et al.,
2022), (3) Pixel (Tao et al., 2022), (4) FeatureRE (Wang et al., 2022b), and (5) Unicorn (Wang et al.,
2023). The first three methods were designed on the input space, while the last two were designed on
the feature space. Please find their detailed settings in Appendix C.2.

Baseline Selection for Backdoor Defenses. We compare our backdoor-removal defense via BTI-
DBF (dubbed ‘BTI-DBF (U)’) with four representative and advanced backdoor-removal defenses,
including (1) NAD (Li et al., 2021b), (2) I-BAU (Zeng et al., 2022), (3) AWM (Chai & Chen, 2022),
and (4) FeatureRE (Wang et al., 2022b); We compare our pre-processing-based defense via BTI-DBF
(dubbed ‘BTI-DBF (P)’) with two most representative methods, including Februus (Doan et al., 2020)
and ShrinkPad (Li et al., 2021c). Please find their detailed settings in Appendix C.3.

The Selection of Evaluated Backdoor Attacks. We exploit six representative and advanced backdoor
attacks, including (1) BadNets (Gu et al., 2019), (2) attack with blended strategy (dubbed ‘Blended’),
(3) label-consistent attack (dubbed ‘LC’) (Turner et al., 2019), (4) IAD (Nguyen & Tran, 2020), (5)
WaNet (Nguyen & Tran, 2021), and (6) BppAttack (Wang et al., 2022c), to comprehensively evaluate
the performance of different defenses. Please refer to Appendix C.4 for their detailed settings.

4.2 THE PERFORMANCE OF BACKDOOR TRIGGER INVERSION

In this section, we only provide the results on CIFAR-10 due to the space limitation. Please refer to
Appendix E for more results on GTSRB and ImageNet.
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Figure 4: Training costs of BTI.

Main Results. As shown in Table 1, our method can obtain
more reliable triggers with lower distance between generated
and ground-truth poisoned samples in the feature space, com-
pared to existing BTI methods. For example, under the BadNets
attack, the distance of our BTI-DBF is nearly 10 times smaller
than that of Pixel. In particular, as shown in Figure 4, our
method is significantly faster than all baseline methods. For ex-
ample, our BTI-DBF needs only 60 seconds for training, which
is more than 20 times faster than Unicorn. It is still more than
3 times faster than the most efficient BTI baseline (i.e., Pixel).
This efficiency advantage is even more pronounced in datasets
with more classes (e.g., GTSRB and ImageNet).

A Closer Look to the Reliability of Our BTI-DBF. To further explore why our method is highly
reliable, we examine whether it can successfully find the target label for (all-to-one) backdoor attacks.
Specifically, we train 10 models with different target labels and repeat all BTI methods for each
model 5 times. We feed generated poisoned samples of each BTI method to backdoored DNNs and
treat the predicted label having the highest frequency as the detected target label. We calculate the
detection success rate (DSR) over all 50 trials for all methods at the end. As shown in Table 1, our
method has 100% DSR in almost all cases. In contrast, all baseline methods fail (with DSR < 50%)
in some cases. An interesting phenomenon is that there are methods with small distances in the
feature samples (e.g., NC and FeatureRE under WaNet and IAD) but they can not find the target
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Table 2: The performance (%) of backdoor-removal defenses on CIFAR-10, GTSRB, and ImageNet
datasets. We mark all failed cases (i.e., BA drop or ASR > 10%) in red.

Dataset↓ Defense→
Attack↓

No Defense NAD I-BAU AWM FeatureRE BTI-DBF (U)

BA ASR BA ASR BA ASR BA ASR BA ASR BA ASR

CIFAR-10

BadNets 92.82 99.88 90.32 2.98 90.67 1.33 90.93 21.92 91.53 35.42 92.00 1.36
Blended 93.08 97.31 89.49 3.29 88.57 0.56 90.07 38.14 92.86 40.50 91.60 7.92
WaNet 94.53 99.59 91.38 6.94 90.66 2.88 91.01 10.72 93.75 0.02 90.82 0.94
IAD 94.07 99.41 91.34 17.45 91.11 9.63 88.76 14.71 93.23 0.39 91.91 1.22
LC 94.65 88.83 91.77 12.65 93.12 1.60 92.07 12.61 94.54 10.49 90.48 4.51

BppAttack 93.88 99.99 90.84 98.90 88.35 3.97 90.95 15.18 91.85 100 90.98 5.02

GTSRB

BadNets 97.14 100 95.41 3.35 95.70 0.00 96.80 0.43 97.09 100 95.35 0.04
Blended 96.64 99.97 92.94 0.91 95.78 0.03 95.75 0.38 92.19 100 94.84 0.38
WaNet 97.87 99.96 95.19 2.92 96.38 0.00 95.95 71.28 97.88 11.23 95.56 0.00
IAD 97.22 99.81 94.39 0.38 95.55 0.05 94.83 9.67 97.23 0.00 93.64 0.00

BppAttack 97.66 99.98 94.12 1.43 95.21 0.02 97.18 81.51 94.59 62.98 94.82 0.01

ImageNet

BadNets 73.23 99.98 70.25 13.50 71.59 98.91 71.80 48.02 72.42 48.82 70.49 7.62
Blended 72.38 99.99 69.94 72.47 53.47 98.41 70.45 99.82 72.54 99.99 71.11 5.42
WaNet 74.44 99.85 70.46 8.54 72.87 95.94 73.90 13.90 73.86 5.39 70.35 3.38
IAD 73.76 99.76 70.85 35.58 54.61 15.22 67.56 47.36 72.66 27.48 69.93 5.52

BppAttack 63.33 99.83 59.44 25.61 58.92 96.09 56.73 11.30 61.43 99.65 60.69 8.58

Table 3: The performance (%) of pre-processing-based defenses on CIFAR-10, GTSRB, and Ima-
geNet datasets. We mark all failed cases (i.e., BA drop or ASR > 10%) in red.

Dataset Attack No Defense Februus ShrinkPad BTI-DBF (P)

BA ASR BA ASR BA ASR BA ASR

CIFAR-10

BadNets 92.82 99.88 90.14 2.22 84.21 2.04 90.28 1.23
Blended 93.08 97.31 82.92 5.04 82.69 75.13 89.13 1.00
WaNet 94.53 99.59 69.36 49.55 45.60 96.56 89.14 1.60
IAD 94.07 99.41 66.45 32.40 88.14 35.83 90.21 3.73
LC 94.65 88.83 71.51 16.95 88.37 2.13 90.02 1.11

BppAttack 93.88 99.99 91.31 0.03 83.59 51.95 89.39 2.52

GTSRB

BadNets 97.14 100 65.27 0.04 96.38 0.00 93.30 1.10
Blended 96.64 99.97 79.07 0.47 96.24 2.36 94.03 0.48
WaNet 97.87 99.96 28.05 32.33 59.30 100 94.26 0.00
IAD 97.22 99.81 30.28 36.89 96.98 39.55 93.95 0.00

BppAttack 97.66 99.98 85.40 0.06 94.59 28.05 93.77 0.76

ImageNet

BadNets 73.23 99.98 34.03 2.83 70.66 11.13 68.63 7.90
Blended 72.38 99.99 33.01 66.23 68.96 99.08 68.87 1.41
WaNet 74.44 99.85 33.88 32.64 71.18 96.35 69.36 0.14
IAD 73.76 99.76 33.25 54.70 70.32 96.78 69.52 9.40

BppAttack 63.33 99.83 41.93 92.06 59.76 97.79 59.99 6.27

label correctly. It partly explain why defenses based on these BTI methods suffer from relatively low
effectiveness. We will further explore its intrinsic mechanism in our future work.

4.3 THE PERFORMANCE OF BACKDOOR DEFENSES

Results of Backdoor-removal Defenses. As shown in Table 2, our BTI-DBF (U) can successfully
remove model backdoors in all cases while preserving high benign accuracy. Specifically, the attack
success rates of our method are lower than 10% and the drops of benign accuracy compared to the
one with no defense are smaller than 5% in all cases. In contrast, all baseline defenses may fail (with
ASR > 10%) even when they have significantly reduced benign accuracy. For example, the ASR of
I-BAU is still higher than 95% even it has decreased BA for nearly 20% in defending against Blended
on ImageNet. These results verify the effectiveness of our BTI-DBF (U) and our BTI-DBF module.

Results of Pre-processing-based Defenses. As shown in Table 3, our BTI-DBF (P) also performs
best among all pre-processing-based defenses. Specifically, the ASRs of our method are lower than
10% (< 5% in most cases), while its BA drops are all smaller than 6%. In contrast, Februus and
ShrinkPad fail in many cases, especially when trigger patterns are relatively large or sample-specific.
This failure is caused by their non-essential assumptions of trigger patterns. These results verify the
effectiveness of our BTI-DBF (P) and our BTI-DBF module again.
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Table 4: The reliability of BTI-DBF with-
out or with decoupling benign feature.

w/o DBF w/ DBF

FD DSR FD DSR

BadNets 8.33 68 7.81 100
Blended 1.53 42 1.79 100
WaNet 0.41 24 0.15 100
IAD 0.13 22 0.03 100
LC 0.09 58 0.09 100

BppAttack 10.34 44 6.38 98

Table 5: The performance (%) of designed defenses with-
out or with iteration-based enhancement.

BTI-DBF (P) BTI-DBF (U)

w/o IE w/ IE w/o IE w/ IE

BA ASR BA ASR BA ASR BA ASR

BadNets 89.18 16.27 90.28 1.23 92.42 21.54 92.00 1.36
Blended 88.60 6.41 89.13 1.00 92.71 31.79 91.60 7.92
WaNet 89.97 6.82 89.14 1.60 92.52 10.51 90.82 0.94
IAD 89.65 21.18 90.21 3.37 92.04 6.84 91.91 1.22
LC 91.14 6.52 90.48 4.15 91.90 1.31 90.02 1.11

BppAttack 88.74 2.77 89.39 2.52 91.03 42.31 90.98 5.02

Table 6: The resistance to adaptive attacks on the CIFAR-10 dataset.
No Defense BTI-DBF (P) BTI-DBF (U)

BA ASR BA ASR BA ASR

BadNets 92.82 99.88 90.28 1.23 92.00 1.36
Adap-Blended 94.68 81.46 90.50 4.84 92.28 1.85

Adaptive BadNets 92.52 99.98 89.72 5.32 91.05 0.78

4.4 ABLATION STUDY

There are two important components in our methods, including (1) decoupling benign features in
our BTI-DBF module and (2) iteration-based enhancement in designed backdoor defenses. In this
section, we verify their effectiveness. Specifically, we conduce experiments on CIFAR-10. Unless
otherwise specified, all settings are the same as those stated in Section 4.1.

Effectiveness of Decoupling Benign Feature in BTI-DBF. We hereby conduct our trigger inversion
process on all features (with maskm = 0) instead of decoupled features via Eq. (2) and calculate
the feature distance (FD) and detection success rate (DSR) for evaluation. As shown in Table 4,
BTI-DBF is better than its variant without feature decoupling in almost all cases. In particular, in
most cases, BTI-DBF without feature decoupling cannot correctly identify the target class (with DSR
< 50%). These results verify the effectiveness of this component.

Effectiveness of Iteration-based Enhancement in Defenses. Recall that we propose to alternately
update our target object (i.e., model or purification generator) as an iteration-based enhancement (IE)
to further improve our defenses. As shown in Table 5, our IE can significantly ASR. These results
verify the effectiveness of our iteration-based enhancement.

4.5 THE RESISTANCE TO POTENTIAL ADAPTIVE ATTACKS

In this section, we analyze whether adversaries can easily break our defenses if they know our method.

Settings. In general, our methods also implicitly rely on the latent separation assumption of backdoor
attacks to some extent, since we try to decouple benign and backdoor features. We hereby adopt
Adap-Blended (Qi et al., 2023a) as the adaptive attack since it can reduce latent separation between
benign and poisoned samples. In particular, we also design an adaptive method (dubbed ‘Adaptive
BadNets’) to directly target our BTI-DBF, where we require that using backdoor features can also
correctly classify benign samples. Please find more details in Appendix I.

Results. As shown in Table 6, our methods are still highly effective under these attacks with high
benign accuracy and low attack success rate, although their performance may have a few degrades. In
other words, our methods are resistant to adaptive attacks.

5 CONCLUSION

In this paper, we proposed the first backdoor trigger inversion (BTI) that decouples benign features
instead of backdoor features, which is effective and highly efficient. This method is motivated by our
analyses of why existing BTI methods have low efficiency and similarity. We also designed simple
yet effective backdoor-removal and pre-processing-based defenses based on it. Results on benchmark
datasets verified the effectiveness of our methods and their resistance to potential adaptive attacks.
We hope our method can provide a deeper understanding of backdoor trigger inversion to facilitate
the design of more effective backdoor defenses and secure DNNs.
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model training. In this paper, we propose a new framework of backdoor trigger inversion, based on
which we design two simple yet effective backdoor defenses. Accordingly, this work has no ethical
issue in general since our work is purely defensive and does not discover any new threats. However,
we must emphasize that our methods are available in using suspicious third-party models only when
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(e.g., using third-party samples). In these cases, people should only use trusted resources or other
particular defenses. People should not be too optimistic about eliminating backdoor threats.

REFERENCES

Jiawang Bai, Li Yuan, Shu-Tao Xia, Shuicheng Yan, Zhifeng Li, and Wei Liu. Improving vision
transformers by revisiting high-frequency components. In ECCV, 2022.

Shuwen Chai and Jinghui Chen. One-shot neural backdoor erasing via adversarial weight masking.
In NeurIPS, 2022.

Xinyun Chen, Chang Liu, Bo Li, Kimberly Lu, and Dawn Song. Targeted backdoor attacks on deep
learning systems using data poisoning. arXiv preprint arXiv:1712.05526, 2017.

Siyuan Cheng, Yingqi Liu, Shiqing Ma, and Xiangyu Zhang. Deep feature space trojan attack of
neural networks by controlled detoxification. In AAAI, 2021.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale
hierarchical image database. In CVPR, 2009.

Bao Gia Doan, Ehsan Abbasnejad, and Damith C Ranasinghe. Februus: Input purification defense
against trojan attacks on deep neural network systems. In ACSAC, 2020.

Jianshuo Dong, Qiu Han, Yiming Li, Tianwei Zhang, Yuanjie Li, Zeqi Lai, Chao Zhang, and Shu-Tao
Xia. One-bit flip is all you need: When bit-flip attack meets model training. In ICCV, 2023.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. An image
is worth 16x16 words: Transformers for image recognition at scale. In ICLR, 2020.

Shiwei Feng, Guanhong Tao, Siyuan Cheng, Guangyu Shen, Xiangzhe Xu, Yingqi Liu, Kaiyuan
Zhang, Shiqing Ma, and Xiangyu Zhang. Detecting backdoors in pre-trained encoders. In CVPR,
2023.

Kuofeng Gao, Yang Bai, Jindong Gu, Yong Yang, and Shu-Tao Xia. Backdoor defense via adaptively
splitting poisoned dataset. In CVPR, 2023a.

Yinghua Gao, Yiming Li, Linghui Zhu, Dongxian Wu, Yong Jiang, and Shu-Tao Xia. Not all samples
are born equal: Towards effective clean-label backdoor attacks. Pattern Recognition, 139:109512,
2023b.

Tianyu Gu, Kang Liu, Brendan Dolan-Gavitt, and Siddharth Garg. Badnets: Evaluating backdooring
attacks on deep neural networks. IEEE Access, 7:47230–47244, 2019.

Junfeng Guo, Ang Li, and Cong Liu. Aeva: Black-box backdoor detection using adversarial extreme
value analysis. In ICLR, 2022.

10



Published as a conference paper at ICLR 2024

Junfeng Guo, Yiming Li, Xun Chen, Hanqing Guo, Lichao Sun, and Cong Liu. Scale-up: An efficient
black-box input-level backdoor detection via analyzing scaled prediction consistency. In ICLR,
2023a.

Junfeng Guo, Yiming Li, Lixu Wang, Shu-Tao Xia, Heng Huang, Cong Liu, and Bo Li. Domain
watermark: Effective and harmless dataset copyright protection is closed at hand. In NeurIPS,
2023b.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In CVPR, 2016.

Yiling He, Yiping Liu, Lei Wu, Ziqi Yang, Kui Ren, and Zhan Qin. Msdroid: Identifying malicious
snippets for android malware detection. IEEE Transactions on Dependable and Secure Computing,
2022.

Sebastian Houben, Johannes Stallkamp, Jan Salmen, Marc Schlipsing, and Christian Igel. Detection
of traffic signs in real-world images: The german traffic sign detection benchmark. In IJCNN,
2013.

Xiaoling Hu, Xiao Lin, Michael Cogswell, Yi Yao, Susmit Jha, and Chao Chen. Trigger hunting with
a topological prior for trojan detection. In ICLR, 2022.

Gao Huang, Zhuang Liu, Laurens Van Der Maaten, and Kilian Q Weinberger. Densely connected
convolutional networks. In CVPR, 2017.

Hanxun Huang, Xingjun Ma, Sarah Erfani, and James Bailey. Distilling cognitive backdoor patterns
within an image. In ICLR, 2023.

Kunzhe Huang, Yiming Li, Baoyuan Wu, Zhan Qin, and Kui Ren. Backdoor defense via decoupling
the training process. In ICLR, 2022.

Najeeb Moharram Jebreel, Josep Domingo-Ferrer, and Yiming Li. Defending against backdoor
attacks by layer-wise feature analysis. In PAKDD, 2023.

Alex Krizhevsky. Learning multiple layers of features from tiny images. Technical report, 2009.

Haoheng Lan, Jindong Gu, Philip Torr, and Hengshuang Zhao. Influencer backdoor attack on
semantic segmentation. In ICLR, 2024.

Boheng Li, Yishuo Cai, Haowei Li, Feng Xue, Zhifeng Li, and Yiming Li. Nearest is not dearest:
Towards practical defense against quantization-conditioned backdoor attacks. In CVPR, 2024.

Xiaochen Li, Weiran Liu, Hanwen Feng, Kunzhe Huang, Yuke Hu, Jinfei Liu, Kui Ren, and Zhan Qin.
Privacy enhancement via dummy points in the shuffle model. IEEE Transactions on Dependable
and Secure Computing, 2023a.

Yige Li, Xixiang Lyu, Nodens Koren, Lingjuan Lyu, Bo Li, and Xingjun Ma. Anti-backdoor learning:
Training clean models on poisoned data. In NeurIPS, 2021a.

Yige Li, Xixiang Lyu, Nodens Koren, Lingjuan Lyu, Bo Li, and Xingjun Ma. Neural attention
distillation: Erasing backdoor triggers from deep neural networks. In ICLR, 2021b.

Yiming Li, Tongqing Zhai, Yong Jiang, Zhifeng Li, and Shu-Tao Xia. Backdoor attack in the physical
world. In ICLR Workshop, 2021c.

Yiming Li, Yang Bai, Yong Jiang, Yong Yang, Shu-Tao Xia, and Bo Li. Untargeted backdoor
watermark: Towards harmless and stealthy dataset copyright protection. In NeurIPS, 2022a.

Yiming Li, Yong Jiang, Zhifeng Li, and Shu-Tao Xia. Backdoor learning: A survey. IEEE Transac-
tions on Neural Networks and Learning Systems, 2022b.

Yiming Li, Haoxiang Zhong, Xingjun Ma, Yong Jiang, and Shu-Tao Xia. Few-shot backdoor attacks
on visual object tracking. In ICLR, 2022c.

11



Published as a conference paper at ICLR 2024

Yiming Li, Mingyan Zhu, Xue Yang, Yong Jiang, Tao Wei, and Shu-Tao Xia. Black-box dataset
ownership verification via backdoor watermarking. IEEE Transactions on Information Forensics
and Security, 2023b.

Yuezun Li, Yiming Li, Baoyuan Wu, Longkang Li, Ran He, and Siwei Lyu. Invisible backdoor attack
with sample-specific triggers. In ICCV, 2021d.

Zhifeng Li, Dihong Gong, Yu Qiao, and Dacheng Tao. Common feature discriminant analysis for
matching infrared face images to optical face images. IEEE transactions on image processing, 23
(6):2436–2445, 2014.

Jiawei Liang, Siyuan Liang, Aishan Liu, Xiaojun Jia, Junhao Kuang, and Xiaochun Cao. Poisoned
forgery face: Towards backdoor attacks on face forgery detection. In ICLR, 2024.

Junyu Lin, Lei Xu, Yingqi Liu, and Xiangyu Zhang. Composite backdoor attack for deep neural
network by mixing existing benign features. In CCS, 2020.

Yi-Shan Lin, Wen-Chuan Lee, and Z Berkay Celik. What do you see? evaluation of explainable
artificial intelligence (xai) interpretability through neural backdoors. In KDD, 2021.

Yuntao Liu, Yang Xie, and Ankur Srivastava. Neural trojans. In ICCD, 2017.

Seyed-Mohsen Moosavi-Dezfooli, Alhussein Fawzi, Omar Fawzi, and Pascal Frossard. Universal
adversarial perturbations. In CVPR, 2017.

Anh Nguyen and Anh Tran. Input-aware dynamic backdoor attack. In NeurIPS, 2020.

Anh Nguyen and Anh Tran. Wanet–imperceptible warping-based backdoor attack. In ICLR, 2021.

Xiangyu Qi, Tinghao Xie, Yiming Li, Saeed Mahloujifar, and Prateek Mittal. Revisiting the assump-
tion of latent separability for backdoor defenses. In ICLR, 2023a.

Xiangyu Qi, Tinghao Xie, Jiachen T Wang, Tong Wu, Saeed Mahloujifar, and Prateek Mittal. Towards
a proactive {ML} approach for detecting backdoor poison samples. In USENIX Security, 2023b.

Ximing Qiao, Yukun Yang, and Hai Li. Defending neural backdoors via generative distribution
modeling. In NeurIPS, 2019.

Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional networks for biomedical
image segmentation. In MICCAI, 2015.

Guangyu Shen, Yingqi Liu, Guanhong Tao, Shengwei An, Qiuling Xu, Siyuan Cheng, Shiqing Ma,
and Xiangyu Zhang. Backdoor scanning for deep neural networks through k-arm optimization. In
ICML, 2021.

Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image
recognition. In ICLR, 2014.

Chunyu Sun, Chenye Xu, Chengyuan Yao, Siyuan Liang, Yichao Wu, Ding Liang, Xianglong Liu,
and Aishan Liu. Improving robust fariness via balance adversarial training. In AAAI, 2023.

Ruixiang Tang, Qizhang Feng, Ninghao Liu, Fan Yang, and Xia Hu. Did you train on my dataset?
towards public dataset protection with clean-label backdoor watermarking. In SIGKDD Exploration
Letter, 2023a.

Ruixiang Tang, Jiayi Yuan, Yiming Li, Zirui Liu, Rui Chen, and Xia Hu. Setting the trap: Capturing
and defeating backdoor threats in plms through honeypots. In NeurIPS, 2023b.

Guanhong Tao, Guangyu Shen, Yingqi Liu, Shengwei An, Qiuling Xu, Shiqing Ma, Pan Li, and
Xiangyu Zhang. Better trigger inversion optimization in backdoor scanning. In CVPR, 2022.

Alexander Turner, Dimitris Tsipras, and Aleksander Madry. Label-consistent backdoor attacks. arXiv
preprint arXiv:1912.02771, 2019.

12



Published as a conference paper at ICLR 2024

Bolun Wang, Yuanshun Yao, Shawn Shan, Huiying Li, Bimal Viswanath, Haitao Zheng, and Ben Y.
Zhao. Neural cleanse: Identifying and mitigating backdoor attacks in neural networks. In IEEE
S&P, 2019.

Hang Wang, Zhen Xiang, David J Miller, and George Kesidis. Improved activation clipping for
universal backdoor mitigation and test-time detection. In IEEE S&P, 2024a.

Hang Wang, Zhen Xiang, David J. Miller, and George Kesidis. Mm-bd: Post-training detection of
backdoor attacks with arbitrary backdoor pattern types using a maximum margin statistic. In IEEE
S&P, 2024b.

Zhenting Wang, Hailun Ding, Juan Zhai, and Shiqing Ma. Training with more confidence: Mitigating
injected and natural backdoors during training. In NeurIPS, 2022a.

Zhenting Wang, Kai Mei, Hailun Ding, Juan Zhai, and Shiqing Ma. Rethinking the reverse-
engineering of trojan triggers. In NeurIPS, 2022b.

Zhenting Wang, Juan Zhai, and Shiqing Ma. Bppattack: Stealthy and efficient trojan attacks against
deep neural networks via image quantization and contrastive adversarial learning. In CVPR, 2022c.

Zhenting Wang, Kai Mei, Juan Zhai, and Shiqing Ma. Unicorn: A unified backdoor trigger inversion
framework. In ICLR, 2023.

Emily Wenger, Roma Bhattacharjee, Arjun Nitin Bhagoji, Josephine Passananti, Emilio Andere,
Heather Zheng, and Ben Y. Zhao. Finding naturally occurring physical backdoors in image datasets.
In NeurIPS, 2022.

Zhen Xiang, David J. Miller, and George Kesidis. Detection of backdoors in trained classifiers
without access to the training set. IEEE Transactions on Neural Networks and Learning Systems,
2022.

Zhen Xiang, Zidi Xiong, and Bo Li. Umd: Unsupervised model detection for x2x backdoor attacks.
In ICML, 2023.

Mengxi Ya, Yiming Li, Tao Dai, Bin Wang, Yong Jiang, and Shu-Tao Xia. Towards faithful xai
evaluation via generalization-limited backdoor watermark. In ICLR, 2024.

Hongwei Yao, Jian Lou, Kui Ren, and Zhan Qin. Promptcare: Prompt copyright protection by
watermark injection and verification. In IEEE S&P, 2024.

Jiahui Yu, Zhe Lin, Jimei Yang, Xiaohui Shen, Xin Lu, and Thomas S. Huang. Generative image
inpainting with contextual attention. In CVPR, 2018.

Yi Zeng, Won Park, Z Morley Mao, and Ruoxi Jia. Rethinking the backdoor attacks’ triggers: A
frequency perspective. In ICCV, 2021a.

Yi Zeng, Han Qiu, Shangwei Guo, Tianwei Zhang, Meikang Qiu, and Bhavani Thuraisingham.
Deepsweep: An evaluation framework for mitigating dnn backdoor attacks using data augmentation.
In AsiaCCS, 2021b.

Yi Zeng, Si Chen, Won Park, Z Morley Mao, Ming Jin, and Ruoxi Jia. Adversarial unlearning of
backdoors via implicit hypergradient. In ICLR, 2022.

Shihao Zhao, Xingjun Ma, Xiang Zheng, James Bailey, Jingjing Chen, and Yu-Gang Jiang. Clean-
label backdoor attacks on video recognition models. In CVPR, 2020.

Mengxin Zheng, Jiaqi Xue, Xun Chen, Lei Jiang, and Qian Lou. Ssl-cleanse: Trojan detection and
mitigation in self-supervised learning. arXiv preprint arXiv:2303.09079, 2023.

13



Published as a conference paper at ICLR 2024

Table 7: The performance of our BTI-DBF (D) on the CIFAR-10 dataset.

Metric↓, Attack→ BadNets Blended WaNet IAD LC BppAttack

Precision (%) 93.28 92.66 91.50 92.51 92.01 93.49
Recall (%) 99.01 98.44 97.26 93.70 88.53 99.00

F1-Score (%) 96.06 95.47 94.29 93.10 90.24 96.16

Algorithm 1 The algorithm of our BTI-DBF (U).

Input: The suspicious fw with parameters w, a small set of local benign samples Dl, hyper-
parameter τ , step sizes of updates α1, α2, and α3, the number of iterations for decoupling benign
features I1, the number of iterations for training backdoor generator I2, the number of iterations
for unlearning backdoor I3, and the numbers of alternating iterations R1.

Output: Purified model fw.
1: for r in range(R1) do
2: Initialm← 0
3: for i in range(I1) do
4: ℓm ← L(Sb ◦ (Sa(x)⊙m), y)− L(Sb ◦ (Sa(x)⊙ (1−m)), y)
5: Updatem←m− α1 · ∇mℓm
6: for j in range(I2) do
7: if ∥x−Gθ(x)∥ ≤ τ then
8: ℓθ ← ∥(Sa(x)− Sa(Gθ(x)))⊙m∥ − ∥(Sa(x)− Sa(Gθ(x)))⊙ (1−m)∥
9: else

10: ℓθ ← ∥x−Gθ(x)∥
11: Update θ ← θ − α2 · ∇θℓθ
12: for k in range(I3) do
13: ℓw ← L(fw(x), y) + L(fw(Gθ(x)), y) + ∥Sa(x)− Sa(Gθ(x))∥
14: Update w ← w − α3 · ∇wℓw

A DESIGN INPUT-LEVEL BACKDOOR DETECTION BASED ON BTI-DBF

In general, we can easily design an input-level backdoor detection (dubbed ‘BTI-DBF (D)’) based on
the pre-processing-based defense. Specifically, for each suspicious testing sample, we feed it and
its purified version generated by our BTI-DBF (P) and examine their predictions. If their predicted
labels are consistent, we treat the suspicious sample as benign; otherwise, it is regarded as poisoned.

We adopt three classical metrics, including precision, recall, and F1-score, to evaluate the performance
of our BTI-DBF (D) on the CIFAR-10 dataset. As shown in Table 7, our BTI-DBF (D) is highly
effective in detecting all backdoor attacks due to the excellent performance of our BTI-DBF (P).

B MORE TECHNICAL DETAILS OF THE ITERATION-BASED ENHANCEMENT

In this section, we provide more technical details of the iteration-based enhancement for our designed
defenses (i.e., BTI-DBF (U) and BTI-DBF (P)).

B.1 ITERATION-BASED ENHANCEMENT FOR BTI-DBF (U)

As we mentioned in Section 3.3.1, we can conduct the unlearning process and update our backdoor
generator alternately to improve BTI-DBF (U). Its technical details are shown in Algorithm 1.

Specifically, we conduct BTI-DBF in Line 2-11 and conduct backdoor unlearning in Line 12-14. In
particular, we decouple features in Line 2-5 and learn our backdoor generator in Line 6-11.

Remark 1. In each loop, we omit the partition of Dl with given batch size and the mini-batch SGD.

Remark 2. We repeat the training of backdoor generator and backdoor unlearning R1 times, where
Sa and Sb will be changed in each time due to the update of model parameters w.
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Algorithm 2 The algorithm of BTI-DBF (P).

Input: The suspicious model f , a small set of local benign samples Dl, hyper-parameter τ , step
sizes of updates α1, α2, and α3, the number of iterations for decoupling benign features I1, the
number of iterations for training backdoor generator I2, the number of iterations for training
purification generator I3, and the numbers of alternating iterations R1.

Output: The purification generator Ĝψ .
1: for r in range(R1) do
2: Initialm = 0
3: for i in range(I1) do
4: ℓm ← L(Sb ◦ (Sa(x)⊙m), y)− L(Sb ◦ (Sa(x)⊙ (1−m)), y)
5: Updatem←m− α1 · ∇mℓm
6: for j in range(I2) do
7: if ∥x−Gθ(x)∥ ≤ τ then
8: if r = 0 then
9: ℓ1 ← ∥(Sa(x)− Sa(Gθ(x)))⊙m∥

10: ℓ2 ← ∥(Sa(x)− Sa(Gθ(x)))⊙ (1−m)∥
11: else
12: ℓ1 ←

∥∥∥(Sa(x)− Sa(Ĝψ(Gθ(x))))⊙m
∥∥∥

13: ℓ2 ←
∥∥∥(Sa(x)− Sa(Ĝψ(Gθ(x))))⊙ (1−m)

∥∥∥
14: ℓθ ← ℓ1 − ℓ2
15: else
16: ℓθ ← ∥x−Gθ(x)∥
17: Update θ ← θ − α2 · ∇θℓθ
18: for k in range(I3) do
19: ℓp ← L(f(Ĝψ(Gθ(x))), y) +

∥∥∥Sa(x)− Sa(Ĝψ(Gθ(x)))
∥∥∥+

∥∥∥x− Ĝψ(Gθ(x))
∥∥∥

20: ℓb ← L(f(Ĝψ(x)), y) +
∥∥∥Sa(x)− Sa(Ĝψ(x))

∥∥∥+
∥∥∥x− Ĝψ(x)

∥∥∥
21: ℓψ = ℓp + ℓb
22: Update ψ ← ψ − α3 · ∇ψℓψ

B.2 ITERATION-BASED ENHANCEMENT FOR BTI-DBF (P)

As we mentioned in Section 3.3.2, we can also alternately update our purification generator and
backdoor generator to improve BTI-DBF (P). Its technical details are shown in Algorithm 2.

Specifically, we conduct BTI-DBF in Line 3-17 and train purification generator in Line 18-22. In
particular, we decouple features in Line 3-5 and learn our backdoor generator in Line 6-17.
Remark 3. In each loop, we omit the partition of Dl with given batch size and the mini-batch SGD.

C MORE DETAILS OF MAIN SETTINGS

C.1 DATASETS

CIFAR-10. The CIFAR-10 dataset (Krizhevsky, 2009) consists of 50,000 training samples and
10,000 testing samples. Each image belongs to one of ten classes and with size 3× 32× 32.

GTSRB. German traffic sign recognition benchmark (GTSRB) (Houben et al., 2013) is a dataset
used for traffic sign recognition, having 43 different classes. The number of training samples and
testing samples are are 39,209 and 12,630, respectively. In this paper, we resize all images to the size
of 3× 32× 32. Please note that different classes may have different numbers of samples.

ImageNet. It is a large-scale image dataset for visual object recognition (Deng et al., 2009),
containing over 14 million manually annotated images. In this paper, we select a subset from the
original ImageNet dataset. Specifically, it contains 100 classes where each class has 500 training and
100 testing images with size 3× 224× 224.
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Table 8: The summary of adopted datasets.

Dataset Image Size # Train Samples # Test Samples # Classes

CIFAR-10 3× 32× 32 50,000 10,000 10
GTSRB 3× 32× 32 39,209 12,630 43

ImageNet 3× 224× 224 50,000 10,000 100

Their information is summarized in Table 8.

C.2 SETTINGS FOR BTI METHODS

In this section, we describe the detailed settings used in our main experiments.

NC. We follow the default settings used in its original paper (Wang et al., 2019).

Pixel. We use the same method as NC to detect the target label, other settings are the same as those
used in their original paper (Tao et al., 2022).

THTP. We follow the default settings used in its original paper (Hu et al., 2022).

FeatureRE. We follow the default settings used in its original paper (Wang et al., 2022b).

Unicorn. We follow the default settings used in its original paper (Wang et al., 2022b).

BTI-DBF. In our paper, we set the number of iterations for decoupling benign features I1 = 20, the
number of iterations for training backdoor generator I2 = 30, the step size α1 = 0.01, α2 = 0.01,
and hyper-parameter τ = 0.3 in BTI-DBF.

C.3 SETTINGS FOR BACKDOOR DEFENSES

NAD. We follow the default settings used in its original paper (Li et al., 2021b) on CIFAR-10 and
GTSRB. We follow the settings used in (Huang et al., 2022) on ImageNet.

I-BAU. We follow the default settings used in its original paper (Zeng et al., 2022).

AWM. We follow the default settings in its original paper(Wang et al., 2022b).

FeatureRE. We follow the default settings in its original paper(Wang et al., 2022b).

BTI-DBF (U). We set the number of iterations for unlearning backdoor I3 = 20, step size α3 = 0.001,
and the number of alternating iterations R1 = 5.

Februus. We follow the default settings used in its original paper (Li et al., 2021b) on CIFAR-10 and
GTSRB. We use the pre-trained inpainting model, following the setting of (Yu et al., 2018).

ShrinkPad. We set the shrinking size as 2, other settings are the same as their original paper (Li
et al., 2021c).

BTI-DBF (P). We set the number of iterations for training purification generator I3 = 30, step size
α3 = 0.001, and the number of alternating iterations R1 = 5.

C.4 SETTINGS FOR BACKDOOR ATTACKS

BadNets. In this paper, we use a 2×2 random square as the trigger pattern on CIFAR-10 and GTSRB
and a 32× 32 square on ImageNet. Other settings are the same as those used in (Gu et al., 2019).

Blended. In this paper, we set the trigger pattern as random Gaussian noise and set the blended ratio
as 0.1 on all datasets. Other settings are the same as those used in (Chen et al., 2017).

WaNet. We follow the default settings used in its original paper (Nguyen & Tran, 2021).

IAD. We follow the default settings used in its original paper(Nguyen & Tran, 2020).

LC. We use the projected gradient descent (PGD) to make adversarial samples and set the maximum
perturbation size ϵ = 8. The trigger patterns are the same as those used in BadNets.
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Figure 5: The example of poisoned samples generated by different backdoor attacks and their benign
version on the CIFAR-10 dataset. In these cases, the target label is ‘airplane’. In particular, we mark
consistent labels in green and inconsistent ones in red.

BppAttack. We follow the default settings used in its original paper (Wang et al., 2022c).

The example of poisoned samples generated by different attacks on CIFAR-10 is shown in Figure 5.

C.5 SETTING FOR MODEL TRAINING

We adopt the SGD with a momentum of 0.9 and a weight decay of 5× 10−4 as the optimizer to train
all attacked DNNs. Specifically, we set the batch size as 128 on CIFAR-10 and GTSRB, while it is
set to 32 on ImageNet. We set the initial learning rate as 0.1 and train all models 300 epochs. The
learning rate will be multiplied by a factor of 0.1 at 100-th epoch.

C.6 SETTING FOR COMPUTATIONAL FACILITIES

In this paper, we run all experiments on a single RTX 3090 Ti GPU with PyTorch.

D ADDITIONAL RESULTS WITH MORE DNNS

In our main experiments, we evaluate all methods only with ResNet-18. In this section, we provide
additional results with more representative DNNs.

Specifically, we conduct experiments on CIFAR-10 with three other DNNs, including VGG-16
(Simonyan & Zisserman, 2014), DenseNet-121 (Huang et al., 2017), and ViT (Dosovitskiy et al.,
2020) (without pre-training). As shown in Table 9, our methods are still highly effective (i.e., with
high DSR&BA and low ASR) in all cases. These results confirm the generalizability of our methods.

E ADDITIONAL RESULTS OF BACKDOOR TRIGGER INVERSION

In our main contents, we only provide the results on CIFAR-10. In this section, we provide the results
on all three datasets (i.e., CIFAR-10, GTSRB, ImageNet).

As shown in Table 10, our BTI-DBF can still reach the best performance on GTSRB and ImageNet.
In particular, all baseline BTI methods fail in some cases, whereas our method is reliable in all cases.

F THE EFFECTS OF KEY HYPER-PARAMETERS

In this section, we discuss the influence of key hyper-parameters involved in our methods. For
simplicity, we conduct experiments on the CIFAR-10 dataset. Unless otherwise specified, all settings
are the same as those stated in Section 4.1.
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Table 9: The performance (%) of our methods under different model structures on CIFAR-10.

Attack↓ Defense→
Model↓, Metric→

BTI-DBF No Defense BTI-DBF (P) BTI-DBF (U)

DSR BA ASR BA ASR BA ASR

BadNets
VGG-16 96 91.72 99.73 87.06 3.31 90.50 4.50

DenseNet-121 90 91.98 99.93 88.17 7.80 90.45 2.44
ViT 98 82.90 99.15 81.23 6.22 80.65 5.65

Blended
VGG-16 100 90.70 100 86.96 4.52 90.36 4.18

DenseNet-121 94 92.34 100 89.52 5.21 90.63 5.48
ViT 98 83.13 99.95 79.79 4.17 80.18 3.52

WaNet
VGG-16 100 93.62 94.64 88.15 2.23 90.54 1.61

DenseNet-121 100 95.03 97.61 88.57 4.98 90.59 0.92
ViT 88 84.24 94.65 81.32 6.57 80.30 2.05

IAD
VGG-16 100 92.78 99.45 89.92 5.75 90.01 4.04

DenseNet-121 100 94.74 99.71 90.49 1.56 92.22 1.11
ViT 100 80.74 92.76 77.31 5.19 78.94 1.07

BppAttack
VGG-16 94 92.12 100 89.31 2.19 91.30 1.74

DenseNet-121 98 93.82 100 90.01 3.59 91.66 4.74
ViT 100 87.47 99.75 84.25 4.53 83.55 5.11

Table 10: The reliability evaluation of BTI methods. We adopt feature distance (FD) between
recovered poisoned samples and their ground-truth ones and detection success rate (DSR, %) about
whether BTI can correctly identify the target class for measurement. Among all methods, the best
results are marked in boldface while failed cases (i.e., DSR < 50%) are marked in red.

Dataset↓ BTI→
Attack↓, Metric→

NC Pixel THTP FeatureRE Unicorn BTI-DBF

FD DSR FD DSR FD DSR FD DSR FD DSR FD DSR

CIFAR-10

BadNets 8.20 100 71.12 100 24.51 100 22.52 82 18.34 100 7.81 100
Blended 6.49 100 3.24 100 5.39 96 33.10 92 2.19 96 1.79 100
WaNet 0.41 16 0.36 16 0.31 28 0.85 18 0.50 86 0.15 100
IAD 0.09 18 0.10 16 0.09 24 0.13 22 0.09 18 0.03 100
LC 0.09 100 0.14 100 0.11 94 0.24 88 0.37 100 0.09 100

BppAttack 11.75 16 12.31 22 12.24 18 11.79 16 12.38 34 6.38 98

GTSRB

BadNets 15.14 100 209.34 100 20.79 100 304.06 100 144.18 100 8.03 94
Blended 6.98 98 4.32 100 6.02 100 22.59 92 15.25 92 2.74 96
WaNet 0.41 36 0.27 28 0.57 28 0.64 32 0.54 34 0.12 100
IAD 2.10 22 4.56 18 4.05 26 30.48 24 12.70 32 1.02 100

BppAttack 1.76 18 1.93 16 1.06 24 8.95 12 4.75 18 1.64 100

ImageNet

BadNets 0.24 96 0.07 92 0.41 84 4.31 92 3.62 92 0.24 98
Blended 0.34 100 0.15 96 0.28 100 1.07 88 1.26 96 0.33 100
WaNet 0.29 20 0.61 14 0.45 34 0.85 34 0.57 28 0.17 100
IAD 0.34 18 0.32 26 0.32 16 4.51 22 0.27 32 0.29 100

BppAttack 1.91 4 2.47 0 2.85 36 4.32 18 2.17 42 1.76 94

F.1 THE NUMBER OF BENIGN LOCAL SAMPLES

Similar to almost all existing BTI methods, our BTI-DBF also requires a few benign local samples.
In our main experiments, we assume that defenders have 5% benign training samples. In this part, we
evaluate the performance of our methods with different sample ratios (i.e., {1%, 3%, 5%, 7%, 9%}).
As shown in Figure 6, as we expected, the performances of our methods increase with the increase of
sample ratio. In particular, our methods can still reach promising performance even with only 1%
benign training samples. These results verify the effectiveness of our methods.

F.2 THE THRESHOLD OF SAMPLE DISTANCE IN THE INPUT SPACE

Recall that we need to assign a hyper-parameter τ in Eq. (2) to limit the distance between benign and
poisoned samples in the input space for our BTI-DBF. We hereby discuss its effects.

As shown in Figure 7, our BTI-DBF can reach the best results for defending against all attacks when
τ is set in a reasonable range (i.e., [0.2− 0.3]). The performance may decrease if τ is too small or
too big. Defenders should assign it based on their specific needs or expertise of potential attacks.
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Figure 7: The effect of distance threshold.

Table 11: The detection success rate (%) of our BTI-DBF with feature space defined by the output of
different layers on the CIFAR-10 dataset with ResNet-18.

Attack↓, Layer→ 11-th 13-th 15-th 17-th (Last)

BadNets 94 100 100 100
Blended 100 90 90 100
WaNet 20 62 100 100
IAD 32 8 16 100

BppAttack 26 78 44 98

F.3 THE SELECTION OF FEATURE SPACE

Recall that we define feature space as the output of the last convolution layer, following the most
classical settings used in existing BTI methods. However, as demonstrated in (Jebreel et al., 2023),
it may not be the best layer to differentiate between benign and poisoned samples. In this part, we
explore how the selection of feature space influences the performance of our BTI-DBF.

Specifically, we define the feature space as the output of i-th layer and discuss its influence. As
shown in Table 11, using deeper layers for trigger inversion leads to better performance in general,
especially for complicated backdoor attacks (e.g., WaNet and IAD). It is mostly because DNNs need
more layers to ‘memorize’ them. Accordingly, we still suggest that users exploit the last layer as the
default setting since it contains sufficient information for all attacks.

G ADDITIONAL RESULTS OF ABLATION STUDY

G.1 EFFECTIVENESS OF DECOUPLING BENIGN FEATURES IN DEFENSES

In Section 4.4, we demonstrate that decoupling benign features (DBF) is critical for the performance
of BTI-DBF. In this section, we verify the effectiveness of DBF in our designed backdoor defenses
(i.e., BTI-DBF (U) and BTI-DBF (P)).

As shown in Table 12, both BTI-DBF (U) and BTI-DBF (P) will fail in many cases without our DBF
module. In particular, removing the DBF module may even decrease benign accuracy in all cases to
some extent. These results verify the effectiveness of our DBF again.

G.2 THE EFFECTIVENESS OF BENIGN LOSS FOR BTI-DBF (P)

Recall that we design a benign loss Lb in Eq. (6) to minimize the influence of the purification
generator oo benign samples in our BTI-DBF (P). In this section, we verify its effectiveness.
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Table 12: The performance (%) of designed defenses without or with decoupling benign features.

Attack
BTI-DBF (P) BTI-DBF (U)

w/o DBF w/ DBF w/o DBF w/ DBF

BA ASR BA ASR BA ASR BA ASR

BadNets 88.13 21.66 90.28 1.23 91.35 35.08 92.00 1.36
Blended 88.90 6.87 89.13 1.00 92.51 18.58 91.60 7.92
WaNet 88.26 16.57 89.14 1.60 91.31 28.39 90.82 0.94
IAD 88.61 8.62 90.21 3.37 91.65 33.87 91.91 1.22
LC 90.33 8.75 90.48 4.15 91.72 16.50 90.02 1.11

BppAttack 89.19 3.71 89.39 2.52 92.58 84.44 90.98 5.02

Table 13: The performance (%) of our designed defenses, i.e., BTI-DBF (P) and BTI-DBF (U), under
all-to-all attacks on the CIFAR-10 dataset.

No Defense BTI-DBF (P) BTI-DBF (U)

BA ASR BA ASR BA ASR

BadNets-A 92.97 82.46 88.24 5.72 90.29 2.81
Blended-A 92.41 64.76 89.72 4.85 90.01 1.74
WaNet-A 94.76 86.63 89.94 4.39 91.17 1.04
IAD-A 94.12 92.09 90.03 0.85 90.83 1.48

BppAttack-A 85.62 82.04 81.49 0.21 83.30 1.57

w/ b w/o b
0

20

40

60

80

BA ASR

Figure 8: Effectiveness of the benign loss Lb.

Specifically, we conduct experiments on CIFAR-10 under BadNets for discussions. As shown in
Figure 8, removing our benign loss will significantly reduce benign accuracy. It is mostly because the
purification generator intends to distort the whole image to a large extent without trying to learn and
preserve benign features in this case. These results verify the effectiveness of our benign loss.

H DEFENSE EVALUATION UNDER ALL-TO-ALL ATTACKS

In Section 4.3, we evaluate defenses only under the all-to-one attacks. In this section, we evaluate
them under the all-to-all attacks. We conduct experiments on CIFAR-10 and extend all evaluated
all-to-one attacks to the all-to-all setting with GY (y) = (y+1) mod K. Unless otherwise specified,
all settings are the same as those stated in Section 4.1.

As shown in Table 13, our defenses are still highly effective in reducing the threats of all all-to-all
baseline attacks. These results confirm the effectiveness and universality of our methods.

I MORE DETAILS ABOUT POTENTIAL ADAPTIVE ATTACKS

In this section, we provide more details of our designed potential adaptive attacks used in Section 4.5.
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Adap-Blended. As we mentioned in Section 4.5, our methods also implicitly rely on the latent
separation assumption of backdoor attacks to some extent. Accordingly, they could be bypassed
by adaptive attacks that can reduce latent separation between benign and poisoned samples. Adap-
Blended (Qi et al., 2023a) is currently the most advanced attack for diminishing latent separation.
Specifically, it correctly label a few modified sample instead of marking them as the target label.

Adaptive BadNets. Recall that the first step of our BTI-DBF relies on successfully decoupling benign
features. Accordingly, we can design an adaptive method based on BadNets (dubbed ‘Adaptive
BadNets’) to directly target our BTI-DBF, where we require that using backdoor features can also
correctly classify benign samples. Specifically, we pre-train a backdoored model fw with BadNets at
first. Then, we use BTI-DBF to decouple benign features. Finally, we fine-tune the attacked model to
ensure that the remaining backdoor features can correctly classify benign samples. In conclusion, the
optimization process of Adaptive BadNests can be denoted as follows:

min
w

∑
(x,y)∈Dl

Ln + Lc + Lt, (7)

where

Ln = L(fw(x), y) + L(fw(x′), y′), (8)
Lc = L(Sb ◦ (Sa(x)⊙m), y), (9)

Lt = L(Sb ◦ (Sa(x)⊙ (1−m)), y) + L(Sb ◦ (Sa(x
′)⊙ (1−m)), y′). (10)

Ln is used to keep fw backdoored; We exploit Lc to ensure the functionality of benign features; In
particular, Lt is used to make backdoor features exhibit both backdoor and benign behaviors.

However, as we can see in Table 6, our methods (i.e., BTI-DBF (U) and BTI-DBF (P)) are still
effective in defending against adaptive attacks. We speculate that it is because obfuscating features is
a highly challenging task, while our iteration-based enhancement also plays a critical role.

J VISUALIZATION OF BACKDOOR TRIGGER INVERSION

In this section, we visualize the generated poisoned samples and their ground-truth version to further
analyze the reliability of BTI methods. We adopt CIFAR-10 as an example for discussions.

As shown in Figure 9, only our BTI-DBF can reliably recover the shape of trigger patterns, especially
those of the IAD attack. We notice that the trigger color may differ since DNNs intend to learn color
parts instead of the specific color due to trigger generalizability (Cheng et al., 2021).

K DISCUSSIONS ABOUT EXPLOITED DATA

In this paper, all exploited samples are from open-sourced datasets (i.e., CIFAR-10, GTSRB, and
ImageNet). The ImageNet dataset may contain a few human objects. However, our work treats
all objects the same and does not intentionally exploit or manipulate human-related content. Our
modifications are also non-offensive and non-semantic. As such, our research fulfills the requirements
of those datasets and should not be regarded as a violation of personal privacy.

L REPRODUCIBILITY STATEMENT

The appendix provides detailed information on the datasets, models, training and evaluation settings,
and computational facilities. The codes and model checkpoints for reproducing our main evaluation
results are also provided in the supplementary material. We will release the training codes of our
methods upon the acceptance of this paper.
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Figure 9: The example of poisoned samples and their recovered versions generated by different BTI
methods on CIFAR-10. Only our BTI-DBF can reliably recover the shape of all trigger patterns.
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M ADDITIONAL RESULTS ON THE FULL IMAGENET-1K DATASET

Settings. In this section, we further validate our designed defense methods on the full ImageNet-1K
dataset. We set the poison rate to 5% and finetune the pre-trained ResNet-18 on ImageNet-1K to
implant backdoors. We use BadNets and WaNet as attack baselines. And the triggers are the same as
which we used for the subset of ImageNet.

Results. As shown in Table 14, both BTI-DBF (U) and BTI-DBF (P) are still effective (BA drops
less than 3%, while the ASR is within 5%), even if the number of classes is huge.

Table 14: The performance (%) of our methods in defending against BadNets and WaNet on
ImageNet-1K.

Defense→ No Defense BTI-DBF (P) BTI-DBF (U)

Attack↓ , Metric→ BA ASR BA ASR BA ASR

BadNets 59.79 99.63 57.42 3.57 57.82 4.16
WaNet 61.20 96.13 59.39 1.05 58.46 2.84

N POTENTIAL LIMITATIONS OF OUR WORK

In this section, we discuss the potential limitations of our work.

Firstly, as illustrated in Section 3.1, our defense mainly focuses on using third-party pre-trained
models. In particular, similar to existing baseline methods, we assume that defenders have a few
local benign samples. Accordingly, our method is not feasible without benign samples. Besides, we
need to train a model for the scenarios using third-party datasets before conducting trigger inversion
and follow-up defenses, which is computation- and time-consuming. We will further explore how to
conduct BTI under few/zero-shot settings in our future works.

Secondly, our method needs to obtain the feature layer of the backdoored model to decouple the
benign features and inverse the backdoor triggers. Besides, the optimization process in our method
also relies on a white-box setting. Accordingly, it does not apply to black-box scenarios in which the
defenders can only access the final output of the backdoored model. We will continue the exploration
of designing black-box BTIs in our future works.

O DIFFERENT DISTANCE MEASUREMENT

Settings. In this section, we further validate our designed defense methods on the different distance
measurement. We conduct experiments with L1 instead of L2 norm as our distance measurement on
CIFAR-10 and ResNet-18. Other settings are the same as we used in L2 norm.

Results. As shown in table15, our methods are still highly effective under the new measurement (BA
drops less than 6%, while the ASR is within 6%).

Table 15: The performance (%) of our methods in defending against six attacks when the distance
measurements are L1 norm and L2 norm on CIFAR-10

Defenses→ No Defense L1 Norm L2 Norm

BTI-DBF (P) BTI-DBF (U) BTI-DBF (P) BTI-DBF (U)

Attacks↓ , Metric→ BA ASR BA ASR BA ASR BA ASR BA ASR

BadNets 92.82 99.88 89.80 1.40 91.09 0.44 90.28 1.23 92.00 1.36
Blend 93.08 97.31 88.97 5.14 88.25 2.48 89.13 1.00 91.60 7.92
WaNet 94.53 99.59 89.62 5.32 89.48 2.70 89.14 1.60 90.82 0.94
IAD 94.07 99.41 89.76 4.64 90.10 2.14 90.21 3.73 91.91 1.22
LC 94.65 88.83 88.95 4.53 89.26 2.22 90.02 1.11 90.48 4.51

BppAttack 93.88 99.99 89.57 1.35 91.76 4.46 89.39 2.52 90.98 5.02
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Table 16: The performance (%) of our meth-
ods in defending against natural backdoor at-
tack on the MeGlass dataset.

Defenses↓ , Metric→ BA ASR

No Defense 82.53 99.96
BTI-DBF (P) 75.54 2.70
BTI-DBF (U) 73.92 2.86

Table 17: The performance (%) of our meth-
ods in defending against the composite attack
on the CIFAR-10 dataset.

Defenses↓ , Metric→ BA ASR

No Defense 92.79 97.10
BTI-DBF (P) 89.48 4.50
BTI-DBF (U) 90.63 1.88

Table 18: The performance (%) of our methods and NONE in defending against BadNets with
different trigger size on the CIFAR-10 dataset.

Trigger Size→ 7× 7 9× 9 15× 15

Defenses↓ , Metric→ BA ASR BA ASR BA ASR

No Defense 92.32 100.00 92.24 100.00 92.06 100.00
NONE 90.28 1.69 90.54 1.97 89.78 23.26

BTI-DBF (P) 89.57 2.21 89.02 4.57 88.45 4.97
BTI-DBF (U) 90.46 1.07 90.17 2.36 90.27 0.86

P THE RESISTANCE TO MORE ADAPTIVE ATTACKS

P.1 THE RESISTANCE TO NATURAL BACKDOOR ATTACK

Settings. In this section, we further validate our methods in defending against the natural backdoor
attack (Wenger et al., 2022). We conduct experiments on MeGlass with ResNet-18. This dataset
consists of 47,917 face samples of 1,710 different people. We use 38,334 (80%) samples of this
dataset as our training set and others as the testing set. In this paper, we resize all images to the size
of 3× 120× 120. We use 95% of the training set to train the backdoored model and 5% for defense.

Results. As shown in the Table 16, our methods are still highly effective in defending against this
special attack (BA drops less than 9%, while the ASR is within 3%). It is mostly because their
backdoor features are still decoupled from benign features, and their triggers are still a small part of
the whole image. We will further explore it in our future works.

P.2 THE RESISTANCE TO COMPOSITE ATTACK

Settings. We reproduce the composite attack method with its official code under the default settings
(Lin et al., 2020). We conduct experiments on CIFAR-10 with ResNet-18.

Results. As shown in the Table 17, both BTI-DBF (U) and BTI-DBF (P) are still effective in
defending against the composite attack (BA drops less than 4%, while the ASR is within 5%). It is
mostly because we use a soft mask m ∈ [0, 1], and the benign features can still be decoupled from
the backdoor features, even though they are mixed to some extent.

Q ADDITIONAL COMPARISONS TO NONE

Settings. We reproduce NONE based on its official code under the default setting (Wang et al.,
2022a). We conduct experiments on the CIFAR-10 dataset with ResNet-18. Specifically, we use
BadNets with 7× 7, 9× 9, and 15× 15 three different sizes for discussions.

Results. As shown in the Table 18, our method is comparable with NONE under the trigger size in
7× 7 and 9× 9. However, we note that our defense is still effective when the trigger size is 15× 15
while NONE does not work well.

R RESULTS UNDER ATTACKS WITH THE CHESSBOARD TRIGGER

Settings. We conduct experiments on the CIFAR-10 dataset with ResNet-18. We follow the default
settings used in its original paper (Xiang et al., 2022) and create a global chessboard pattern, which
were also used in (Wang et al., 2024b).
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Table 19: The performance (%) of our methods in defending against BadNets with the ‘chessboard’
trigger on the CIFAR-10 dataset.

Defenses↓, Metric→ BA ASR

No Defense 92.56 100.00
BTI-DBF (P) 89.19 2.07
BTI-DBF (U) 90.51 0.00

Results. As shown in the Table 19, our defenses are still highly effective under the chessboard-type
trigger (BA drops less than 4%, while the ASR is within 3%).
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