ReadMe: Reduced-Rank Online Gaussian
Process Modeling With Uncertain Inputs

This ReadMe presents how to install and execute the code of the algorithm RRONIG,
presented in the paper "Reduced-Rank Online Gaussian Process Modeling With Un-
certain Inputs”. The code will be available on GitHub after it is published. We imple-
mented the code in C++ and Matlab, we provide here the C++ code given that the ca-
pabilities of the C++ code are higher, as it can divide the space in several sub-domains
with one model for each, and both implementations give the exact same results up to a
precision of 1079,

1 Installing the RRONIG toolbox

The code provided is in C++ (version C++ 14). The library Eigen is required. In order
to run the main provided as an example, the library Boost is also necessary. We also
provide two files, one with hyperparameters and the other with data (measures), called
test_1.csv. Moreover, a result file for RRONIG that is the file returned after running the
main.cpp with the two example files is available.

2 Initialization

To create a new GP model, the function in GPPrediction must be called:

GPExample = GPPrediction(nbFrequsForBasisOfEigenfunctions, dimCubes, pos0,
sigmaLinSquare, sigmaSESquare, ISESquare, sigmaNoiseSquareModel);

» nbFrequsForBasisOfEigenfunctions (type: VectorDimlInputl) is the number of
eigenfunctions used for the model along each dimension of the input (sine func-
tions with different frequencies).

* dimCubes (type: VectorDimInputd) is the size of the domains studied. Generally,
one cube is enough but when the space studied is very large, especially for the
localization algorithm that explores a whole building, the space is divided in
several cubes in order to have an accurate modeling of all the small surfaces that
compose it, with a relatively low number of eigenfunctions.

* posO (type: VectorDimInputd) contains the coordinates of the chosen origin.



 sigmaLinSquare (type: double) should most of the time be set to 0. It enables the
Gaussian process to converge more easily to a non-zero mean, in case we know
that we want to approximate a function with a mean far from 0 but do not know
its exact value.

» sigmaSESquare (type: double) is the initial variance chosen for the exponential-
quadratic modeling of the initial output variance.

* ISESquare (type: double) is the characteristic lengthscale for the exponential-
quadratic modeling of the initial output variance.

* sigmaNoiseSquareModel (type: double) corresponds to the variance of the out-
put noise.

VectorDimInputl is a vector of size dimInput and is composed of integers. Vec-
torDimInputd is also a vector of size diminput and is composed of doubles. See GP-
Types.h for their definition in Eigen.

As an example, if the inputs studied are in the interval [-5,5] and the outputs are of
a zero-mean and one-dimensional, one can set nbFrequsForBasisOfEigenfunctions =
21, dimCubes = 5*1.2, pos0 = O (the center) and sigmaLinSquare = 0. sigmaSESquare,
ISESquare and sigmaNoiseSquareModel should be learned using a maximum likeli-
hood optimization algorithm, such as the one used in NIGP [1].

3 Update: learning from new measures

In order to update GPExample, the measures should be given to the model GPPredic-
tion. A new posCovValueStruct, newData, can be built easily by setting its different
parameters:

posCovValueStruct newData(inputValue, variancelnput, outputValue),

newData is of type posCovValueStruct, which is a structure containing three ele-
ments:

* inputValue (or “position” as called in the structure names, type: VectorDimIn-
putd): the input value where we suppose that the measure was taken (but there is
an uncertainty about its real value, modeled by variancelnput).

* variancelnput (or "covPos”, type: MatrixDimInputd): the variance of the input.

* outputValue (or “value”, type: VectorDimOutputd): the value measured of the
output (affected by the output noise of constant variance sigmaNoiseSquare-
Model).

VectorDimOutputd is a vector of size dimOutput and is composed of doubles. Ma-
trixDimInputd is a square matrix of size dimInput filled with doubles.



To encapsulate the measure in order to update the model GPExample, a vector con-
taining the measure should be created:

posCovValueVect batch;
batch. push_back(newData);
GPExample.update(batch);

The update modifies the values of the vector learningPrediction (refered to as I';
in the paper) and the matrix learningCovar (X, see the paper for more details on their
expressions). They contain all the necessary information to predict the value of the
field in any part of the model studied.

4 Predictions from the model

To get the prediction of the model at xPrediction, the function predictOutput should be
called, with an empty vector to store the output mean prediction and an empty matrix
for the associated output variance:

VectorDimOutputd predictedOutputValue;

MatrixDimQOutputd predictedOutputVar,

bool prediction = GPExample.predictOutput (xPrediction, predictedOutputValue,
predictedOutputVar);

prediction is a boolean that indicates if xPrediction is situated in the domain mod-

eled by GPExample (it only verifies that GPExample was designed to cover this area,
with an appropriate value of dimCubes in the initialization phase).

5 Notes

Here our examples are designed for 1D inputs and outputs but multi-dimensional inputs
are possible as well: for D dimensions, in GPTypes, only this line should be changed:

const unsigned int dimInput = D;
For multi-dimensional outputs, if their different dimensions are not correlated (same

hypothesis as for the previously existing methods), we advise to create one GPPredic-
tion per dimension.

References

[11 A.Mchutchon and C. Rasmussen, “Gaussian process training with input noise,” in
Advances in Neural Information Processing Systems, vol. 24, 2011.



	Installing the RRONIG toolbox
	Initialization
	Update: learning from new measures
	Predictions from the model
	Notes

