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Abstract

An emerging line of research is dedicated to the problem of one-to-one matching1

markets with bandits, where the preference of one side is unknown and thus we2

need to match while learning the preference through multiple rounds of interaction.3

However, in many real-world applications such as online recruitment platform for4

short-term workers, one side of the market can select more than one participant from5

the other side, which motivates the study of the many-to-one matching problem.6

Moreover, the existence of a unique stable matching is crucial to the competitive7

equilibrium of the market. In this paper, we first introduce a more general new α̃-8

condition to guarantee the uniqueness of stable matching in many-to-one matching9

problems, which generalizes some established uniqueness conditions such as SPC10

and Serial Dictatorship, and recovers the known α-condition if the problem is11

reduced to one-to-one matching. Under this new condition, we design an MO-12

UCB-D4 algorithm withO
(

NK log(T )
∆2

)
regret bound, where T is the time horizon,13

N is the number of agents, K is the number of arms, and ∆ is the minimum14

reward gap. Extensive experiments show that our algorithm achieves uniform good15

performances under different uniqueness conditions.16

1 Introduction17

The rise of platforms for the online matching market has led to an emergence of opportunities for18

companies to participate in personalized decision-making [14, 18]. Companies (like Thumbtack19

and Taskrabbit and Upwork platforms) use online platforms to address short-term needs or seasonal20

spikes in production demands, accommodate workers who are voluntarily looking for more flexible21

work arrangements or probation period before permanent employment. The supply and demand22

sides in two-sided markets make policies on the basis of their diversified needs, which is abstracted23

as a matching market with agent side and arm side, and each side has a preference profile over the24

opposite side. They choose from the other side according to preference and perform a matching. The25

stability of the matching result is a key property of the market [32, 1, 27].26

The preferences in the online labor market may be unknown to one side in advance, thus matching27

while learning the preferences is necessary. The multi-armed bandit (MAB) [36, 13, 4] is an important28

tool for N independent agents in matching market simultaneously selecting arms adaptively from29

received rewards at each round. The idea of applying MAB to one-to-one matching problems,30

introduced by [21], assumes that there is a central platform to make decisions for all agents. Following31

this, other works [22, 34, 7] consider a more general decentralized setting where there is no central32

platform to arrange matchings, and our work is also based on this setting.33

However, it is not enough to just study the one-to-one setting. Take online short-term worker34

employment as an example, it is an online platform design with an iterative matching, where35
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employers have numerous similar short-term tasks or internships to be recruited. Workers can only36

choose one task according to the company’s needs at a time while one company can accept more37

than one employee. Each company makes a fixed ranking for candidates according to its own38

requirements but workers have no knowledge of companies’ preferences. The reward for workers39

is a comprehensive consideration of salary and job environment. Since tasks are short-term, each40

candidate can try many times in different companies to choose the most suitable job. We abstract41

companies as arms and workers as agents. Each arm has a capacity q which is the maximum number42

of agents this arm can accommodate. When an arm faces multiple choices, it accepts its most q43

preferred agents. Agents thus compete for arms and may receive zero reward if losing the conflict. It44

is worth mentioning that arms with capacity q in the many-to-one matching can not just be replaced45

by q independent individuals with the same preference since there would be implicit competition46

among different replicates of this arm, not equal treatment. In addition, when multiple agents select47

one arm at a time, there may be no collision, which will hinder the communication among different48

agents under the decentralized assumption. They cannot distinguish who is more preferred by this49

arm in one round as it can accept more than one agent while this can be done in one-to-one case.50

Communication here lets each agent learn more about the preferences of arms and other agents, so as51

to formulate better policies to reduce collisions and learn fast about their stable results.52

This work focuses on a many-to-one market under uniqueness conditions. Previous work [10, 15]53

emphasize the importance of constructing a unique stable matching for the equilibrium of matching54

problems and some existing uniqueness conditions are studied in many-to-one matching, such as55

Sequential Preference Condition (SPC) and Acyclicity [26, 2]. Our work is motivated by [7], but the56

unique one-to-one mapping between arms and agents in their study which gives a surrogate threshold57

for arm elimination does not work in the many-to-one setting. And the uniqueness conditions in58

many-to-one matching are not well-studied, which also brings a challenge to identify and leverage59

the relationship between the resulting stable matching and preferences of two sides in the design60

of bandit algorithms. We propose an α̃-condition that can guarantee a unique stable matching and61

recover α-condition [19] if reduced to the one-to-one setting. We establish the relationships between62

our new α̃-condition and existing uniqueness conditions in many-to-one setting.63

In this paper, we study the bandit algorithm for a decentralized many-to-one matching market64

with uniqueness conditions. Under our newly introduced α̃-condition, we design an MO-UCB-D465

algorithm with arm elimination and the regret can be upper bounded by O
(

NK log(T )
∆2

)
, where N66

is the number of agents, K is the number of arms, and ∆ is the minimum reward gap. Finally,67

we conduct a series of experiments to simulate our algorithm under various conditions of Serial68

dictatorship, SPC and α̃-condition to study the stability and regret of the algorithm.69

Related Work The study of matching markets has a long history in economics and operation70

research [8, 6, 32] with real applications like school enrollment, labor employment, hospital resource71

allocation, and so on [1, 23, 31, 17]. A salient feature of market matching is making decisions for72

competing players on both sides [36, 12]. MAB is an important tool to study matching problems under73

uncertainty to obtain a maximum reward, and upper confidence bound algorithm (UCB) [4] is a typical74

algorithm, which sets a confidence interval to represent uncertainty. Matching market with MAB is75

studied in both centralized and decentralized setting [21, 22]. Following these, Abishek Sankararaman76

et al. [34] propose a phased UCB algorithm under a uniqueness condition, Serial Dictatorship, to77

manage collisions. They solve the problem of the decentralized market without knowing arm-gaps78

or time horizon, and reduce the probability of linear regret through non-monotonic arm elimination.79

The introduction of the uniqueness condition plays an important role in the equilibrium of matching80

results [15, 7]. Under a stronger and robust condition, Uniqueness Consistency [19], Soumya Basu81

et.al [7] apply MAB to online matching and obtain robust results that the subset of stable matchings82

being separated from the system does not affect other stable matchings.83

We discuss many-to-one problems such as online short-term employment and MOOC [14, 24, 18] as84

the one-to-one setting has limitations in practice. Somouaoga Bonkoungo [9] runs a student-proposing85

deferred acceptance algorithm (DA) [12] to study decentralized college admission. Ahmet Altinok86

[3] considers dynamic matching in many-to-one that can be solved as if it is static many-to-one or87

dynamic one-to-one under certain assumptions. As the existence and uniqueness of competitive88

equilibrium and core are important to allocations, the unique stable results need to be considered [27].89

Similar to conditions for unique stable matching in one-to-one, some uniqueness conditions of stable90

results in the many-to-one setting also are studied [16, 28, 15, 2, 27].91
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2 Setting92

This paper considers a many-to-one matching marketM = (K,J ,P), where K = [K],J = [N ]93

are a finite arm set and a finite agent set, respectively. And each arm k has a capacity qk ≥ 1. To94

guarantee that no agents will be unmatched, we focus on the market with N ≤
∑K

i=1 qi. P is the95

fixed preference order of agents and arms, which is ranked by the mean reward. We assume that arm96

preferences for agents are unknown and needed to be learned. If agent j prefers arm k over k′, which97

also means that µj,k > µj,k′ , we denote by k ≻j k
′. And the preference is strict that µj,k ̸= µj,k′ if98

k ̸= k′. Similarly, each arm k has a fixed and known preference ≻k over all agents, and specially,99

j ≻k j
′ means that arm k prefers agent j over j′. Throughout, we focus on the market where all100

agent-arm pairs are mutually acceptable, that is, j ≻k ∅ and k ≻j ∅ for all k ∈ [K] and j ∈ [N ].101

Let mapping m be the matching result. mt(j) is the matched arm for agent j at time t, and γt(k) is102

the agents set matched with arm k1. Every time agent j selects an arm It(j), and we use Mt(j) to103

denote whether j is successfully matched with its selected arm. Mt(j) = 1 if agent j is matched with104

It(j), and Mt(j) = 0, otherwise. If multiple agents select arm k at the same time, only top qk agents105

can successfully match. The agent j matched with arm k can observe the reward Xj,mt(j)(t), where106

the random reward Xj,k(t) ∈ [0, 1] is independently drawn from a fixed distribution with mean µj,k.107

While the unmatched ones have collisions and receive zero reward. Generally, the reward obtained by108

agent j is Xj,It(j)(t)Mt(j).109

An agent j and an arm k form a blocking pair for a matching m if they are not matched but prefer110

each other over their assignments, i.e. k ≻j m(j) and ∃j′ ∈ γ(k), j ≻k j
′. We say a matching111

satisfies individually rationality (IR), if aj ≻pi
∅ and pi ≻aj

∅ for all i ∈ [N ] and j ∈ [K], that is,112

every worker prefers to find a job rather than do nothing, and every company also wants to recruit113

workers rather than not recruit anyone. Under the IR condition, a matching in the many-to-one setting114

is stable if there does not exist a blocking pair [33, 35].115

This paper considers the matching markets under the uniqueness condition. Thus the overall goal is116

to find the unique stable matching between the agent side and arm side through iterations. Let m∗(j)117

be the stable matched arm for agent j under the stable matching m∗. The reward obtained by agent j118

is compared against the reward received by matching with m∗(j) at each time. We aim to minimize119

the expected stable regret for agent j over time horizon T , which is defined as120

Rj(T ) = Tµj,m∗(j) − E

[
T∑

t=1

Mt(j)Xj,It(j)(t)

]
.

3 Algorithm121

In this section, we introduce our MO-UCB-D4 Algorithm (Many-to-one UCB with Decentralized122

Dominated arms Deletion and Local Deletion Algorithm) (Algorithm 1) for the decentralized many-123

to-one market, where there is no platform to arrange actions for agents, which leads to conflicts124

among agents. The MO-UCB-D4 algorithm for each agent j first takes agent set J and arm set K as125

input and chooses a parameter θ ∈ (0, 1/K) (discussed in Section C). It sets multiple phases, and126

each phase i mainly includes regret minimization block (line 6 - 12) and communication block (line127

13 - 16) with duration 2i−1, i = 1, 2, · · · .128

For each agent j in phase i, the algorithm adds arm deletion to reduce potential conflicts, which129

mainly contains global deletion and local deletion. The former eliminates the arms most preferred130

by agents who rank higher than agent j and obtain active set Chj [i] (line 4), and the latter deletes131

the arms that still have many conflicts with agent j after global deletion (line 6). We set a collision132

counter Cj,k[i] to record the number of collisions for agent j pulling arm k.133

In regret minimization block of phase i, we use Lj [i] = {k : Cj,k[i] ≥ ⌈θ2i⌉} to represent the134

arms that collide more times than a threshold ⌈θ2i⌉ when matching with agent j. Arms in Lj [i] are135

first locally deleted to reduce potential collisions for agent j (line 6). After that, agent j selects an136

optimal action It(j) from remaining arms in Chj [i]\Lj [i] in phase i according to UCB index, which is137

computed by µ̂j,k(t−1)+
√

2α log(t)
Nj,k(t−1) (line 7), where Nj,k(t−1) is the number that agent j and arm138

1The mapping m is not reversible as it is not a injective, thus we do not use m−1
t (k).
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Algorithm 1 MO-UCB-D4 algorithm (for agent j)
Input:

θ ∈ (0, 1/K), α > 1.
1: Set global dominated set Gj [0] = ϕ
2: for phase i = 1, 2, ... do
3: Reset the collision set Cj,k[i] = 0, ∀k ∈ [K];
4: Reset active arms set Chj [i] = [K]\Gj [i− 1];
5: if t < 2i +NK(i− 1) then
6: Local deletion Lj [i] = {k : Cjk[i] ≥ ⌈θ2i⌉};
7: Play arm It(j) ∈ argmax

k∈Chj [i]\Lj [i]

(
µ̂j,k(t− 1) +

√
2α log(t)
Nj,k(t−1)

)
;

8: if k = It(j) is successfully matched with agent j, i.e. mt(j) = k then
9: Update estimate µ̂j,k(t) and matching count Nj,k(t);

10: else
11: Cj,k[i] = Cj,k[i] + 1;
12: end if
13: else if t = 2i +NK(i− 1) then
14: Oj [i]← most matched arm in phase i;
15: Gj [i]← COMMUNICATION(i,Oj [i]);
16: end if
17: end for

k have been matched at time t− 1. If the selected arm is successfully matched with agent j, then the139

algorithm updates estimated reward µ̂j,k(t) =
1

Nj,k(t)

∑t
s=1 1{Is(j) = k and Ms(j) = 1} Xj,k(t)140

and Nj,k(t) (line 9). Otherwise, the collision happens (line 11) and j receives zero reward. The141

regret minimization block identifies the most played arm Oj [i] for agent j in each phase i, which is142

estimated as the best arm for j, thus making optimal policy to minimize expected regret.143

Algorithm 2 COMMUNICATION
Input:

Phase number i, and most played arms Oj [i] for agent j, ∀j ∈ [N ] .
1: Set C = ∅;
2: for t = 1, 2, · · · , NK − 1 do
3: if K(j − 1) ≤ t ≤ Kj − 1 then
4: Agent j plays arm It(j) = (t mod K) + 1;
5: if Collision Occurs then
6: C = C ∪ {It(j)};
7: end if
8: else
9: Play arm It(j) = Oj [i];

10: end if
11: end for
12: RETURN C;

In the communication block (Algorithm 2), there are N sub-blocks, each with duration K. In the144

ℓ− th sub-block, only agent ℓ pulls arm 1, arm 2, · · · , arm K in round-robin while the other agents145

select their most preferred arms estimated as the most played ones (line 4). This block aims to detect146

globally dominated arms for agent j: Gj [i] ⊂ {Oj′ [i] : j
′ ≻Oj′ [i]

j}. Under stable matching m∗, the147

globally dominated arms set for agent j is denoted as G∗
j . After the communication block in phase148

i, each agent j updates its active arms set Chj [i+ 1] for phase i+ 1, by globally deleting arms set149

Gj [i], and enters into the next phase (line 4 in Algorithm 1).150

Hence, multi-phases setting can guarantee that the active set in different phases has no inclusion151

relationship so that if an agent deletes an arm in a certain phase, this arm can still be selected in the152

later rounds. This ensures that each agent will not permanently eliminate its stable matched arm, and153

when the agent mistakenly deletes an arm, it will not lead to linear regret.154
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4 Results155

4.1 Uniqueness Conditions156

4.1.1 α̃-condition157

Constructing a unique stable matching plays an important role in market equilibrium and fairness158

[10, 15]. With uniqueness, there would be no dispute about adopting stable matching preferred159

by which side, thus it is more fair. When the preferences of agents and arms are given by some160

utility functions instead of random preferences, like the payments for workers in the labor markets,161

the stable matching is usually unique. Thus the assumption of the unique stable matching is quite162

common in real applications. In this section, we propose a new uniqueness condition, α̃-condition.163

First, we introduce uniqueness consistency (Unqc) [19], which guarantees robustness and uniqueness164

of markets.165

Definition 1. A preference profile satisfies uniqueness consistency if and only if166

(i) there exists a unique stable matching m∗;167

(ii) for any subset of arms or agents, the restriction of the preference profile on this subset with their168

stable-matched pair has a unique stable matching.169

It guarantees that even if an arbitrary subset of agents are deleted out of the system with their170

respective stable matched arms, there still exists a unique stable matching among the remaining171

agents and arms. This condition allows any algorithm to identify at least one stable pair in a unique172

stable matching system and guides the system to a global unique stable matching in an iterative173

manner. To obtain consistent stable results in the many-to-one market, we propose a new α̃-condition,174

which is a sufficient and necessary condition for Unqc (proved in Appendix B).175

We considers a finite set of arms [K] = {1, 2, · · · ,K} and a finite set of agents [N ] = {1, 2, · · · , N}176

with preference profile P . Assume that [N ]r={A1, A2, · · · , AN} is a permutation of {1, 2, · · · , N}177

and [K]r={c1, c2, · · · , cK} is a permutation of {1, 2, · · · ,K}. Denote [N ], [K] as the left order and178

[N ]r, [K]r as the right order. The k-th arm in the right order set [K]r has the index ck in the left179

order set [K] and the j-th agent in the right order set [N ]r has the index Aj in the left order set [N ].180

Considering arm capacity, we denote γ∗(ck) (right order) as the stable matched agents set for arm ck.181

Definition 2. A many-to-one matching market satisfies the α̃-condition if,182

(i) The left order of agents and arms satisfies

∀j ∈ [N ],∀k > j, k ∈ [K], µj,m∗(j) > µj,k ,

where m∗(j) is agent j’s stable matched arm;183

(ii) The right order of agents and arms satisfies

∀k < k′ ≤ K, ck ∈ [K]r, Ak′ ⊂ [N ]r, γ
∗(ck) ≻ck A∑k′−1

i=1 qci+1
,

where the set γ∗(ck) is more preferred than A∑k′−1
i=1 qci+1

means that the least preferred agent in184

γ∗(ck) for ck is better than A∑k′−1
i=1 qci+1

for ck.185

Under our α̃-condition, the left order and the right order satisfy the following rule. The left order186

gives rankings according to agents’ preferences. The first agent in the left order set [N ] prefers arm 1187

in [K] most and has it as the stable matched arm. Similar properties for the agent 2 to q1 since arm 1188

has q1 capacity. Then the (q1 + 1)-th agent in the left order set [N ] has arm 2 in [K] as her stable189

matched arm and prefers arm 2 most except arm 1. The remaining agents follow similarly. Similarly,190

the right order gives rankings according to arms’ preferences. The first arm 1 in the right order set191

[K]r most prefers first qc1 agents in the right order set [N ]r and takes them as its stable matched192

agents. The remaining arms follow similarly.193

This condition is more general than existing uniqueness conditions like SPC [28] and can recover194

the known α-condition in one-to-one matching market [19]. The relationship between the existing195

uniqueness conditions and our proposed conditions will be analyzed in detail later in Section 4.1.2.196

The main idea from one-to-one to many-to-one analysis is to replace individuals with sets. In197

general, under α̃-condition, the left order satisfies that when arm 1 to arm k − 1 are removed, agents198
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(∑k−1
i=1 qi + 1

)
to
(∑k

i=1 qi
)

prefer k most, and the right order means that when A1 to agents199

A∑k−1
i=1 qi

are removed, arm k prefers agents Ak = {A∑k−1
i=1 qci+1, A

∑k−1
i=1 qci+2, · · · , A∑k

i=1 qci
},200

where Ak is the agent set that are most qk preferred by arm k among those who have not been201

matched by arm 1, 2, · · · , k − 1. Te next theorem give a summary.202

Theorem 1. If a market M = (K,J ,P) satisfies α̃-condition, then m∗(
∑j−1

i=1 qi + 1) =203

m∗(
∑j−1

i=1 qi + 2) = · · · = m∗(
∑j

i=1 qi) = j (the left order), γ∗(ck) = Ak and m∗(Aj) = cj (the204

right order) under stable matching.205

Under α̃-condition, the stable matched arm may not be the most preferred one for each agent j,206

j ∈ [N ], thus (i) we do not have m∗(j) to be dominated only by the agent 1 to agent j − 1, i.e. there207

may exist j′ > j, s.t. j′ ≻m∗(j) j; (ii) the left order may not be identical to the right order, we208

define a mapping lr to match the index of an agent in the left order with the index in the right order,209

i.e. Alr(j) = j. From Theorem 1, the stable matched set for arm k is its first qk preferred agents210

γ∗(ck) = Ak. We define lr as lr(i) = max{j : Aj ∈ γ∗(m∗(i)), j ∈ [N ]}, that is, in the right211

order, the mapping for arm k ∈ [K] is the least preferred one among its most qk preferred agents.212

Note that this mapping is not an injective, i.e. ∃j, j′, s.t. agent j = Alr(j) = Alr(j′). An intuitive213

representation can be seen in Figure 4 in Appendix A.1.214

4.1.2 Unique Stable Conditions in Many-to-one Matching215

Uniqueness consistency (Unqc) leads the stable matching to a robust one which is a desirable property216

in large dynamic markets with constant individual departure [7]. A precondition of Unqc is to ensure217

global unique stability, hence finding uniqueness conditions is essential.218

The existing unique stable conditions are well established in one-to-one setting (analysis can be219

found in Appendix B), and in this section, we focus on uniqueness conditions in many-to-one market,220

such as SPC, [28], Aligned Preference, Serial Dictatorship Top-top match and Acyclicity [26, 2, 28]221

(Definition 9, 7, 8, 10 in Appendix B.2). Takashi Akahoshi [2] proposes a necessary and sufficient222

condition for uniqueness of stable matching in many-to-one matching where unacceptable agents223

and arms may exist on both sides. We denote their condition as Acyclicity∗. Under our setting, both224

two sides are acceptable, and we first give the proof of that Acyclicity∗ is a necessary and sufficient225

condition for uniqueness in this setting (see Section B.2.4 in Appendix B). We then give relationships226

between our newly α̃-condition and other existing uniqueness conditions, intuitively expressed in227

Figure 1, and we give proof for this section in Appendix B.2.228

Lemma 1. In a many-to-one matching marketM = (K,J ,P), both Serial Dictatorship and Aligned229

Preference can produce a unique stable matching and they are equivalent.230

Theorem 2. In a many-to-one matching marketM = (K,J ,P), our α̃-condition satisfies:231

(i) SPC is a sufficient condition to α̃-condition;232

(ii) α̃-condition is a necessary and sufficient condition to Unqc;233

(iii) α̃-condition is a sufficient condition to Acyclicity∗.234

Figure 1: Relations of Uniqueness Conditions in Many-to-one Market.
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4.2 Theoretical Results of Regret235

We then provide theoretical results of MO-UCB-D4 algorithm under our α̃-condition. Recall that G∗
j236

is the globally dominated arms for agent j under stable matching m∗. For each arm k /∈ G∗
j , we give237

the definition of the blocking agents for arm k and agent j: Bjk = {j′ : j′ ≻k j, k /∈ G∗
j}, which238

contains agents more preferred by arm k than j. The hidden arms for agent j is Hj = {k : k /∈239

G∗
j} ∩ {k : Bjk ̸= ∅}. The reward gap for agent j and arm k is defined as ∆jk = |µj,m∗(j) − µj,k|240

and the minimum reward gap across all arms and agents is ∆ = minj∈[N ]{mink∈[K] ∆j,k}. We241

assume that the reward is different for each agent, thus ∆j,k > 0 for every agent j and arm k.242

Theorem 3. (Regret upper bound) Let Jmax(j) = max {j + 1, {j′ : ∃k ∈ Hj , j
′ ∈ Bjk}} be the243

max blocking agent for agent j and fα̃(j) = j + lrmax(j) is a fixed factor depends on both the left244

order and the right order for agent j. Following MO-UCB-D4 algorithm with horizon T , the expected245

regret of a stable matching under α̃-condition (Definition 2) for agent j ∈ [N ] is upper bounded by246

E [Rj(T )] ≤
∑

k/∈G∗
j∪m∗(j)

8α

∆jk

(
log(T ) +

√
π

α
log(T )

)
+
∑
k/∈G∗

j

∑
j′∈Bjk:k/∈G∗

j′

8αµj,m∗(j)

∆2
j′k

(
log(T ) +

√
π

α
log(T )

)

+ cj log2(T ) +O

(
N2K2

∆2
+
(
min(1, θ|Hj |)fα(Jmax(j)

)
+ fα̃(j)− 1)2i

∗
+N2Ki∗

)
,

where i∗ = max{8, i1, i2} (then i∗ ≤ 8 and i1, i2 are defined in equation (3)), and lrmax(j) =247

max{lr(j′) : 1 ≤ j′ ≤ j}, is the maximum right order mapping for agent j′ who ranks higher than248

j.249

From Theorem 3, the scale of the regret upper bound under α̃-condition is O
(

NK log(T )
∆2

)
and the250

proof is in Section 3.251

Proof Sketch of Theorem 3. Under α̃-condition, we only need to discuss the regret of the unique252

result. We construct a good phase (in Appendix A.2) and denote that the time point of agent j253

reaching its good phase by τj . After τj , agent j could identify its best arm and matches with his254

stable pair. Thus, from phase τj on-wards, agent j + 1 will find the set of globally dominated arms255

G∗
j+1 and will eliminate arm m∗(j) if m∗(j) brings collisions in communication block according256

to Algorithm 1. Global deletion here follows the left order. Then when agent j enters into regret257

minimization block next phase, the times it plays a sub-optimal arm is small which leads to a small258

total number of collisions experienced by agent j + 1. Then the process of each agent after good259

phase is divided into two stages: before τj and after τj . After τj , according to the causes of regret, it260

is divided into four blocks: collision, local deletion, communication, and sub-optimal play. Phases261

before τj can be bounded by induction. The regret decomposition is bound by the following.262

Lemma 2. (Regret Decomposition) For a stable matching under α̃-condition, the upper bound of263

regret for the agent j ∈ [N ] under our algorithm can be decomposed by:264

E [Rj(T )] ≤ E
[
SFαj

]︸ ︷︷ ︸
(Regret before phase Fαj )

+min(θ|Hj |, 1)E
[
SVαj

]︸ ︷︷ ︸
(Local deletion)

+
(
(K − 1 + |Bj,m∗(j)|) log2(T ) +NKE [Vαj ]

)︸ ︷︷ ︸
(Communication)

+
∑
k/∈G∗

j

∑
j′∈Bj,k:k/∈G∗

j′

8αµj,m∗(j)

∆2
j′,k

(
log(T ) +

√
π

α
log(T )

)
︸ ︷︷ ︸

(Collision)

+
∑

k/∈G∗
j∪m∗(j)

8α

∆j,k
(log(T ) +

√
π

α
log(T ))

︸ ︷︷ ︸
(Sub-optimal play)

+NK

(
1 + (ϕ(α) + 1)

8α

∆2

)
,

where Fαj , Vαj are the time points when agent j enters into α̃-Good phase and α̃-Low Collision265

phase respectively, mentioned as "good phase" above, are defined in Appendix A.2.266
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5 Difficulties and Solutions267

While putting forward our α̃-condition in the many-to-one setting, many new problems need to be268

taken into account.269

From one-to-one setting to many-to-one setting First, although we assume that arm preference is270

over individuals rather than combination of agents, the agents matched by one arm are not independent.271

Specially, arms with capacity q can not just be replaced by q independent individuals with the same272

preference. Since there would be implicit competition among different replicates of this arm, and it273

can reject the previously accepted agents when it faces a more preferred agent. Secondly, collisions274

among agents is one of main causes of regret in decentralized setting, while capacity will hinder the275

collision-reducing process. In communication block, when two agents select one arm at a time, as276

an arm can accept more than one agent, these two cannot distinguish who is more preferred by this277

arm, while it can be done in one-to-one markets. Thus it is more difficult to identify arm preferences278

for each agent. The lr in [7] is a one-to-one mapping that corresponds the agent index in the left279

order and the agent index in the right order, which is related to regret bound (Theorem 3 in [7] and280

Theorem 3 in our work). While it does not hold in our setting. To give a descriptive range of matched281

result for each arm under α̃-condition, we need to define a new mapping.282

In order to solve these problems, we explain as follows: First, since capacity influence the com-283

munication among agents, we add communication block and introduce an arm set G∗
j , which will284

be deleted before each phase to reduce collisions, where G∗
j contains arms that will block agent j285

globally under stable matching m∗. Second, the idea from one-to-one to many-to-one is a transition286

from individual to set. It is natural to split sets into individuals or design a bridge to correspond sets287

to individuals. We construct a new mapping lr (Figure 4 in Appendix A) from agent j in the left order288

to agents in the right order under α̃-condition. lr maps each arm k to the least preferred one of its289

stable matched agents in the right order, thus giving a matching between individuals and individuals290

and constructing the range of the stable matched agents set (Theorem 1). Except lr, capacity also291

influences regret mainly in communication block, as mentioned in the first paragraph.292

From α-condition to α̃-condition To extend α-condition to the many-to-one setting, it needs293

to define preferences among sets. However, there might be exponential number of sets due to the294

combinatorial structure and simply constraining preferences over all possible sets will lead to high295

complexity. Motivated by α-condition which characterizes properties of matched pairs in one-to-one296

setting, we come up with a possible constraint by regarding the arm and its least preferred agent in the297

matched set as the matched pair and define preferences according to this grouping. It turns out that298

we only need to define the preferences of arms over disjoint sets of agents to complete the extension299

as α-condition is defined under the stable matching, which can also fit the regret analysis well. As a300

summary, there might be other possible ways to extend the α-condition but we present a successful301

trial to not only give a good extension with similar inclusion relationships but also guarantee good302

regret bound.303

6 Experiments304

In this section, we verify the experimental results of our MO-UCB-D4 algorithm (Algorithm 1) for305

decentralized many-to-one matching markets. For all experiments, the rankings of all agents and306

arms are sampled uniformly. We set the reward value towards the least preferred arm to be 1/N307

and the most preferred one as 1 for each agent, then the reward gap between any adjacently ranked308

arms is ∆ = 1/N . The reward for agent j matches with arm k at time t Xj,k(t) is sampled from309

Ber(µj,k). The capacity is equally set as q = N/K. We investigate how the cumulative regret and310

cumulative market unstability depend on the size of the market and the number of arms under three311

different unique stability conditions: Serial Dictatorship, SPC, α̃-condition. The former cumulative312

regret is the total mean reward gap between the stable matching result and the simulated result, and313

the latter cumulative unstability is defined as the number of unstable matchings in round t. In our314

experiments, all results are averaged over 10 independent runs, hence the error bars are calculated as315

standard deviations divided by
√
10.316

Varying the market size To test effects on two indicators, cumulative regret and cumulative317

unstability, we first varying N with fixed K with market size of N ∈ {10, 20, 30, 40} agents318
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and K = 5 arms. The number of rounds is set to be 100, 000. The cumulative regret in Figure319

2(a)(c)(e) show an increasing trend with convergence as the number of agents increases under these320

three conditions. When the number of agents increases, there is a high probability of collisions321

among different agents, resulting in the increase of cumulative regret. Similar results for cumulative322

unstability are shown in Figure 2(b)(d)(f). When N is larger, the number of unstable pairs becomes323

more. With the increase of the number of rounds, both two indicators increase first and then tend to324

be stable. The jumping points are caused by multi-phases setting of MO-UCB-D4 algorithm.325
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Figure 2: Cumulative regret and cumulative
unstability of MO-UCB-D4 of size with N ∈
{10, 20, 30, 40} and the number of arms K = 5
under Serial Dictatorship, SPC, α̃-condition.
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Figure 3: Cumulative regret and cumulative
unstability of MO-UCB-D4 of size with K ∈
{2, 5, 10, 20} under Serial Dictatorship, SPC, α̃-
condition.

Varying arm capacity The number of arms K is chosen by K ∈ {2, 5, 10, 20}, with N = 20 and326

q = N/K. The number of rounds we set is 400, 000. With the increase of K, both the cumulative327

regret in Figure 3(a)(c)(e) and the cumulative unstability in Figure 3(b)(d)(f) increase monotonously.328

When K increases, the capacity qk for each arm k decreases, and then the number of collisions329

will increase, which leads to an increase of cumulative regret. And it also leads to more unstable330

pairs, which needs more communication blocks to converge to a stable matching. Under these three331

conditions, the performances of the algorithm are similar.332

7 Conclusion333

We are the first to study the bandit algorithm for the many-to-one matching market under the unique334

stable matching. This work focuses on a decentralized market. A new α̃-condition is proposed335

to guarantee a unique stable outcome in many-to-one market, which is more general than existing336

uniqueness conditions like SPC, Serial Dictatorship and could recover the usual α-condition in337

one-to-one setting. We propose a phase-based algorithm of MO-UCB-D4 with arm-elimination,338

which obtains O
(

NK log(T )
∆2

)
stable regret under α̃-condition. By carefully defining a mapping from339

arms to the least preferred agent in its stable matched set, we could effectively correspond arms and340

agents by individual-to-individual. A series of experiments under two environments of varying the341

market size and varying arm capacity are conducted. The results show that our algorithm performs342

well under Serial Dictatorship, SPC and α̃-condition respectively.343
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A Analysis for Our α̃-Condition465

A.1 Mapping under α̃-Condition466

To connect two sides of the market, we define a mapping lr as lr(i) = max{j : Aj ∈ γ∗(m∗(i)), j ∈467

[N ]}, from agent index in the left order to agent index in the right order under α̃-condition since468

arms in the right order can select more than one agents. From Theorem 1, the stable matching469

for arm k is its first qk preferred agents γ∗(ck) = Ak. Recall that the preference is strict. Denote470

that the first qk agents are ranked as A(1)
k ≻ A(2)

k ≻ · · ·A(qk)
k . Then the rule of the mapping lr471

in the right order we set is as follows: the mapping for arm k ∈ [K] is the least preferred one472

among its most preferred qk agents, that is, Alr(k) = A
(qk)
k . And the intuitive representation can be473

seen in Figure 4. If we assume that ci2 = c1, then the right order can be seen form the figure and474

lr(q1 + 1) = · · · = lr(q1 + qc1) = qc1 holds.475

1

2

q1

q1 + 1

N

1

2

K

ci1

ci2

ciK

A1 = A(1)
1

Aqc1
= A(qc1 )

1

Aqc1+1 = A(1)
2

AN = A(qcK )

K

Left Order Right Order

Agents Arms Agents

Figure 4: The mapping from the left order to the right order (assume that ci2 = c1)

A.2 Proof for Regret Analysis under α̃ - Condition476

We first give some notations and definitions:477

Rank for Each Agent Recall that if arm k prefers agent j over j′, we denote j ≻k j′. And478

under α̃-condition, the stable matched arm m∗(j) for agent j is agent j’s most preferred arm among479

remaining arms who still have vacant seats within its capacity. Denote the agents that match with the480

stable matched arm of agent j by γ∗(m∗(j)).481

Classification of arm sets The dominated arms set Dj = {m∗(j′) : j′ ≻m∗(j′) j} means the482

stable matched arms of agents who are more preferred by these arms than agent j, and the globally483

dominated arms set under stable matching m∗ is G∗
j , a subset of Dj . Global deletion here follows484

the left order. Recall that Oj [i] is the best arm for agent j in phase i. In Algorithm 1, the estimated485

dominated arms set in phase i is Dj [i] = {Oj′ [i] : j
′ >Oj′ [i]

j} and the globally dominated arms in486

each phase i Gj [i] ⊂ Dj [i]
2. For each arm k /∈ G∗

j , we give the definition of the blocking agents for487

arm k and agent j: Bj,k = {j′ : j′ ≻k j, k /∈ G∗
j}, which contains agents more preferred by arm k488

than j. The hidden arms for agent j isHj = {k : k /∈ G∗
j} ∩ {k : Bj,k ̸= ∅}.489

Under SPC condition, the stable matched pair is also the best arm for each agent, and agents that490

arm k matches with is its qk most preferred agents. It can be easily understood by the definition of491

Top-top match. While under our α̃-condition, the stable results may not the best choices for two sides.492

2We can obtain Dj [i] = Gj [i] in the one-to-one setting
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We then define a set NTT (j), in which each arm is a stable matched arm for some other agents Aj′ ,493

is a sub-optimal arm for j, and j is preferred by that arm than its stable matched pairs γ∗(k). The494

NTT (j) set can understood as "not Top-top match" stable results, and its mathematical expression is495

that496

NTT (j) =

{
k : k ∈ [K], µj,k < µj,m∗(j),∃j′ /∈ γ∗(m∗(j)), s.t.

(
k = m∗(Aj′)and j ≻k γ

∗(k)
)}

,

where j ≻k γ
∗(k) means that k prefers j than any agents in γ∗(k).497

Phases with Good Properties In the decentralized market with limited information, estimating498

preferences of other agents is challenging, thus we set a communication block. This block for agent j499

is mainly to judge the dominated arms of agents that rank higher than j, where the dominated arm is500

measured as the arm with the most number of times matched with each agent. Under our α̃-condition,501

the most preferred arm is not necessarily the stable matched result, hence if arms in NTT (j) match502

too many times with j, agents cannot distinguish the preference of agent j. During the time period503

with limitation of arms in the NTT (j), other agents can better identify the preferences of j, which504

helps to reduce conflicts.505

Definition 3. We say phase i is a Warm-up Phase for some j ∈ [N ] under α̃-condition if the506

following conditions hold for each arm k ∈ NTT (j):507

(i) arm k is matched with agent j at most 10αi
∆2

j,k
in phase i, where α is a parameter of UCB index (line508

7 in Algorithm 1);509

(ii) arm k is not agent j’s most matched arm in phase i.510

According to it, we introduce the Unlocked phase (Uj) that all phases on and after it, agents A1 to Aj511

are all into warm-up phase. Let i1 = min
{
i : (N − 1) 10αi∆2 < θ2(i−1)

}
, where ∆ is the minimum512

reward gap, and513

1W [i, j] =

{
1, phase i is a warm-up phase for agent j;
0, otherwise.

Uj = max

i1,min

i :
lr(j)−1∏
j′=1

∏
i′≥i

1W [i′, A′
j ] = 1

 ∪ {∞}
 .

Definition 4. We say phase i is a α̃-Good Phase for some j ∈ [N ] under α̃-condition if the following514

are all satisfied:515

(i) The globally dominated arms for agent j are globally deleted in phase i. Then, Gj [i] = G∗
j holds.516

(ii) The phase i is a warm-up phase for all agents in Lj = {j′ : m∗(j) ∈ NTT (j′)}.517

(iii) For each arm k /∈ G∗
j ∪m∗(j) (neither be globally deleted nor stable matched arm of agent j),518

arm k is successfully matched with agent j in phase i at most 10αi
∆2

j,k
times.519

(iv) The stable matched arm m∗(j) is selected the most number of times in phase i.520

The definition of α̃-Good Phase is naturally to be brought up that during this phase, agent j has521

collisions with low probability. When agent j selects an arm competing with a more preferred agent522

by this arm, it receives zero reward with high probability (w.h.p.), thus condition (i) in Definition523

4 is necessary for a lower regret. Recall that the stable matched pair may not be the best pair for j,524

(ii) aims to limit arms in other agents’ NTT sets to avoid too many conflicts. And (iii), (iv) are525

beneficial for other agents to estimate the stable matching of agent j. Similarly, we define α̃-Low526

Collision Phase as [7]:527

Definition 5. We say phase i is a α̃-Low Collision Phase for agent j under α̃-condition if:528

(i) Phase i is a α̃-Good Phase for agent 1 to agent j;529

(ii) Phase i is a α̃-Good Phase for agent j′ ∈ ∪k∈Hj
Bj,k.530
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Define that531

Fαj = max

i1,min({i :
∏
i′≥i

 j−1∏
j′=1

1Gα
[i′, j′]

 ∏
j′′∈Lj

1W [i′, j′′]

 = 1) ∪ {∞}

 , (1)

and532

Vαj = max

i1,min({i :
∏
i′≥i

1LCα [i
′, j] = 1} ∪ {∞})

 , (2)

where the definitions of 1LCα
[i, j] and 1Gα

[i, j] is similar to 1W [i, j].533

Hence, all phases on and after phase Fαj are α̃-Good Phase and all phases after phase Vαj are α̃-Low534

Collision Phase for agent j. Hence, 1W [i, j], 1LCα [i, j] and 1Gα [i, j] are the indicator to represent535

whether phase i is a warm-up phase, α̃-low deletion phase and α̃-good phase respectively.536

Before we give the complete proof of the regret bound in Theorem 3, we propose some propositions.537

Proposition 1. The stable matched arm m∗(j) for agent j can be blocked by agents in Lj , where538

Lj =
{
j′ : m∗(j) ∈ NTT (j′)

}
.539

Proof. Assume that we have stable matching m∗. By contradiction, if j ≻m∗(j′) j
′ but µj,m∗(j) <540

µj,m∗(j′), then (j,m∗(j′)) forms a blocking pair since they prefer each other than matched one541

but they are unmatched, this leads to the instability of m∗. So, if j ≻m∗(j′) j
′, then µj,m∗(j) >542

µj,m∗(j′) under the stable matching. Thus, if j′ ≻m∗(j) j, then µj′,m∗(j′) > µj,m∗(j), then m∗(j) ∈543

NTT (j′).544

Proposition 1 tells us that m∗(j) can be blocked only by agents in Lj , and the next proposition gives545

the range of Lj .546

Proposition 2. For each agent j ∈ [N ], Lj ⊆
⋃lr(j)−1

j′=1 Aj′547

Proof. Under α̃-condition, for ∀k < j ≤ K, ck ∈ [K]r, Aj ∈ [N ]r, γ∗(ck) ≻ck Aj . And by548

Theorem 1, γ∗(ck) = Ak. Therefore, for ∀j, j′ ∈ [N ], and j < j′, Aj ≻m∗(Aj) Aj′ . In particular,549

for any j′ > lr(j), we have j = Alr(j) ≻m∗(j) Aj′ . This implies that for ∀j′ ≥ lr(j), we550

can not obtain j′ ≻m∗(j) j, hence m∗(j) /∈ NTT (j′), that is, for ∀j′ ≥ lr(j), j′ /∈ Lj . Then551

Lj ⊆ ∪lr(j)−1
j′=1 Aj′ .552

Proposition 3. For each agent j ∈ [N ], Fαj
≤ max

{
U(lr(j)−1),max(Fαj′ : 1 ≤ j

′ ≤ j − 1)
}

553

with probability 1.554

Proof. By definition of Uj , we know that on and after phase U(lr(j)−1), all agents {Aj′ : j′ =555

1, 2, · · · , lr(j) − 1} are in warm-up phase. By proposition 2, the set of deadlock agents as Lj ⊆556

∪lr(j)−1
j′=1 Aj′ . Hence, all agents in Lj are also in warm-up phase on and after Ulr(j)−1. Further, the557

agents 1 to (j − 1) are in α̃-good phase from phase max(Fαj′ : 1 ≤ j′ ≤ j − 1) onwards. Then the558

proposition holds w.p.1.559

As the events decomposition for regret minimization block in Lemma 6 requires that m∗(j) always560

exit and will not be deleted, it is important to find conditions or a certain phase with good properties561

to guarantee that m∗(j) will not be globally deleted or locally deleted. The next lemma give us562

theoretical guarantee.563

Lemma 3. Let i1 = min

{
i : (N − 1) 10αi∆2 < θ2i−1

}
, for any phase i (i ≥ i1) and any agent564

j ∈ [N ], the following properties holds.565

(a) If phase i and (i− 1) are warm-up phases for all j′ ∈ Lj , then m∗(j) will not be globally566

deleted or locally deleted almost surely, i.e. m∗(j) /∈ Lj [i] ∪Gj [i].567
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(b) If phase i ≥ min
{
U(lr(j)−1), Fαj

}
+ 1, then m∗(j) /∈ Lj [i] ∪Gj [i] a.s.568

(c) If phase i ≥ Vαj
+ 1 is a low collision phase for agent j then Lj [i] = ∅ a.s.569

Proof. (i) All agents j′ can block arm m∗(j) are in Lj by Proposition 1. And m∗(j) ∈ NTT (j′)570

for any agent j′ ∈ Lj due to the definition of Lj . Therefore, if all agents in Lj are in warm-up phase571

in phase (i− 1), then m∗(j) /∈ Gj [i] because by the definition of warm-up phase for agent j′ and572

m∗(j) ∈ NTT (j′), so m∗(j) is not agent j′ ’s most matched arm. Hence, m∗(j) /∈ Gj [i]. further-573

more, the total number of times the arm m∗(j) can be deleted is at most
(∑lr(j)−1

i=1 qi − 1
)

10αi
∆2

j,k
for574

any i ≥ i1, which is less than the local deletion threshold. So m∗(j) /∈ Lj [i] ∪Gj [i] after phase i1.575

(ii) (a) Lj ⊆ ∪lr(j)−1
j′=1 Aj′ holds by Proposition 3, this implies that for phase i ≥ Ulr(j)−1 + 1 (i.e.576

i− 1 ≥ Ulr(j)−1 + 1) is a warm-up phase for all agents in Lj = {j′ : m∗(j) ∈ NTT (j)}.577

(b) By the definition of Fαj , all agents in Lj = {j′ : m∗(j) ∈ NTT (j)} are in warm-up phase for578

phase i ≥ Fαj+1.579

By (a), (b) and (i) we know that (ii) holds.580

(iii) It can easily check by the definition of Vαj .581

A.3 Proof for Theorem 3582

After defining Fαj and Vαj3, we divide the whole process into two main modules: the process before583

phase Fαj and after Fαj . We denote Si by the beginning time point of phase i. The regret during time584

period [SFαj
, T] can be decomposed by four blocks: Local Deletion Block, Communication Block,585

Collision Block and Sub-optimal Block. The regret during time period [0, SFαj ] can be bounded by586

induction with j (Lemma 7).587

Local Deletion Block. Lemma 3 implies that there is no collision after phase Vαj , so we only need588

to consider the regret from Fαj +1 to Vαj . Following our algorithm, there is at most θ2i−1 collisions589

when pulling an arm from the setHj in each round. This amounts to590

Vαj∑
i=(Fαj+1)

∑
k∈Hj

θ · 2i−1 ≤
Vαj∑

i=(Fαj+1)

θ|Hj | · 2i−1

<
1− 2Vαj−1

1− 2
θ|Hj | = (2Vαj−1 − 1)θ|Hj |

= SVαj
· θ|Hj | ≤ min(SVαj

, 1) · θ|Hj | .

Communication Block. In the communication block, there are N sub-blocks, and the duration591

of each sub-block is K. Agent j pulls arm 1, arm 2, · · · , arm K in order in the j-th block and pulls592

Oj [i] in other blocks, whereOj [i] is the arm that it matched the most times in the regret minimization593

block in phase i. The best arm for agent j is not played in all but (K − 1) number of steps for each594

communication phase after phase Fαj + 1, and other agents j′ collide at most once after phase Vαj595

(since each of them enters good phase).596

Collision Block. The regret caused by collision from phase Fαj + 1 to Vαj has been included597

in the previous communication block (the regret of the period during Fαj + 1 and Vαj is rel-598

atively loose), so we only consider the regret after phase Vαj . After phase Vαj + 1, regret599

comes from the collision between agent j and the agents in the set Bj,k. And by the definition600

of Vαj , agent j and agent j′ ∈ Bjk have deleted dominated arms for themselves, this leads to601 ∑
k/∈G∗

j

∑
j′∈Bj,k:k/∈G∗

j′
µj,m∗(j)

(
Nj′,k(T )−Nj′,k(SVαj

)

)
.602

3Under α̃-condition it is no longer the case as agent 1 is not the most preferred agent for arm 1. For agent A1

and its stable match arm c1, c1 may not be the best arm for agent A1 but for arm c1 we have A1 as its best agent.
Therefore, agent A1 will not delete it’s stable match pair arm a1, but unless global deletion eliminates better
arms it will not converge to this arm.
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Sub-optimal Play Block. From phase Fαj + 1 on-wards, regret happens for agent j when603

agent j selects arm k /∈ G∗
j ∪ m∗(j) and successfully be matched. This amounts to604 ∑

k/∈G∗
j∪m∗(j) ∆jk(Njk(T )−Njk(SFαj

)) regret, and it can be upper bounded by Lemma 6.605

Then we illustrate the relationship among those phases with good properties and indicators. We first606

show that for phases i ≥ Uαj−1 + 1, the probability that phase i is not a Warm-up phase for agent607

Aj is low. Let608

i1 = min{i : (N − 1)
10αi

∆2
< θ2(i−1)} (3)

i2 = min{i : C(i− 1)− 1 ≤ 2i+1} , (4)

then we have the following lemma.609

Lemma 4. For phase i ≥ i∗ = max(8, i1, i2), and for ∀j ∈ [N ], α > 1, then the following holds:610

P ((1W [i, Aj ] = 0) ∩ (i ≥ Uj−1 + 1)) ≤ (K − j)2−i(α−1)

(
1 +

64

∆2

)
.

Similarly, we give the relationship between Fαj and α-Good phase.611

Lemma 5. For any agent j and phase i ≥ i∗, and for α > 1, then

P ((1Gα [i, j] = 0) ∩ (i ≥ Fαj + 1)) ≤ (K − j)2−i(α−1)

(
1 +

64

∆2

)
.

We only give the proof of Lemma 4, and another one can similarly be verified.612

Proof.

P ((1W [i, Aj ] = 0) ∩ (i ≥ Uαj−1 + 1))

≤
(i)

P

(
∪k∈NTT (Aj){(NAj ,k[i]−NAj ,k[i− 1]) >

10αi

∆2
Aj ,k

} ∩ (i ≥ (Uαj−1 + 1))

)

≤
(ii)

∑
k∈NTT (Aj)

P

(
(∪(Si+1−1)

t∈Si
NAj ,k(t) =

10αi

∆2
Aj ,k

) ∩ (It(Aj) = k) ∩ (i ≥ (Uαj−1 + 1))

)

≤
(iii)

∑
k∈NTT (Aj)

(Si+1−1)∑
t∈Si

P

(
(NAj ,k(t) =

10αi

∆2
Aj ,k

) ∩ (uAj ,k(t− 1) > uAjaj (t− 1))

)

≤ |NTT (Aj)| 2−i(α−1)(1 +
64

∆2
)

≤ (K − j)2−i(α−1)(1 +
64

∆2
) .

The inequality (i) is because that if phase i is not a Warm-up phase for agent Aj , there exists an613

arm k ∈ NTT (Aj), which is played more than 10αi
∆2

Aj,k
times in phase i. Next, (ii) holds since614

the probability of union is less than or equal to the sum of probability. By Lemma 3, m∗(Aj) /∈615

GAj
[i] ∪ LAj

[i]. Hence, the inequality (iii) holds since It(Aj) = k is equivalent to that the UCB616

index (line 7 in Algorithm 1) of arm m∗(j) = aj can not be less than arm k.617

We now give the upper bound of E
[
Njk(T )−Njk(SFαj

)
]
, which is helpful to bound the regret618

resulting from collision block and sub-optimal block.619

Lemma 6. For ∀j ∈ [N ], k /∈ G∗
j ∪m∗(j), for α > 1,

E
[
Nj,k(T )−Nj,k(SFαj

)
]
≤ ϕ(α) 8

∆2
j,k

+ 1 +
8

∆2
j,k

(
α log(T ) +

√
πα log(T ) + 1

)
.
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Proof. Due to Lemma 3, m∗(j) will not be globally deleted or locally deleted after phase i ≥620

(Fαj + 1). Denote Ij(t) as the arm that agent j pulls at time t. After phase Fαj , the reason for621

agent j pulling arm k rather than m∗(j) are as follows: (1) the UCB index of the optimal arm m∗(j)622

is less than µj,m∗(j) − ϵ; (2) Ij(t) = k and its UCB index is larger than µj,m∗(j) − ϵ. For any623

k /∈ G∗
j ∪m∗(j) and ϵ > 0,624

Nj,k(T )−Nj,k(SFαj
) =

T∑
t=SFαj+1

1{It(j) = k}

≤
T∑

t=SFαj
+1

1{(uj,k(t) ≥ µj,m∗(j) − ϵ) ∧ (It(j) = k)}︸ ︷︷ ︸
(a)

+1{uj,m∗(j) ≤ µj,m∗(j) − ϵ}︸ ︷︷ ︸
(b)

 .
First, we bound (a).625

E

 T∑
t=SFαj

+1

1

{
(uj,k(t) ≥ µj,m∗(j) − ϵ) ∧ (It(j) = k)

}
≤E

 T∑
t=SFαj

+1

1

{
(µ̂j,k(t− 1) +

√
2α log(t)

Nj,k(t− 1)
≥ µj,m∗(j) − ϵ) ∧ (It(j) = k)

}
≤E

[
T∑

t=1

1

{
(µ̂j,k(t− 1)

√
2α log(T )

Nj,k(t− 1)
≥ µj,m∗(j) − ϵ) ∧ (It(j) = k)

}]

≤E

[
T∑

s=1

1

{
(µ̂j,k(s) +

√
2α log(T )

s
≥ µj,k +∆j,k − ϵ)

}]

≤1 + 2

(∆j,k − ϵ)2

(
α log(T ) +

√
απ log(T ) + 1

)
.

Then we turn to bound (b)626

E

 T∑
t=SFαj

+1

uj,m∗(j) ≤ µj,m∗(j) − ϵ


≤E

[
T∑

t=1

uj,m∗(j) ≤ µj,m∗(j) − ϵ

]

≤E

[
T∑

t=1

T∑
s=1

P

(
µ̂j,k(t− 1) +

√
2α log(t)

Nj,k(t− 1)
≤ µj,m∗(j) − ϵ

)]

≤
T∑

t=1

T∑
s=1

exp

(
−s
2
(

√
2α log(t)

s
+ ϵ)2

)

≤
T∑

t=1

t−α
T∑

s=1

exp(−sϵ
2

2
)

≤ψ(α) 2
ϵ2
.

By choosing ϵ = ∆j,k

2 , we have627

E
[
Nj,k(T )−Nj,k(SFαj

)
]
≤ ψ(α) 8

∆2
j,k

+ 1 +
8

∆2
j,k

(
α log(T ) +

√
απ log(T ) + 1

)
.

628
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We define lrmax(j) = max{lr(j′) : 1 ≤ j′ ≤ j}, and F̃j = max

(
Ulrmax(j)−1,max(F̃j′ : 1 ≤629

j′ ≤ (j − 1))

)
, and F̃j > Fαj . Then we introduce a lemma to bound the probability that a phase i is630

not an α̃-Good phase when i ≥ Fαj + 1.631

Lemma 7. For any j ∈ [N ] and m ≥ 1, the following hold with i∗ (i∗ = max{8, i1, i2})632

E
[
F̃m
j

]
≤ 2i1 + (lrmax(j) + j − 2)

(
(i∗)m +K(1 +

64

∆2
)

)
2−(α−1)(i∗−2)

(2(α−1) − 1)2
,

E
[
2F̃j

]
≤ 2i1 + (lrmax(j) + j − 2)

(
2i

∗
+K(1 +

64

∆2
)

)
2−(α−1)(i∗−2)

(2(α−1) − 1)2
.

The proof is the same as [7].633

Hence, the upper bound of E
[
SFαj

]
is634

E
[
SFαj

]
= E

[
C(Fαj − 1) + 2Fαj

]
≤ E

[
C(F̃j − 1) + 2F̃j

]
≤ C(2i1 − 1) + C

(
lrmax(j) + j − 2

)
i∗ +

(
lrmax(j) + j − 2

)
2i

∗

+
(
C + 1

)(
lrmax(j) + j − 2

)
K
(
1 +

64

∆

)2−(α−1)(i∗−2)

(2(α−1) − 1)2
,

where C is a constant term.635

Then for formula with term E
[
SVαj

]
, we can transform its upper bound to another term related to

E
[
SF̃Jmax(j)

]
since

Vαj = max
(
Fα(j+1),∪k∈Hj∪j′∈Bjk

Fαj

)
≤ max

(
F̃(j+1),∪k∈Hj∪j′∈Bjk

F̃(j+1)

)
= F̃Jmax(j) .

Hence, E
[
SVαj

]
≤ E

[
SF̃Jmax(j)

]
.636

Lastly, the regret can be bounded by the decomposition of E
[
SFαj

]
and phases after SFαj

with637

properties above, where phases on and after SFαj
contain local deletion, collision, communication,638

sub-optimal play blocks.639

E [Rj(T )] ≤ E
[
SFαj

]
+min(θ|Hj |, 1)E

[
SVαj

]
+
(
(K − 1 + |Bj,m∗(j)|) log2(T ) +NKE [Vαj ]

)
+
∑
k/∈G∗

j

∑
j′∈Bj,k:k/∈G∗

j′

8αµkj∗

∆2
j′k

(
log(T ) +

√
π

α
log(T )

)
+

∑
k/∈G∗

j∪m∗(j)

8α

∆j,k
(log(T ) +

√
π

α
log(T ))

+NK

(
1 + (ϕ(α) + 1)

8α

∆2

)
≤
∑
k/∈G∗

j

∑
j′∈Bj,k:k/∈G∗

j′

8αµkj∗

∆2
j′,k

(
log(T ) +

√
π

α
log(T )

)

+
∑

k/∈G∗
j∪m∗(j)

8α

∆j,k

(
log(T ) +

√
π

α
log(T )

)
+ cj log2(T )

+O

(
N2K2

∆2
min

+

(
min(1, θ|Hj |)fα̃(Jmax(j)) + fα̃(j)− 1

)
2i

∗
+N2Ki∗

)
.

B Proof for Unique Stable Conditions640

B.1 Uniqueness Conditions in One-to-one Matching.641

There are many existing conditions that guarantee the unique stable matching in one-to-one setting,642

like the Serial Dictatorship [34], the No Crossing Condition (NCC) [10], the Sequential Preference643
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Condition (SPC) [11], the α-Condition [19]. Previous works tell us that top-top match and SPC644

condition can lead to a unique stable matching in both one-to-one [26, 10] and many-to-one setting645

[28]. [26] use the Top-top match property instead of α-reducibility 4 for the same meaning in the646

one-to-one setting. Serial Dictatorship in one-to-one setting means that for each agent, the arms are647

ranked heterogeneously, in an increasing order of arm-means which is different for each agent-arm648

pair while the agents are ranked homogeneously across all arms, and vice versa. Followed by [29, 26],649

we know that Aligned preference is equal to Serial dictatorship in marriage problem as they are both650

equivalent to no cycle property. And NCC and Serial Dictatorship are not mutually inclusive, which651

can be seen in [10]. Hence, the relationship can be represented intuitively in figure 5:652

Figure 5: Relations of Unique Stable Matching in One-to-one (left) and Many-to-one (right).

B.2 Uniqueness Conditions in Many-to-one Setting.653

In this section, we focus on conditions that guarantee the unique stable matching in the many-to-one654

setting, such as SPC, [28], Aligned Preference, Serial Dictatorship Top-top match and Acyclicity655

[26, 2, 28] and give the proof of the relationships among uniqueness conditions5.656

Definition 6. (Aligned Preference.) In a many-to-one marketM = (K,J ,P), K = (k)k∈[K],J =
(j)j∈[N ], if the preference profile P satisfies

∀k ∈ K, j ≻k j
′,∀j < j′ (1.a)

∀j ∈ N , k ≻j k
′,∀k < k′ (1.b)

then the market has aligned preference. The one-to-one setting has the same definition.657

Definition 7. (Serial Dictatorship) We say that if all arms (school) have the same preference for658

agents (students), while agents’ preferences are heterogeneous (vice versa), then the system satisfies659

serial dictatorship.660

Definition 8. (Top-top Match) A stable pair (k, j) is a Top-top match for sub-marketM′ ∈ M if,661

for arm k, agent j is the favorite candidate inM′, and vice versa.662

Definition 9. (SPC) SPC condition in the many-to-one setting [28] is to require the existence663

of a sequence of agents 1, 2, · · · , N in which each agent appears once, and a sequence of arms664

1, 2, · · · ,K in which each arm appears once for each seat in its capacity, such that k ≻j k
′ for every665

k′ > k and j ∈ [N ]; in addition, such that j ≻k j
′ for every j′ > j and k ∈ [K].666

B.2.1 Proof for Lemma 1.667

Proof. ⇒):668

4[27, 10] introduce that a matching problem is α-reducible if there is a top trading single or pair for every
sub-problem.

5The remark in [26] tells us that Aligned Preference is stronger than Top-top match and SPC condition.
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Table 1: Preference Profiles

(a) Exm1: Companies

c1 : s1 > s2 > s3 > s4 > s5
c2 : s2 > s3 > s4 > s5 > s1
c3 : s3 > s4 > s5 > s1 > s2

(b) Exm1: Workers
s1 : c1 > c2 > c3
s2 : c2 > c3 > c1
s3 : c3 > c2 > c1
s4 : c3 > c1 > c2
s5 : c2 > c1 > c3

(c) Exm2: Companies

c1 : s1 > s2 > s3 > s4 > s5
c2 : s3 > s2 > s1 > s4 > s5
c3 : s1 > s5 > s2 > s4 > s3

(d) Exm2: Workers
s1 : c1 > c3 > c2
s2 : c1 > c2 > c3
s3 : c2 > c1 > c3
s4 : c1 > c2 > c3
s5 : c3 > c2 > c1

Serial Dictatorship⇒ Aligned Preference. In order to distinguish the symbols of agents and
arms, we consider arms set {ck, k = 1, 2, · · · ,K} and agents set {sj : j = 1, 2, · · · , N}. If arms
have the same preference for individual agent, then there is no cycle in the preference of the arm, i.e.
there is no case that

∃T, s0 ≻c0 sT ≻cT sT−1 · · · s1 ≻c1 s0
for s0, s1, · · · , sT and c0, c1, · · · , cT . Otherwise, assume that there exists the cycle above, then by669

the same preference of arms, we know that ≻c0=≻c1 . And then s0 ≻c0 s1 and s1 ≻c1 s0, hence670

s0 ≻c0 s1 and s1 ≻c0 s0, which yields a contradiction.671

Now we prove that no cycle property implies Aligned preference. By contradiction, if there exists a
cl such that sk ≻cl sj , for k > j, then we can construct a cycle:

sk ≻cl sj ≻cj sj−1 · · · sk−2 ≻ck−1
sk−1 ≻ck sk.

⇐):672

Aligned Preference⇒ Serial Dictatorship. We first illustrate that aligned preference leads to no
cycle property. By contradiction, if there is a cycle

s1 ≻c1 sT ≻cT sT−1 · · · s2 ≻c2 s1

for some s1, s2, · · · , sT , c1, c2, · · · , cT and T . It is obvious that it yields s1 ≻c1 sT , T > 1, which673

contradicts the aligned principle. Then, if there is no cycle of length two, which implies that all674

college have the same preferences because all students are acceptable to every college, which induces675

the group serial dictatorship property.676

677

B.2.2 Proof for Theorem 2.678

(i) Proof for the relationship between SPC and α̃-condition679

SPC states that after eliminating all Top-top match, there is at least one new Top-top match in the680

remaining system under the restricted preference profile. Then it satisfies α̃-condition naturally.681

However, examples below tell us that SPC can not imply α̃-condition. We give two examples to682

illustrate this relationship where the order that an agent successfully matches with its stable pair683

corresponds to the left order and right order.684

Example Consider a market with three companies and five workers. Assume that the preference685

profile of companies c1, c2, c3 and workers s1, s2, s3, s4, s5 is as follows and the capacities are 2, 1, 2686

respectively for c1, c2, c3.687

The preference in Table 1 (1(a))(1(b)) satisfies both SPC and α̃-condition with valid or-688

der {(c2, s2), (c3, s3, s4), (c1, s1, s5)}. While preference in Table 1 (1(c))(1(d)) only sat-689

isfies α̃-condition with valid left order {(c1, s1, s2), (c2, s3), (c3, s4, s5)} and right order690
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{(c2, s3), (c1, s1, s2), (c3, s4, s5)}, and SPC does not hold.691

692

(ii) Proof for the relationship between Unqc and α̃-condition693

⇐) : Sufficiency: If α̃-condition holds, then the agent-proposing Gale-Shapley algorithm and the694

arm-proposing Gale-Shapley algorithm leads to matching m in all consistent restrictions.695

696

⇒) : Necessity: We first prove for K = 2, N = q1 + q2 case. Assume that there are two arms c1, c2,697

each has capacity qk(k = 1, 2) and the agents set S = s1, s2, · · · , sq1+q2 . By contradiction, assume698

that Unqc is satisfied while α̃-condition is not. Then we know that not all matching pairs are Top-top699

match, so there exists an agent sk, c1 ≻sk c2, but sk is not in the agents set that first q1 preferred by700

c1. The matched result may have two cases:701

(· · · · · ·︸ ︷︷ ︸
q1

, c1) and (sk, · · · · · ·︸ ︷︷ ︸
q2−1

, c2) (i) ,

(sk, · · · · · ·︸ ︷︷ ︸
q1−1

, c1) and (· · · · · ·︸ ︷︷ ︸
q2

, c2) (ii) .

We first consider matching (ii). If sk matches c1, then there must be an agent in A1 matches with702

c2. Let’s assume that there is an agent sℓ ∈ A1 that matches with c2. There are two situations to703

discuss at this time. If c1 ≻sℓ c2, then (ii) is an unstable matching, which is recorded as case (A); If704

sℓ prefers c2 more than c1, then (ii) is a stable matching and is recorded as event (B).705

Apply the above two cases (A), (B) to matching (i). In (A), c1 and sℓ prefer each other, so there is a706

Top-top match and then α̃-condition is satisfied, and a conclusion contradictory to the hypothesis is707

derived. In (B), this case will produce two stable matchings, which contradicts Unqc.708

We use induction to prove it. Suppose, that for all (N̂ , K̂), N̂ ≤ N, K̂ ≤ K, N ≥ q1 + q2 +709

· · · + qK the α̃-condition is a necessary condition for the uniqueness consistency. Then we prove710

for (N + 1, q1 + q2 + · · · + qK) (similarly, we would have for (N, q1 + q2 + · · · + qK + 1) and711

q1+ q2+ · · ·+ qK ≥ N ). Assume that the newly added agent is X , select an agent from the original712

N agents and record it as Y . Let k∗X and k∗Y be the arms rank first for X and Y respectively. By the713

K = 2, N = q1 + q2 case proved above, we know that X and Y satisfy α̃-condition, hence either X714

or Y matches with its first ranked arm. The agent matches with its first ranked arm is denoted by s1,715

and the remaining N agents are s2, · · · , sN . Except k∗s1 and stable matched agents for k∗s1 , there are716

N agents and K − 1 arms, and N ≥ q1 + q2 + · · ·+ qK − qk∗
s1

. From the inductive hypothesis, we717

can know that α̃-condition is satisfied.718

The relationship between α̃-condition and Acyclicity∗ is illustrated in Section B.2.4.719

B.2.3 Difficulties from SPC to α̃-condition in regret analysis720

When we use the events decomposition for regret minimization block to prove the bound inequality721

of the number of times agent j is pulled (Lemma 6), it requires that m∗(j) always exit and will722

not be deleted. Under SPC condition, m∗(j) always exits as the stable matched partner is the most723

preferred one among the remaining market for the certain agent while α̃-condition cannot guarantee724

this property. Hence, it is important to find conditions or a certain phase with good properties to725

guarantee that m∗(j) will not be globally deleted or locally deleted. And we consider Fαj
and Vαj

in726

Lemma 3 (in Appendix A.2) to solve this problem. And since the stable matched pair is not top-top727

match in the remaining system under α̃-condition while the answer is true under SPC, we introduce728

a new mapping (Figure 4) to describe the corresponding relationships of stable pairs. In addition,729

as shown in Figure 1, Acyclicity∗ is the weakest condition to ensure uniqueness up to now, and730

Bettina Klaus and Flip Klijn [20] point that acyclicity has a tight connection with consistency. Hence,731

whether we can further weaken α̃-condition and propose a new algorithm remains to study.732

B.2.4 Acyclicity∗ Guarantees A Unique Stable Matching733

Definition 10. The preference profile of the arm side Pc has a cycle with length ℓ if there exists734

integer ℓ ≥ 2, c1, c2, · · · , cℓ are ℓ distinct arms and s1, s2, · · · , sℓ are ℓ distinct agents, subset735
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T1, T2, · · · , Tℓ ⊂ S\{s1, · · · , sℓ} and for any i ∈ {1, 2, · · · , ℓ}, the following two conditions are736

satisfied.737

(P) {si+1} ≻ci {si} ≻ci ϕ, where sl+1 ≡ s1, and738

(Q) |Ti| = qci − 1 and Ti ⊆ Uci(si), where Uci(si) = {s : s ≻ci si}.739

If Pc has no cycle, it satisfies Acyclicity∗.740

[2] pointed that Acyclicity∗ is a necessary and sufficient condition for a unique stable matching in741

many-to-one matching. They study the problem with responsive preference6 and unacceptable agents742

and arms may exist on both sides of the market. Under our setting, both two sides are acceptable,743

and we will prove that Acyclicity∗ is also a necessary and sufficient condition for uniqueness in our744

problem.745

Theorem 4. In our setting, our new α̃-condition is a sufficient condition to Acyclicity∗ (Theorem 2746

(iii)).747

We first see the example above to explain hoe to check whether the Acyclicity∗ is satisfied. As748

mentioned above, the preference profile in Table 1 (1(a))(1(b)) satisfies both SPC and α̃-condition749

with valid order {(c2, s2), (c3, s3, s4), (c1, s1, s5)}. We now check that it also satisfies Acyclicity∗.750

From preference profile (1(a)), we can find four cycle:751

(i) s1 ≻c1 s2 ≻c2 s1;752

(ii) s2 ≻c2 s3 ≻c3 s2;753

(iii) s3 ≻c2 s1 ≻c1 s3;754

(iv) s3 ≻c3 s1 ≻c1 s2 ≻c2 s3;755

Condition (P ) in Definition 10 is satisfied, and we then illustrate that condition (Q) is not satisfied,756

thus Acyclicity∗ holds. For cycle (i), T1, T2 ⊂ S\{s1, s2}, |T1| = qc1 − 1 = 1. However, it violates757

T1 ⊂ Uc1(s1) = ∅. Similarly, (ii), (iii), (iv) all imply that Acyclicity∗ is satisfied. For cycle (iv),758

T1, T2, T3 ⊂ S\{s1, s2, s3}, |T1| = qc1 − 1 = 1 while T1 ⊂ Uc1(s1) = ∅. Then, this example also759

satisfies Acyclicity∗.760

In fact, we can see from the definitions of these two conditions that Acyclicity∗ only limits the761

preferences of the arm side, while α̃-condition limits the preferences of both sides of the market.762

Intuitively, Acyclicity∗ is a more general condition. We now give the theoretical proof.763

If α̃-condition holds, then Acyclicity∗ also holds. By contradiction, if Acyclicity∗ is violated, then764

there is a cycle (Definition 10). For preference sequences that can produce stable matchings, as765

long as there is a cycle or a ring structure, we can always construct at least two stable matchings766

[29]. For example, for fixed agents set S = {s1, s2, · · · , sN} and arms set C = {c1, c2, · · · , cK}767

with preference profile P and this matching market has stable matching m∗. If there is a cycle768

s1 ≻c1 s2 ≻c2 s1, for this stable matching m∗ containing (s1, c1), (s2, c2), when other matching769

pairs remain unchanged, (s2, c1), (s1, c2) with other pairs can lead to a new stable matching. Thus770

the uniqueness is violated, and then α̃-condition is also violated.771

Conversely, we consider a counterexample that Acyclicity∗ holds while α̃-condition may not hold.772

From Table 2, we now explain that a market with arms c1, c2, c3, agents s1, s2, s3, s4, s5, and capacity773

q = (2, 1, 2) with preference (2(a)) and (2(b)) satisfies Acyclicity∗ and can lead to a unique stable774

matching but does not satisfy α̃-condition. We run GS Algorithm in many-to-one market and775

obtain stable matching {(c1; s2, s5), (c2; s1), (c3; s3, s4)}. And Acyclicity∗ is easily verified. After776

eliminating (c3; s3, s4), only s1, s2, s5, c1, c2 remain in the system, and then the preference profile777

is represented as (2(c)) and (2(d)) in Table 2. Apparently, this preference can produce two stable778

matching. Thus, α̃-condition is violated.779

Theorem 5. Suppose that (K,J ,P) are arbitrarily fixed. Pc and Ps are the preference profiles of780

arms and agents respectively. Then, Pc satisfies Acyclicity∗ if and only if there is a unique stable781

matching in many-to-one setting for each Ps.782

6The responsive preference here means that if only one student in the two matchings is different, the college
prefers the matching containing the preferred student.
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Table 2: Preference Profiles

(a) Exm3: Arms
c1 : s1 > s2 > s5 > s3 > s4
c2 : s2 > s1 > s4 > s3 > s5
c3 : s1 > s3 > s2 > s4 > s5

(b) Exm3: Agents

s1 : c2 > c3 > c1
s2 : c1 > c2 > c3
s3 : c3 > c1 > c2
s4 : c1 > c2 > c3
s5 : c1 > c2 > c3

(c) Exm3: Arms
c1 : s1 > s2 > s5
c2 : s2 > s1 > s5

(d) Exm3: Agents

s1 : c2 > c1
s2 : c1 > c2
s5 : c1 > c2

Proof. In order to prove this theorem, we first introduce a lemma.783

Lemma 8. For a given P , suppose that there are two stable matchings under P: µ, µ′, then [2]784

• |µ(s)| = |µ′(s)| for each s ∈ J and |µ(c)| = |µ′(c)| for each c ∈ K.785

Moreover, for each c ∈ K with µ′(c) ̸= µ(c),786

• |µ(c)| = |µ′(c)| = qc;787

• µ(c)\µ′(c) ̸= ∅ and µ′(c)\µ(c) ̸= ∅;788

• if µ′(c) ≻c µ(c), then for each s′ ∈ µ′(c) and s ∈ µ(c)\µ′(c), {s′} ≻c {s}.789

⇒) : Necessity: We complete this proof by contradiction. Suppose there are at least two distinct790

stable matchings under P . From GS algorithm [12], there exists optimal matchings µs and µc, s.t.791

µc ≻c µ
s and µs ≻s µ

c. Under the multi-stability assumption, µs ̸= µc. Then, ∃c0 ∈ K, s.t.792

µs(c0) ̸= µc(c0), and by the optimality of µc, µc(c0) ≻c0 µ
s(c0). Consider the following algorithm:793

• Step 1: Choose c1 ∈ K, such that µs(c1) ̸= µc(c1) and choose s2 ∈ J , such that794

s2 ∈ µc(c1)\µs(c1). Choose c2 ∈ K\{c1}, {c2} = µs(s2). Go to step 2;795

• Step k (k ≥ 2): Choose sk+1 ∈ J , such that sk+1 ∈ µc(ck)\µs(ck) and ck+1 ∈ K\{ck},796

s.t. {ck+1} = µs(sk+1). If ck+1 ∈ {c1, c2, · · · , ck}, then the algorithm terminates. If not,797

go to the next step.798

• Result: If the algorithm terminates at Step ℓ (ℓ ≥ 2) with cℓ+1 = cj(j ≥ 1), then the result799

is:800

Given the students {sj+1, sj+2, · · · , sℓ+1} and the college {cj , cj+1, · · · , cℓ}, there is a801

cycle: sℓ+1 ≻cℓ sℓ · · · · · · sj+2 ≻cj+1
sj+1 ≻cj sj , then condition (P ) is satisfied. Let802

Tk = µc(ck)\{sk}, k ∈ {j, j + 1, · · · , ℓ}, since each agent ultimately matches only one803

arm, µc(cj), µ
c(cj+1), · · · , µc(cℓ) are mutually disjoint, then Tj , Tj+1, · · · , Tℓ are disjoint.804

And by the definition of Tk, k ∈ {j, j + 1, · · · , ℓ}, Tk does not contain any agent in805

{sj+1, sj+2, · · · , sℓ+1}. By the second property in Lemma 8, |Tk| = qck − 1 and by the806

last property, Tk ⊂ Uck(sk).807

Hence, there is a cycle (Definition 10), which induces a contradiction.808

⇐) : Sufficiency: Assume that there exists a cycle sℓ+1 ≻cℓ sℓ · · · s3 ≻c2 s2 ≻c1 s1, sℓ+1 ≡ s1,809

and |Ti| = qci − 1, Tci ⊆ Uci(si), then we construct preference profiles for both arms (Figure B.2.4)810

and agents (Figure B.2.4):811

Then we can find two distinct matchings µc and µs (Figure B.2.4 and Figure B.2.4), which induce a812

contradiction.813

814
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Table 3: Preference Profile of K.

note c1 c2 · · · · · · cℓ−1 cℓ cℓ+1 · · · · · · ck
1 s2 s3 · · · · · · sℓ s1 ∗ · · · · · · ∗
2 sℓ+2 sℓ+2 · · · · · · sℓ+2 sℓ+2 ∗ · · · · · · ∗
...

...
... · · · · · ·

...
...

... · · · · · ·
...

sℓ+1+q1

... · · · · · · sℓ+1+qℓ−1

...
... · · · · · ·

...

qi sℓ+1+q2 · · · · · ·
... sℓ+1+qℓ

... · · · · · ·
...

sℓ+2+q1 sℓ+2+q2 · · · · · · sℓ+2+qℓ−1
1sℓ+2+qℓ · · · · · ·

sℓ+3+q1 sℓ+3+q2 · · · · · · sℓ+3+qℓ−1
1sℓ+3+qℓ · · · · · ·

...
... · · · · · ·

...
... · · · · · ·

sN sN · · · · · · sN sN · · · · · ·
The remaining s1 s1 · · · · · · s1 s2

of {sℓ} s3 s2 · · · · · · s2 s3

are ranked
... s4 · · · · · ·

...
...

at last
...

... · · · · · ·
...

...
sℓ sℓ · · · · · · sℓ−1 sℓ

Table 4: Preference Profile of J .

s1 s2 · · · · · · sℓ−1 sℓ sℓ+1 · · · · · · sN
c1 c2 · · · · · · sℓ−1 s1 ∗ · · · · · · ∗
cℓ c1 · · · · · · cℓ−2 cℓ−1 ∗ · · · · · · ∗
...

... · · · · · ·
...

...
... · · · · · ·

...
[K]\{c1, cℓ} [K]\{c2, c1} · · · · · · [K]\{cℓ−1, cℓ−2} [K]\{cℓ, cℓ−1} ∗ · · · · · · ∗

Table 5: µc.

c1 c2 · · · · · · cℓ−1 cℓ cℓ+1 · · · · · · cK
s2 s3 · · · · · · sℓ s1 ∗ · · · · · · ∗
∗ ∗ · · · · · · ∗ ∗ ∗ · · · · · · ∗

Table 6: µs.

c1 c2 · · · · · · cℓ−1 cℓ cℓ+1 · · · · · · cK
s1 s2 · · · · · · sℓ−1 sℓ ∗ · · · · · · ∗
∗ ∗ · · · · · · ∗ ∗ ∗ · · · · · · ∗

C More Discussions about Our Work815

C.1 Stability in Many-to-one Setting816

Stable matchings are always exist in one-to-one market [12] while the answer is not necessarily817

correct under many-to-one setting [32]. [32] points out that responsive preference (RP) that can818

refrain from this unexpectation. Our work assume that arm preference profiles are over individuals819

rather than agents sets, which naturally satisfies RP [35]7.820

7This assumption [32, 2, 3] in our setting states that the addition of another agent pi′′ will not influence the
preference ranking for an arm to agent pi and pi′ , i.e. pi′′ ∪ pi ≻aj pi′′ ∪ pi′ is equivalent to pi′ ≻aj pi
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C.2 Some Details about Algorithm821

Multi-phases to Reduce Collisions In previous work, the CA-UCB algorithm [22] was proposed822

to manage conflicts in the decentralized market combined with the bandit algorithm, but it has823

limitations for more general preference structures. In CA-UCB, if we set the delay probability for all824

agents as zero, then agents may fall into infinite loops and cause high regret. To avoid linear regret,825

the paper of [34] applies a phased UCB algorithm with arm elimination in the one-to-one setting.826

Our MO-UCB-D4 algorithm in many-to-one matching is also carried out in multi-phases for conflict827

management. The multi-phases is to guarantee that the active set in different phases has no inclusion828

relationship so that if an agent deletes an arm in a phase, this arm can still be selected in the later829

phases. This ensures when the agent wrongly deletes an arm, it will not lead to linear regret.830

Parameter Selection and Scale The parameter θ ∈ (0, 1/K) in our MO-UCB-D4 algorithm is831

chosen for the local deletion threshold. Increasing the threshold leads to higher regret until local832

deletion vanishes. This happens as more collisions are allowed until an arm is deleted. But higher833

threshold allows for quick detection of the stable matched arms. However, decreasing the threshold834

results in a more aggressive deletion and then lower regret from collision each phase, at a cost of835

longer detection time for the stable matched arms. Therefore, there is a trade-off when choosing θ836

and we can design an algorithm to iteratively update θ based on the previous information.837

Baseline experimental design Although our work mainly focuses on theory and therefore we did838

not put much emphasis on the experimental evaluation, we still carefully design our experiments to839

test the robustness of our algorithm across different environments. Since our work is the first one to840

study the many-to-one setting with uniqueness conditions, there is indeed no comparable baselines.841

It is possible to design some sub-optimal algorithms in which each agent runs a MAB algorithm842

independently and there is no communication block among agents. However, such algorithm may not843

find the stable matching and thus suffers a linear regret.844

Optimality of our bound and the lower bound Recall that our bound is O(NK log(T )
∆2 ). There845

exists a lower bound of O( log(T )
∆2 ) under the setting where arms have the same and known preferences846

[34], which is a special case of our setting. Our bound is optimal in terms of T and ∆. For N ,847

since each agent j needs to face collisions from non-dominated arms and other agents, regret is848

bounded over the summation of agents and thus leads to the term O(N). Usually in a multi-player849

decentralized setting [5, 30], each agent will suffer regret of term N since it will be collided with850

other agents. Thus we conjecture such N is unavoidable. For K, since in decentralized setting, agents851

have no knowledge of arm preference, each agent needs to try each O(log(T )/∆2) times to identify852

the stable matched arm. And it may get collided when pulling the other agent’s stable matched arm,853

thus leading to the term K. K might be removed for those agents who may never get collisions due854

to special market structure.855

C.3 Strict Preference and “Indifferent Agents”856

Our work focuses on strict preference rather than the more general case that considering indifferent857

agents. As far as we know, a lot of works studying the traditional (offline) matching markets would858

assume preferences to be strict [12, 19, 15, 25, 2], perhaps due to the reason of simplicity. Our work859

mainly follows these existing settings of the offline matching markets [12, 19, 15, 25, 2] and the860

bandit learning on the one-to-one matching markets [7, 21, 34, 22] that assume strict preferences.861

Note that if the agents are indifferent (or nearly indifferent) over the arms that are far down the862

ranking lists and do not affect the stable matching, our algorithm and analysis can actually go through.863

The gap appeared in the regret bound actually depends only on the those “(nearly) optimal” arms that864

appear in the stable matching or are the best among those not appeared in the stable matching.865

Recall that our setting is to learn a particular stable matching, like previous works [7, 21, 34, 22]866

learning the unique, or agent-pessimal/optimal stable matching on the one-to-one setting. Under this867

objective, if the agents are nearly indifferent, not exactly indifferent, over “(nearly) optimal” arms,868

no matter how small the gap is, the agents will need to figure out the which arm is better and the869

gap appears as the learning hardness. This phenomenon is common in multi-armed bandits where870

differentiating the optimal arm and the second optimal arm is the most difficult part of the learning.871
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Then one might be curious about the objective to learn a “nearly stable matching”. This would be872

more general and would prefer to leave it as interesting future work.873

For the case when agents are exactly indifferent on “(nearly) optimal” arms, the stable matchings874

would not be unique. In this case, the communication block and the global deletion set of our875

algorithm need to be revised to allow each agent to keep more than one stable matched arm. Note876

that after this revision, the selected matching will not become fixed during interactions and will877

switch between all optimal stable matchings since the learning algorithm needs to continue exploring878

these arms to take precautions against the case of small gap. This will result in a phenomenon of879

fast-changing matching-selections, compared with our setting and most previous works [7, 21, 34, 22]880

where the learning algorithm tends to stick on a specific matching in the latter learning period.881

C.4 Future Directions for Many-to-one Setting882

First, we propose some interesting directions about setting. This paper considers preference over883

individuals rather than agents sets. For example, when the first and fourth employees have cooperation884

experience and the second and third employees have no cooperation experience before, the company885

may prefer to recruit 1-st and 4-th together rather than 1-st, 2-nd or 2-nd, 3-rd. That is, 1, 4 ≻k 2, 3886

may occur for arm k and 1, 2, 3, 4 ∈ [N ]. Further research can also take this combination effect as887

the starting point. We assume that the preferences over agents for arms are known in our setting8.888

When multiple agents are accepted by one arm simultaneously, the ranking of these agents cannot be889

judged if under the assumption of unknown preference ranking. Therefore, the algorithm for rank890

estimation still needs further design. And our work is based on fixed finite agents set and arms set,891

thus how to generalize this setting to a dynamic one?892

8The preference profile over arms for agents is unknown in our setting, and needed to be learned.
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