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1 IMPLEMENTATION DETAILS

We implement our approach in conjunction with state-of-the-art multi-task learning methods; MTI-
Net (Vandenhende et al., 2020) and InvPT (Ye & Xu, 2022) while following identical training,
evaluation protocols (Ye & Xu, 2022). We use HRNet-48 (Wang et al., 2020) and ViT-L (Dosovitskiy
et al., 2020) to serve as shared encoders and append our 3D-aware regularizer to MTI-Net and InvPT
using two convolutional layers, followed by BatchNorm, ReLU, and dropout layer with a dropout
rate of 0.15 to transform feature maps to the tri-plane dimensionality, resulting in a common size and
channel width (64). A 2-layer MLP with 64 hidden units as in Chan et al. (2022) and a LeakyReLU
non-linearity with the negative slope of -0.2 as in Skorokhodov et al. (2022), is used to render each
task as in Chan et al. (2022). We use identical hyper-parameters; learning rate, batch size, loss
weights, loss functions, pre-trained weights, optimizer, evaluation metrics as MTI-Net and InvPT,
respectively. We jointly optimize task-specific losses and losses arising from our 3D regularization.
During inference, the regularizer is discarded. We use the same task-specific loss weights as in Ye &
Xu (2022). We train all models for 40K iterations with a batch size of 6 for experiments of using InvPT
as in Ye & Xu (2022) and a batch size of 8 for experiments of using MTI-Net as in (Vandenhende
et al., 2020). We ramp up the αt from 0 to 4 linearly in 20K iterations and keep αt = 4 for the rest
20K iterations. In the regularizer, we assume that the camera is orthogonal to image center, and depict
r as a function that takes only the output of nt but not the viewpoint as input. In a 3D coordinates
(x, y, z), the x and y coordinates are aligned with pixel locations and z is the depth value. We further
use a two-pass importance sampling as in NeRF (Mildenhall et al., 2020). For the majority of the
experiments in the manuscript, we use 128 total depth samples per ray. We render 56×72 predictions
for NYUv2 and 64×64 for PASCAL-Context and resize the predictions via bilinear interpolation to
the groundtruth resolution. Our code and models will be made public based upon acceptance.

2 TRAINING COST ANALYSIS

Method Time Memory Params. FLOPS

MTI-Net (Vandenhende et al., 2020) 1.000 1.000 1.000 1.000
Ours 1.489 1.638 1.005 1.263

InvPT (Ye & Xu, 2022) 1.000 1.000 1.000 1.000
Ours 1.318 1.397 1.016 1.114

Table 1: Training Cost Comparisons to MTI-Net and InvPT; NYUv2 dataset. Note that our method
has no additional inference cost as the regularizer is discarded during testing.

3 RESULTS OVER MULTIPLE RUNS

Here, we report the results of our method over 3 runs on NYUv2 and PASCAL-Context and report
the results in Tabs. 2 and 3. From the results, we can see that our method is stable (i.e. the std is very
small on each task) and improves over the baseline consistently on all tasks.

Here, we analyze memory and computational cost during training for tackling four tasks in NYUv2
and report them in Tab. 1. As shown in Tab. 1, our method that incorporates the regularizer to the MTL
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Method Seg. (mIoU) ↑ Depth (RMSE) ↓ Normal (mErr) ↓ Boundary (odsF) ↑
InvPT (Ye & Xu, 2022) 53.56 0.5183 19.04 78.10
Ours 54.86 ± 0.29 0.5000 ± 0.0010 18.49 ± 0.09 78.17 ± 0.09

Table 2: Quantitative comparison of our method to the InvPT over 3 runs; NYUv2 dataset.

Method Seg. (mIoU) ↑ PartSeg (mIoU) ↑ Sal (maxF) ↑ Normal (mErr) ↓ Boundary (odsF) ↑
InvPT (Ye & Xu, 2022) 79.03 67.61 84.81 14.15 73.00
Ours 79.92 ± 0.32 69.08 ± 0.15 84.85 ± 0.06 13.70 ± 0.14 73.83 ± 0.17

Table 3: Quantitative comparison of our method to the InvPT over 3 runs; PASCAL-Context dataset.

baseline slightly increases the number of parameters (Ours vs InvPT: 1.016 vs 1) and FLOPS (Ours
vs InvPT: 1.114 vs 1) during training, training time (Ours vs InvPT: 1.318 vs 1), and training memory
(Ours vs InvPT: 1.397 vs 1). We highlight that there is *NO additional cost* during inference, since
the regularizer will be discarded during inference.

4 COMPARISONS WITH MORE RECENT SOTA

Method Seg. (mIoU) ↑ Depth (RMSE) ↓ Normal (mErr) ↓ Boundary (odsF) ↑
TaskPromper (Ye & Xu, 2023a) 55.30 0.5152 18.47 78.20
TaskExpert (Ye & Xu, 2023b) 55.35 0.5157 18.54 78.40
InvPT (Ye & Xu, 2022) 53.56 0.5183 19.04 78.10
Ours 54.87 0.5006 18.55 78.30

Table 4: Quantitative comparison of our method to more SotA methods; NYUv2 dataset.

We include the comparisons of our method incorporated with InvPT to more recent state-of-the-art
methods, including TaskPrompter (Ye & Xu, 2023a) and TaskExpert (Ye & Xu, 2023b) and report
the results in Tabs. 4 and 5. Methods from Liu et al. (2023) and Chen et al. (2023) are not compared
as they did not reported results on NYUv2 and PASCAL benchmarks with the same backbone. Note
that TaskExpert (Ye et al., 2023b) is published after we submitting the manuscript. From the results
shown in Tab. 4, we can see that, our method incorporated with InvPT achieves much better result
on Depth while comparable results on the rest of tasks in NYUv2 compared with TaskPrompter and
TaskExpert. In PASCAL benchmark, from Tab. 5 we can see that our method obtains much better
results on saliency, surface normal and boundary estimation while obtaining comparable result on
Human part segmentation and slightly worse on semantic segmentation. TaskPrompter adds learnable
prompts for refining the feautures and the TaskExpert emsembles task-specific features from multiple
task-specific experts for final task predictions and they all increase the capacity of the network to
achieve better results. Also, they can potentially be complementary to our method and we believe
incorporating our method with them can further improve the performance in multi-task learning by
regulating the shared features to be 3D-aware with no additional cost during inference.

5 DISCUSSION

Camera parameters. In our paper, the 3D coordinates and strategy of projecting the 3D coordinates
onto the feature planes are similar to the ones in PiFU (Saito et al., 2019) and (Yao et al., 2023).
The feature planes are generated by the feature encoder and it is pixel-wise feature map instead of a
global pooled feature vector. The x and y coordinates are aligned with pixel locations and z is the
depth value. We follow Chan et al. (2022) that projects the coordinates (x, y, z) onto three planes
exy, eyz, exz , retrieving the features via bilinear interpolation, and aggregates features from three
planes instead of taking the 2D features and the z values as representations in PiFU (Saito et al.,
2019) or dividing the dimension of the feature map channel into D groups (D is the number of depth
bins) in (Yao et al., 2023). So our method has similar property as in PiFU (Saito et al., 2019) and
(Yao et al., 2023) and does not overfit to the camera parameters.

Also, as we first feed the image into the feature encoder, which should be scaling the 3D coordinates
accordingly and the coordinates will not be absolute but at the right scale for rendering. After training,
the 3D-aware regularizer is discarded and we only use the multi-task learning branch for generating
predictions for different tasks. We also visualize multiple images’ predictions of the regularizers on
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Method Seg. (mIoU) ↑ PartSeg (mIoU) ↑ Sal (maxF) ↑ Normal (mErr) ↓ Boundary (odsF) ↑
TaskPrompter (Ye & Xu, 2023a) 80.89 68.89 84.83 13.72 73.50
TaskExpert (Ye & Xu, 2023b) 80.64 69.42 84.87 13.56 73.30

InvPT (Ye & Xu, 2022) 79.03 67.61 84.81 14.15 73.00
Ours 79.53 69.12 84.94 13.53 74.00

Table 5: Quantitative comparison of our method to the SotA methods; PASCAL-Context dataset.

PASCAL in Fig. 1. The PASCAL dataset consists of annotated consumer photographs collected from
the flickr photo-sharing web-site, taken by various cameras with different intrinsics. From Fig. 1, we
can see that the regularizer can render good quality predictions for all tasks on all images which also
indicates that it does not overfit to the camera parameters.
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Figure 1: Qualitative results on PASCAL. Each column shows the image or predictions of our
method’s regularizer branch or the groundtruth for each task, respectively.

Limitations and future work. Despite the efficient 3D modeling through the triplane encodings,
representing 3D representations for higher resolution 3D volumes is still expensive in terms of
memory or computational cost. Some common efficient sampling strategies such as random sampling
and pixel binning can be useful for reducing the cost. The tri-plane generated from the feature encoder
can be relatively small resolution due to the feature downsampling and requires upsampling strategies
for generating higher resolution feature planes for better rendering while it will inevitably increase the
training cost. Additionally, rendering specular objects will require different rendering or objects with
high frequency 3D details may require more accurate 3D modeling. Though our proposed method
obtains performance gains consistently over multiple tasks, we balance loss functions with fixed
cross-validated hyperparameters, while it would be more beneficial to use adaptive loss balancing
strategies (Kendall et al., 2018) or discarding conflicting gradients (Liu et al., 2021). Finally, in the
cross-view consistency experiments where only some of the images are labeled for all the tasks,
our method does not make use of semi-supervised learning or view-consistency for the tasks with
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missing labels which can be further improve the performance of our model. We believe that more
advanced techniques in 3D modeling can further improve our method for rendering higher resolution
predictions with higher efficiency and better regulating the cross-task correlations and cross-view
consistency.
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