
Published as a conference paper at ICLR 2025

NEWTON MEETS MARCHENKO-PASTUR: MASSIVELY
PARALLEL SECOND-ORDER OPTIMIZATION WITH
HESSIAN SKETCHING AND DEBIASING

Elad Romanov, Fangzhao Zhang, and Mert Pilanci
Stanford University
{eromanov,zfzhao,pilanci}@stanford.edu

ABSTRACT

Motivated by recent advances in serverless cloud computing, in particular the
“function as a service” (FaaS) model, we consider the problem of minimizing
a convex function in a massively parallel fashion, where communication between
workers is limited. Focusing on the case of a twice-differentiable objective subject
to an L2 penalty, we propose a scheme where the central node (server) effectively
runs a Newton method, offloading its high per-iteration cost—stemming from the
need to invert the Hessian—to the workers. In our solution, workers produce inde-
pendently coarse but low-bias estimates of the inverse Hessian, using an adaptive
sketching scheme. The server then averages the descent directions produced by
the workers, yielding a good approximation for the exact Newton step. The main
component of our adaptive sketching scheme is a low-complexity procedure for
selecting the sketching dimension, an issue that was left largely unaddressed in
the existing literature on Hessian sketching for distributed optimization. Our so-
lution is based on ideas from asymptotic random matrix theory, specifically the
Marchenko-Pastur law. For Gaussian sketching matrices, we derive non asymp-
totic guarantees for our algorithm which do not depend on the condition number
of the Hessian nor a priori require the sketching dimension to be proportional to
the dimension, as is often the case in asymptotic random matrix theory. Lastly,
when the objective is self-concordant, we provide convergence guarantees for the
approximate Newton’s method with noisy Hessians, which may be of independent
interest beyond the setting considered in this paper.

1 INTRODUCTION

Consider minimizing a convex, twice-differentiable function F : Rd → R, subject to an L2 regular-
ization penalty:

min
θ∈Rd

F (θ) +
λ

2
∥θ∥2 , (1)

where λ > 0. Such problems frequently appear in machine learning and statistics. Common ex-
amples include ridge regression, logistic regression with regularization, support vector machines
(SVMs) and kernel machines, among others (Hastie et al., 2009).

Consider a scenario where a large number of workers (processors) are available to collaboratively
solve (1), with the assumptions that each worker (i) has full access to the objective function; (ii) op-
erates with limited individual computational resources; and (iii) cannot communicate directly with
other workers, only with a central server, with the latter responsible for orchestrating the work of the
workers (a “star” network topology). This setting is motivated by recent developments in serverless
cloud computing, particularly the ”function as a service” (FaaS) model (Jonas et al., 2017). Server-
less computing and FaaS are well-suited for computing gradients and Hessians on large datasets,
enabling parallelization of these computations across a large number of workers. Additionally, this
approach provides resilience to failed or straggler workers, ensuring robust and efficient processing
(Bartan & Pilanci, 2019). In designing a solution of this setting, we are essentially guided by two
key principles: (a) minimizing the number of communication or worker deployment rounds, with

1

Published as a conference paper at ICLR 2025

each round utilizing a large number of workers in parallel; and (b) reducing the computational load
on individual workers by distributing smaller tasks across many workers concurrently.

This paper proposes and analyzes a scheme for solving (1) in a massively parallel manner. In our
scheme, the server aims to solve (1) using Newton’s method, a second-order iterative algorithm
which is known to converge extremely fast for sufficiently smooth and strongly convex objectives
(quadratic convergence rate). Its fast convergence is attained by incorporating curvature (Hessian)
information when searching for a descent direction, and specifically requires an inverse Hessian-
gradient product at every iteration. This a priori results in massive per-iteration computational cost:
exactly computing the descent direction (assuming the Hessian is accessible) costs practicallyO(d3)
flops; in high-dimensional problems (large d), this may be prohibitively expensive.

We wish to offset the high per-iteration cost of Newton’s method, by deploying many workers in
parallel to collaboratively compute the Newton direction. In the setting we consider, workers cannot
easily communicate with one another, and therefore directly inverting the Hessian by is not feasible.
In our scheme, each worker independently computes a coarse but unbiased estimate of the exact
Newton direction, using randomized sketching. These estimates are then aggregated (averaged) at
the server, producing a good approximation of the true Newton step.

Newton’s method: The exact Newton method for minimizing (1) has the following form:

θt = θt−1 − αtWtgt, (t = 1, . . . , T) , (2)

where αt is a step size (typically chosen by line search) and the gradient and inverse Hessian are

gt := ∇F (θt−1) + λθt−1, (3)

Wt := (Ht + λI)−1, Ht := ∇2F (θt−1) . (4)

For sufficiently smooth convex objectives F , Newton’s method is known to converge at a quadratic
rate: T = O(log log(1/ε)) iterations are sufficient to approach the minimum within error ε, as
opposed to T = O(log(1/ε)) for gradient descent and its accelerated variants; see (Boyd & Van-
denberghe, 2004, Chapter 9). A fast convergence rate is highly desirable in our setting, as the number
of iterations corresponds directly to communication/worker deployment rounds.

In our scheme, the server effectively runs the Newton method with an approximate inverse Hessian:

θt = θt−1 − αtW̄tgt, (5)

where W̄ is obtained by averaging q independent local estimates produced by the workers:1

W̄ :=
1

q

q∑
k=1

Ŵ
(k)
t . (6)

Debiased inverse Hessian sketching: We wish to avoid directly inverting the full d× d Hessian,
which practically (when done exactly) costs O(d3). To this end, we have every worker compute, in
parallel, a cheap but low-bias estimate of the inverse Hessian by sketching. Specifically, at every
deployment round, every worker independently samples a random sketching matrix S ∈ Rm×d

(where m < d), and approximates the inverse Hessian by its sketched version

Ŵ = S⊤(SHS⊤ + λ̃I)−1S, (7)

where λ̃ > 0 is a modified regularization parameter. Sketches of the type in (7) have been stud-
ied before in the literature (also in the context of high-dimensional regression and optimization).
Variations have appeared under various names: “dual sketching” (Zhang et al., 2013), “sketch-and-
project” (Gower & Richtárik, 2015), “right-sketch” (Murray et al., 2023), and “feature sketching”
(Patil & LeJeune, 2023). Note that the cost of forming Ŵg is O(m3 +M), where M is the cost
of multiplying SHS⊤. In this paper, we exclusively consider the case where S is a random dense
matrix with i.i.d. entries.2 In this case M = d2m, which dominates the overall per-iteration cost.
Naturally, we are particularly interested in settings where m can be chosen very small compared to
d, so that cost, O(d2m), is substantially smaller than O(d3).

1In practice, the workers send the vector Ŵ (k)gt ∈ Rd to the server, rather the whole matrix Ŵ (k) ∈ Rd×d.
2By “dense”, we mean that S has Ω(md) many non-zero entries typically, though it’s not necessary that all

the entries, or even a majority of them, are non-zero.

2

Published as a conference paper at ICLR 2025

Remark 1.1. In this paper we do not assume any particular form for H (i.e., that it is readily fac-
torizable H = X⊤X , X ∈ RN×d, a setting which is quite common in the sketching and distributed
optimization literature; for example (Pilanci & Wainwright, 2015)). In fact, sketched measurements
SHS⊤ may be obtainable even in settings when F is not available in analytic form, but only through
a program (oracle) that calculates it - for example by automatic differentiation (Paszke et al., 2017).

A key question is how to choose m (and in accordance λ̃). Define the λ- effective dimension of H ,3

dH(λ) := tr(H(H + λI)−1). (8)

As we shall see in Section 2, results from asymptotic random matrix theory imply that, when S is
an i.i.d. dense sketching matrix and provided that m > dH(λ), the choice

λ̃ := λ

(
1− 1

m
dH(λ)

)
(9)

results in Ŵ which is a low-bias estimator of the true inverse Hessian W . Note that exactly comput-
ing the effective dimension is resource-intensive, and essentially requires inverting the Hessian—
the very operation we wanted to avoid. A key component of our proposed scheme is a novel
low-complexity procedure, based on ideas from asymptotic random matrix theory, for adaptively
selecting m = O(dH(λ)) and λ̃, by only observing sketched measurements of H .
Remark 1.2. When H is effectively low-rank, that is, it exhibits fast spectral decay, dH(λ) may
be much smaller than d. For example, when the spectrum has power decay λk(H) ∝ k−α and
λ = O(1), dH(λ) = O(d1−α) when α < 1, dH(λ) = O(log d) when α = 1 and dH(λ) = O(1)
when α > 1. Hessian spectral with power decay are common in regression problems involving
kernels (Wainwright, 2019; Yang et al., 2017).

Outline and Contributions:

• In Section 2 we review fundamental results from asymptotic random matrix theory (RMT), specif-
ically the Marchenko-Pastur law and its formulation using deterministic equivalents, and demon-
strate how they lead naturally to an asymptotically unbiased inverse Hessian estimator, from
i.i.d. sketching matrices S. The connection to the Marchenko-Pastur law treats in a uniform
framework—and recovers almost immediately—earlier results on Hessian sketch debiasing for
distributed Newton methods (Derezinski et al., 2020; Zhang & Pilanci, 2023).

• In Section 3 we propose a novel data-driven method for selectingm and λ̃ using only the sketched
Hessian, avoiding the need to compute the effective dimension exactly. The approach is a natural
outgrowth of the RMT framework described previously, and is fully adaptive: no tuning param-
eters are needed. Section 3.1 further provides non-asymptotic error guarantees for our method,
focusing on the case where S is an i.i.d. Gaussian matrix. Notably, the error bounds obtained in
this setting do not depend on the Hessian’s condition number, nor require m to be proportional to
d in any particular way (in RMT, such bounds are sometimes called “dimension-free”).

• In Section 4 we derive convergence guarantees for the Newton method with inexact Hessians; to
wit, when the exact inverse Hessian W in (2)-(4) is replaced by an η-accurate estimate W̄ . By
ensuring a sufficiently small η, the algorithm achieves an arbitrarily fast linear convergence rate.
Our results are proved for self-concordant functions F (·), and to our knowledge are novel and
may be of independent interest. Combined with the results of the previous section, we obtain a
non-asymptotic, end-to-end convergence guarantee for the entire parallel method (with Gaussian
sketches), which remarkably does not depend on the condition number of the Hessians.

• Lastly, Section 5 is dedicated to experiments, on both synthetic and real-world data.

1.1 RELATED WORKS

Distributed second-order optimization methods have been widely studied for large-scale machine
learning. Notable examples include DANE (Shamir et al., 2013), which addresses communication
efficiency, AIDE (Reddi et al., 2016), designed for accelerated convergence, and DiSCO (Zhang &
Lin, 2015), which focuses on distributed second-order methods for convex optimization problems.

3dH(λ) is also called the “effective degrees of freedom” in ridge regression (Hastie et al., 2009), when the
design matrix X ∈ RN×d is H = X⊤X .

3

Published as a conference paper at ICLR 2025

The most closely related body of literature to our work centers around the averaging of inexact
Newton steps, which has proven effective when combined with randomized linear algebra. GIANT
(Wang et al., 2017) uses the average of local Newton steps as the global step and Determinan-
tal Averaging (Derezinski et al., 2020) provides an unbiased averaging technique for distributed
Newton methods. Surrogate sketching (Derezinski et al., 2020) was introduced for distributed New-
ton’s method, revealing improvements via a simple shrinkage strategy. The work (Zhang & Pilanci,
2023) introduced an optimal debiasing method for distributed Newton’s method when the effective
dimension of the Hessian is known. We remark that the setting being addressed in distributed
optimization is typically different than ours: in the former, the objective (which is often the empir-
ical loss over a data set, i.e. in federated learning (Kairouz et al., 2021)) is spread over different
machines, with the goal of minimizing the overall transfer of data between machines. In constrast,
in our setting all machines have access to the full data, and the goal is to leverage parallelism to
reduce the overall runtime and number of deployment rounds. The literature on distributed opti-
mization, and distributed second-order methods in particular, is vast and growing; additional recent
references include (Safaryan et al., 2022; Agafonov et al., 2022; Qian et al., 2022; Elgabli et al.,
2022; Bischoff et al., 2021), among others. Lastly, there exists a large related corpus of works
in optimization involving Hessian subsampling or sketching, for cases where the Hessian admits
a good low-rank approximation, though not necessarily in a distributed setting. Examples include
(Roosta-Khorasani & Mahoney, 2019; Gower et al., 2019; Frangella et al., 2022), among others.
The basic idea of approximating the Hessian in second-order optimization (quasi-Newton methods)
is essentially classical, cf. the book (Nocedal & Wright, 1999). Additional recent references explor-
ing related themes include (Gupta et al., 2018; Vyas et al., 2024; Jahani & Rusakov, 2022; Doikov
et al., 2023; Na et al., 2022), among many others.

2 DEBIASING FROM I.I.D SKETCHES AND RANDOM MATRIX THEORY

This section concerns inverse sketched Hessian debiasing for sketches S ∈ Rm×d which have i.i.d.
entries with mean zero E[Sij] = 0. We normalize the variance as E[Sij]2 = 1/m; this normalization
is such that E[S⊤S] = I , equivalently, S : Rd → Rm is an isometry in expectation.

Let H ⪰ 0 be a positive definite matrix (e.g., the full Hessian at the current iteration). The spectral
properties of the matrix SHS⊤ ∈ Rm×m, which appears in the sketch (7), are of utmost impor-
tance for what follows. Note that this matrix has the same non-zero eigenvalues4 as the matrix
H1/2S⊤SH1/2: the latter is a sample covariance matrix (making the analogy explicit: m is the
number of samples, H is the population covariance, and xi :=

√
mH1/2ri are independent “sam-

ples”, r1, . . . , rm being the rows of S); accordingly, SHS⊤ is sometimes called the companion sam-
ple covariance. Sample covariance matrices, and their spectral properties, have been a central object
of investigation in random matrix theory (RMT); cf. (Bai & Silverstein, 2010). A foundational re-
sult is the Marchenko-Pastur law (Marčenko & Pastur, 1967), which describes the high-dimensional
global behavior of the eigenvalues of H1/2S⊤SH1/2 (limiting spectral distribution).

The Marchenko-Pastur equation: For5 z ∈ C+ let s(z) ∈ C+ be the unique solution of

1

s(z)
= −z + 1

m
tr
(
H(I + s(z)H)−1

)
(10)

subject to the constraint s(z) ∈ C+. It is known that (see (Bai & Silverstein, 2010)) s(z) is the
Stieltjes transform6 of a compactly supported probability measure, whose support lies in R≥0; this
measure is the (companion) Marchenko-Pastur law associated with the population covariance H
(and depends only on its eigenvalues) and the number of samples m. Moreover: 1) The function
z 7→ s(z) extends continuously to R, except possibly at z = 0; 2) for x ∈ R outside the support, the
function x 7→ s(x) is increasing; in particular, for negative x < 0, it is positive and increasing. In
this paper, we shall restrict our attention to only negative real valued z in (10), understanding that it

4This is a standard consequence of the elementary determinant identity det(I +AB) = det(I +BA).
5Here C+ is the complex upper halfplane, ℑ(z) > 0.
6For a finite measure µ on R, its Stieltjes transform is the function sµ : C+ → C+ given by sµ(z) =∫
1

x−z
dµ(x). Using the Stieltjes inversion formula, the measure µ can be recovered from sµ in the following

sense: for every φ(·) bounded and continuous,
∫
φ(t)dµ(t) = limη→0+

1
π

∫
φ(x)ℑsµ(x+ iη)dx.

4

Published as a conference paper at ICLR 2025

holds also for z < 0 real. For more details, cf. (Silverstein & Choi, 1995; Bai & Silverstein, 2010).
Finally, note that the function z 7→ s(z) is invertible, the inverse function given by

Ψ(s) =
1

m
tr(H(I + sH)−1)− 1

s
. (11)

The Marchenko-Pastur equation (10) may equivalently be written as z = Ψ(s(z)).

In RMT, it is typical to consider the proportional growth asymptotic regime: m, d→ ∞,m = Θ(d).

Definition 1. For (small) constant τ > 0, assumption set [Asymp(τ,H, ξ)] holds if: (1) bounded
aspect ratio (proportional growth): τ < m

d < 1/τ ; (2) bounded operator norm: ∥H∥ < 1/τ ; (3)
H is invertible; (4) H has non-degenerate spectrum: at least τd eigenvalues are larger than τ .(5)√
mSij ∼ ξ, with their law ξ, satisfying: E[ξ] = 0, E[ξ2] = 1, and E[|ξ|k] <∞ for all k > 0.

Denote by ŝ(z) the Stieltjes transform of the empirical eigenvalue distribution of SHS⊤:

ŝ(z) =
1

m
tr(SHS⊤ − zI)−1 =

1

m

m∑
i=1

1

λi(SHS⊤)− z
. (12)

Note that ŝ(z) is a random function, since S is random. The following is a (quantitative) statement
of the Marchenko-Pastur law (Knowles & Yin, 2017); for simplicity, we focus on the case z < 0.

Theorem 2.1. Set η,D > 0. Assume [Asymp(τ,H, ξ)]. W.p. 1 − O(m−D), simultaneously for all
−1/τ ≤ z ≤ −τ ,

|̂s(z)− s(z)| = O
(
m−1/2+η

)
. (13)

The constants in the O(·) notation depend on τ, η,D.

Proof. See Theorem 3.7 and Remark 3.10 in (Knowles & Yin, 2017).

Deterministic equivalent for the sample covariance: The Marchenko-Pastur law (Theorem 2.1)
describes the eigenvalue distribution of SHS⊤, equivalently H1/2S⊤SH1/2, and relates it to that
of H (the connection made via the Marchenko-Pastur equation (10)). One can show something
stronger: the entire (random) resolvent (H1/2S⊤SH1/2 − zI)−1 is in fact close (entrywise, not in
operator norm) to the resolvent of H (which is deterministic), with appropriate shifting and shrink-
age. A result of the following kind is sometimes referred to in the RMT literature as a “deterministic
equivalent”, cf. (Couillet & Debbah, 2011; Bai & Silverstein, 2010).

Theorem 2.2. Set η,D > 0. Assume [Asymp(τ,H, ξ)]. For any u, v ∈ Rd, ∥u∥, ∥v∥ = 1, the
following holds. W.p. 1−O(m−D), simultaneously for all −1/τ−1 ≤ z ≤ −τ ,

u⊤(H1/2S⊤SH1/2 − zI)−1v = u⊤(−zs(z)H − zI)−1v +O(m−1/2+η). (14)

Above, the constants in the O(·) notation depend on τ, η,D and are uniform in u, v. In particular,∥∥∥E [(H1/2S⊤SH1/2 − zI)−1
]
− (−zs(z)H − zI)−1

∥∥∥ = O(m−1/2+η) (15)

Proof. See Eq. (3.3) and Theorem 3.7 in (Knowles & Yin, 2017).

Deterministic equivalent for the sketched Hessian: Recently, a deterministic equivalent for the
sketched matrix (7) was obtained by (LeJeune et al., 2022). We cite a quantitative version of their
result (LeJeune et al., 2022, Theorem 4.1).

Theorem 2.3. Set η,D > 0. Assume [Asymp(τ,H, ξ)], and furthermore λrank(H)(H) ≥ τ . For
any u, v ∈ Rd, ∥u∥, ∥v∥ = 1, w.p. 1−O(m−D), simultaneously for all −1/τ ≤ z ≤ −τ ,

u⊤S⊤(SHS⊤ − zI)−1Sv = u⊤(H − (s(z))−1I)−1v +O(m−1/2+η). (16)

In particular, ∥∥E [S⊤(SHS⊤ − zI)−1S
]
− (H − (s(z))−1I)−1

∥∥ = O(m−1/2+η). (17)

5

Published as a conference paper at ICLR 2025

Proof. The result is a consequence of Theorem 2.2; for completeness, let us repeat the argument
of (LeJeune et al., 2022), assuming H is full rank (see their paper for a generalization). Denote
ũ := H−1/2u, ṽ := H−1/2v, so that ∥ũ∥, ∥ṽ∥ ≤ 1/

√
τ = O(1). We have w.p. 1−O(m−D),

u⊤S⊤(SHS⊤ − zI)−1Sv = ũ⊤H1/2S⊤(SHS⊤ − zI)−1SH1/2ṽ

= ũ⊤(H1/2S⊤SH1/2 − zI)−1H1/2S⊤SH1/2ṽ = ũ⊤ṽ + zũ⊤(H1/2S⊤SH1/2 − zI)−1ṽ

= ũ⊤ṽ − ũ⊤(s(z)H + I)−1ṽ +O(m−1/2+η) = u⊤(H + (s(z))−1I)−1v +O(m−1/2+η).

3 AN ADAPTIVE SKETCHING AND DEBIASING PROCEDURE

Theorem 2.3 suggests a clear path for obtaining a low-bias estimate of the inverse Hessian from the
sketch (7), namely: one should choose λ̃ > 0 such that s(−λ̃) = 1/λ, when such a root exists.

Lemma 3.1. A solution λ̃ > 0 satisfying s(−λ̃) = 1/λ exists if and only if m > dH(λ). When this
is the case, λ̃ is given by (9).

Proof. By merit of being the Stieltjes transform of a finite measure supported on R≥0, s(·) maps
bijectively (−∞, 0) to (0, s(0)), hence a solution λ̃ > 0 exists if and only if s(0) > 1/λ. Taking the
limit z → 0+ in (10), we find (after routine algebraic manipulation) that s(0) solves dH(1/s(0)) =
m. Since the function µ 7→ dH(µ) is decreasing for positive µ, we deduce that 1/s(0) < λ if and
only if m > dH(λ). When this is the case, λ̃ = Ψ(1/λ) where Ψ is the explicit inverse (11).

Remark 3.2. Earlier works on distributed Newton’s method (Derezinski et al., 2020; Zhang &
Pilanci, 2023), considered debiasing for a closely related but different Hessian sketch. Specifically,
they assume the Hessian has the form H = X⊤X where X ∈ RN×d; such Hessians naturally
appear in machine learning problems, for example in the (reguarlized) empirical loss minimization
for a generalized linear model (GLM). (Zhang & Pilanci, 2023) considered (among others), the
sketch X⊤S⊤SX , and calculated the appropriate shrinkage factor for asymptotically debiasing
the inverse: (γX⊤S⊤SX + λI)−1 ≃ (H + λI)−1 where γ := 1/

(
1− 1

mdH(λ)
)
, provided that

m > dH(λ), under an asymptotic setting as in Theorem 2.2 (though without making the connection
to the Marchenko-Pastur law explicit). In the scheme they considered, the effective dimension was
assumed to be known. We remark that Theorem 2.2 holds verbatim if H1/2 is replaced by X⊤,
and the ratio τ < d/N < 1/τ is bounded (Knowles & Yin, 2017). Rewritting (15) as (H +

(s(z))−1I)−1 ≃
(
(−zs(z))−1X⊤S⊤SX + (s(z))−1I

)−1
, setting z = −λ̃ recovers their proposed

shrinkage factor. Accordingly, the adaptive procedure we propose below applies to that sketching
scheme as well, with the obvious modifications.

Note that we do not have access to the function s(·) directly (to calculate it numerically via (10), one
needs to invert the full Hessian)—but we can estimate it from the sketched measurements SHS⊤,
using Theorem 2.1. Accordingly, we can estimate λ̃ by the solution λ̂ of the (random) equation

ŝ(−λ̂) = 1/λ, λ̂ > 0, (18)

if it exists. To have λ̂ ≈ λ̃, we need that m > dH(λ), and we do not know this a priori - therefore
we also need a way to select large enough m prior to solving (18). Moreover, to ensure small error
in Theorems 2.1-2.3, one needs to work with z bounded away from 0. As λ̃ = λ(1 − 1

mdH(λ)),
to ensure that this is Ω(λ) we need to have m ≥ (1 + Ω(1))dH(λ). Specifically, we shall aim to
choose m between 1.5dH(λ) ≤ m ≤ 4dH(λ), the constants chosen somewhat arbitrarily.

Testing for a good m. We devise a test that, given m, with high probability: (a) rejects if m <
1.5dH(λ); and (b) accepts if m ≥ 2dH(λ). Set z0 = −5λ/12. The tests accepts if ŝ(z0) > 1/λ,
and rejects otherwise.
If m < 1.5dH(λ) then either there is no solution λ̃ > 0 to s(−λ̃) = 1/λ, or there is one, specifically
λ̃ = λ(1 − 1

mdH(λ)) ≤ λ/3 < −z0. Since z 7→ s(z) is positive and increasing for z < 0,
necessarily s(z0) < s(−λ̃) = 1/λ. Provided that m is large enough, w.h.p. ŝ(z0) < 1/λ as well,

6

Published as a conference paper at ICLR 2025

hence the test rejects.
If m ≥ 2dH(λ) then λ̃ = λ(1 − 1

mdH(λ)) ≥ λ/2 > −z0, hence s(z0) > s(−λ̃) = 1/λ. Provided
that m is large enough, w.h.p. ŝ(z0) > 1/λ as well, hence the test accepts.

Searching for m by doubling. Start with m = m0 large enough; proceeds iteratively, doubling
m after each iteration m := 2m. At every iteration, apply the above test, halting if it accepts and
continuing if it rejects. W.h.p., (a) we do not halt on any m < 1.5dH(λ); (b) we halt on the first m
satisfying m ≥ 2dH(λ), and therefore return m satisfying m ≤ 4dH(λ).

Computational complexity. W.h.p., the doubling procedure stops within log2(4dH(λ)/m0))
iterations. Each iteration t costs at most O(d2mt), mt = 2tm0, so the total cost is
O(d2 min{dH(λ),m0}) and dominated by the cost of multiplying SHS⊤ for S ∈ Rmt×d at the
last iteration.

Having found large enough m, we can solve the equation (18) by binary search, and form the sketch
(7) with λ̂ in place of λ̃. For the reader’s convenience, the overall adaptive sketching procedure—
which is performed (in parallel) by every worker—is summarized in Algorithms 1-2.

Algorithm 1
1: procedure Choose-Sketching-Dimension-IID(H , λ, m0)
2: m = m0

3: while m < d do
4: Sample i.i.d. sketch S ∈ Rm×d and form SHS⊤.
5: Compute eigenvalues λ1(SHS⊤) ≥ . . . ≥ λm(SHS⊤).
6: if ŝ(−5λ/12) > 1/λ then ▷ ŝ(z) defined in (12).
7: return m ▷ Guarantee: w.h.p., 1.5dH(λ) ≤ m ≤ 4dH(λ).
8: else
9: m := 2m

10: end if
11: end while
12: return m
13: end procedure

Algorithm 2
1: procedure Estimate-Inverse-Hessian-IID (H , λ, m)
2: Sample sketch S ∈ Rm×d and form SHS⊤.
3: Compute eigenvalues λ1(SHS⊤) ≥ . . . λm(SHS⊤).
4: if ŝm(0) ≤ 1/λ then
5: ERROR; set λ̂ = 5λ/12.
6: else
7: Find 5λ/12 ≤ λ̂ ≤ λ such that ŝ(−λ̂) = 1/λ. ▷ Can be done by binary search.
8: end if
9: return (λ̂, Ŵ) where Ŵ = S⊤(SHS⊤ + λ̂I)−1S ▷ (In practice, return Ŵg where
g ∈ Rd is the current gradient.)

10: end procedure

It is straightforward to establish the asymptotic validity of our adaptive sketching procedure.

Theorem 3.3. Set η,D > 0, let m0 be an initial sketch size. Assume [Asymp(τ,H,m0, ξ)] (in
particularm0 = Ω(d)), and furthermore that λrank(H)(H) ≥ τ . Let m̂ be the output of Algorithm 1,
and (λ̂, Ŵ) be the output of Algorithm 2 (the latter given input m = m̂). Then w.p. 1−O(m−D

0):
• max{m0, 1.5dH(λ)} ≤ m̂ ≤ max{m0, 4dH(λ)}.
• |λ̂− λ̃| = O(m

−1/2+η
0).

• ∥E[Ŵ]−W∥ = O(m
−1/2+η
0).

The constants in the O(·) notation may depend on η,D > 0 and also λ > 0.

Proof. This is a straighforward consequence of Theorems 2.1-2.3. We omit the details.

7

Published as a conference paper at ICLR 2025

3.1 NON-ASYMPTOTIC GUARANTEES FOR GAUSSIAN SKETCHES

The guarantees provided by Theorem 3.3 are asymptotic, in that they do not depend explicitly on
crucial problem parameters (such as λ, ∥H∥); in particular, we implicitly assume that H is well-
conditioned. When S ∈ Rm×d is an i.i.d. Gaussian matrix, Sij ∼ N (0, 1/m), we are able to
provide non-asymptotic error guarantees for our adaptive sketching algorithm. Our bounds are
dimension-free, and remarkably do not depend explicitly on the condition number of H . The theo-
rems below are the main technical part of this paper; their proofs are deferred to the appendix.

Theorems 3.4 and 3.5 respectively provide non-asymptotic guarantees for Algorithms 1 and 2:
Theorem 3.4. Assume that S has i.i.d. Gaussian entries. Let δ ∈ (0, 1). Suppose that m0 ≥
C(1 + log(1/δ)) for large enough constant C. W.p. 1− δ, Algorithm 1 outputs m̂ such that

max{1.5dH(λ),m0} ≤ m̂ ≤ max{4dH(λ),m0} . (19)

Theorem 3.5. Assume that S has i.i.d. Gaussian entries. Let δ ∈ (0, 1) and ε > 0. Suppose
Algorithm 2 is run with m ≥ 1.5dH(λ) and that moreover m ≥ C 1+log(1/δ)

ε2 for large enough
constant C. W.p. 1− δ, the output λ̂ satisfies |λ̂− λ̃| ≤ ελ̃, where λ̃ = λ

(
1− 1

mdH(λ)
)
.

Our final non-asymptotic result concerns the concentration of the aggregate inverse Hessian esti-
mate used by the server. To wit, fix m ≥ 1.5dH(λ), and let Ŵ (1), . . . , Ŵ (q) be the outputs of q
independent runs of Algorithm 2, representing q workers producing estimates of the Newton step in
parallel. Denote their average W̄ = 1

q

∑q
k=1 Ŵ

(k), and the error matrix:

Ē := (H + λI)1/2W̄ (H + λI)1/2 − I. (20)

Later on, we will obtain error bounds for the quasi Newton method in terms of ∥Ē∥.
Theorem 3.6. Assume that S has i.i.d. Gaussian entries. Suppose that m ≥ 1.5dH(λ), and let
q ≥ 1, δ ∈ (0, 1) satisfy 1/δ ≤ exp(O(d)), q ≤ exp(O(d)). Let exp(−O(d)) ≤ ε ≤ O(1) be small
enough. If moreover

m ≥ C
1

ε2
, q ≥ C

d log d

m

log(1/δ)

ε2
(21)

for large enough C > 0, then w.p. 1− δ, ∥Ē∥ ≤ ε.

Remark 3.7. Up to the logarithmic factor (which we believe is an artifact), the dimensional de-
pendence of q in (21) is optimal. To see this, suppose that H = 0, λ = 1, so Ŵ (k) = S(k)⊤S(k).
In particular rank(W̄) = qm, therefore ∥Ē − I∥ ≥ 1 when qm < d. In fact, Ē is a Wishart
(Gaussian sample covariance) matrix corresponding tomq samples, therefore by standard estimates
E∥Ē − I∥ ≍ d

mq ∨
√

d
mq , hence the dependence on ε is correct as well.

4 CONVERGENCE RESULTS FOR THE APPROXIMATE NEWTON METHOD

In this section we present guarantees for the Newton method with approximate Hessian estimates.
These bounds are relevant beyond the parallel scheme considered in this paper, and accordingly are
stated in general terms. LetG : Rd → R̄ be convex and twice-differentiable.7 We consider generally
the Newton-type iteration,

θt = θt−1 − αtW̄tgt, (22)
gt := ∇G(θt−1), (23)

where W̄t approximates the inverse Hessian, Ht := ∇2G(θt−1), W̄t ≈ H−1
t and αt is a step size.

Definition 2. We say (22)-(23) implement an η-accurate Newton method if the following holds.
Define the error matrix, which measures how well W̄t approximates the true inverse Hessian H−1

t :

Ēt := H
1/2
t W̄tH

1/2
t − I . (24)

Then ∥Ēt∥ ≤ η for every iteration t.

7We denote R̄ = R ∪ {∞}. With this, the domain of G is Dom(G) := {x : F (x) < ∞}.

8

Published as a conference paper at ICLR 2025

For a desired precision ε > 0, namely when one desires θ̂ with G(θ̂) − G(θ⋆) ≤ ε, θ⋆ :=
argminG(θ), let T(ε) be the smallest t ≥ 1 (a priori, if it exists) such that G(θt) − G(θ⋆) ≤ ε
for all t ≥ T(ε). This notation suppresses the dependence on G and the sequence of step sizes αt.
We consider a variation where the step size is chosen by backtracking line search, see Algorithm 3.

Algorithm 3 (Backtracking Line Search)

1: procedure LineSearch (θt−1, gt, W̄t; G(·))
2: Parameters: a, b ∈ (0, 1) line search parameters.
3: α = 1
4: while G(θt−1 − µW̄gt) > G(θt−1)− ag⊤t (αW̄gt) do
5: α := bα
6: end while
7: return α
8: end procedure

This paper focuses on the case whenG is self-concordant, which is a standard setting in the literature
on second order convex optimization, cf. (Boyd & Vandenberghe, 2004). We remark that previous
works, for example (Wang et al., 2018; Dereziński & Mahoney, 2019), derived convergence guar-
antees for the approximate Newton method under different assumptions, namely when the Hessian
of G is Lipschitz. Due to space constraint, we do not present their results here, though they are
applicable for our setting as well. For self-concordant objectives, we are not aware of similar results
previously being written down in the literature, hence our results may be of independent interest.
Definition 3. We say a univariate convex function G : R → R̄ is self-concordant if it is thrice-
differentiable and |G′′′(x)| ≤ 2G′′(x)3/2 for any x in its domain. A multivariate convex function
G : Rd → R̄ is self-concordant if any 1-dimensional restriction Gx,y(t) = G(x + ty) is self-
concordant.
When f is self-concordant, the objective G(θ) = f(θ) + λ

2 ∥θ∥
2 in (1) is self-concordant as well, as

the sum of self-concordant function is itself self-concordant, cf. (Boyd & Vandenberghe, 2004).
Theorem 4.1. Suppose that (a) G is self-concordant; (b) the Newton method is η-accurate with
η < 1/5; and (c) αt is chosen by backtracking line search. For large enough numerical C > 0, let

T0 = C
G(θ0)−G(θ⋆)

ab
, T1(ε) = C log log(1/ε), T2(ε) = C

log(η/ε)

log(1/η)
,

where a, b are the parameters used in backtracking line search (Algorithm 3). Then

T(ε) ≤
{
T0 + T1(ε) if ε ≥ η

T0 + T1(η) + T2(ε) if ε < η
. (25)

The proof of Theorem 4.1 builds on and extends an argument of (Pilanci & Wainwright, 2015).
Interestingly, Theorem 4.1 suggests that the approximate Newton method exhibits two stages: (1)
While the error is above the noise floor ε ≥ η, the error decays quadratically fast. (2) Upon reaching
the noise floor, ε ≤ η, the convergence rate becomes linear; however, the linear rate is proportional
to η, that is the error decays as ∼ (O(η))t. When η is very small this decay rate is very fast.

Finally, Theorem 4.1 may be readily combined with Theorem 3.6 to yield error bounds for the entire
end-to-end parallel method: under the setting of Theorem 3.6, w.h.p. (and up to polylog(d) factors),

η = Õ

(
1√
m

+

√
d

mq

)
.

With this, let us roughly bound the runtime of our method with parallel workers. We focus on total
flops, ignoring that in practice, deployment rounds are typically more expensive than computation.
Every round, each worker performs, in parallel, O(d2m) flops, where m = O(dH(λ)) is assumed
for simplicity to be roughly constant throughout. We bound the number of deployment rounds by
T(ε) = O(log(1/ε)/ log(1/η)), assuming that ε is much smaller than η. Consider two regimes:

• Massive parallelization: When q ≳ d, the Hessian approximation error is η = O(1/
√
m)

(bias dominated), and the total runtime is O(d2m log(1/ε)/ logm). Note that this quantity de-
creases with m—hence it is always preferable to pick m to be the smallest possible (which is

9

Published as a conference paper at ICLR 2025

α dH(λ) m0 Success rate Avg. dim.
1 8.8 10 1.0 20

2/3 59.7 10 1.0 160
1/2 190.4 10 1.0 640

Table 1: Success rate of Algorithm 1.

Figure 1: The bias proxy of the bias-corrected inverse Hessian estimator is substantially lower than
without bias correction. Rightmost plot: ensemble (R); left and middle plots: ensemble (L). Left-
most plot: the sketching dimension found by Algorithm 1 on ensemble (L). Shaded area: 20%-80%
confidence interval; We take T = 10 Monte-Carlo trials.

what we do essentially). Note when m ≈ dH(λ) ≪ d, this runtime substantially improves on
O(d3 log log(1/ε)), the runtime of the exact Newton method (with no parallelism). Importantly,
this bound does not depend on the conditioning of the objective, unlike in first order methods.

• Moderate parallelization: when d/m ≲ q ≪ d, the Hessian approximation error is η =

O(
√
d/mq) (variance dominated), and the total runtime is O(d2m log(1/ε)/ log(mq/d)). At

the extreme end of this range, when q ≈ d/m, let us crudely approximate log(mq/d) ≈
mq/d − 1, so that log(mq/d) ≳ mq/d − 1 ≳ mq/d. Thus, the runtime is roughly
O(d2m log(1/ε) log(mq/d)) = O(d2m log(1/ε)/(mq/d)) = O(d3 log(1/ε)/q). For a mod-
erate number of workers q and realistic precision ε, this improves substantially upon the runtime
of exact Newton, O(d3 log log(1/ε)). We again stress that this bound does not depend on the
condition number of the objective, unlike for first order methods.

5 NUMERICAL EXPERIMENTS

We demonstrate the utility and validity of our results via numerical experiments. Due to space
contraints, we defer some details and additional experiments to the appendix.

Our first set of experiments aims to demonstrate our adaptive sketching procedure (Algorithms 1-2)
independently of any specific optimization context. For the first experiment, we consider diagonal
matrices8 H with eigenvalues (h1, . . . , hd) exhibiting polynomial spectral decay hk = k−α, where
α > 0 is a parameter. The dimension d = 104 is fixed and large, and λ = 1. The sketching matrix is
i.i.d. Gaussian (in the appendix, we present results for two more i.i.d. sketching matrices). We run
Algorithm 1, repeating for T = 20 Monte-Carlo trials, and report the sketching dimension found,
see Table 1. Remarkably, our algorithm consistently succeeds, namely finds a sketching dimension
that is within 1.5dH(λ) ≤ m ≤ max{m0, 4dH(λ)} - per Theorems 3.3 and 3.4.

Next, we demonstrate that Algorithm 2 produces low-bias estimates of W . Note that the average
Frobenius error ∥Ŵ −W∥2F /d2 is a reasonable proxy for the bias of Ŵ , see Theorems 2.2-2.3. In
the next experiment, we consider two random ensembles of matrices H , which we call here (L) and
(R), and exhibits respectively slow and fast spectral decay; we defer the details to the appendix, due
to space constraints. Figure 1 plots the bias proxy for m increasing, starting from m = 1.5dH(λ),
for the Gaussian sketch. As m increases, the bias decreases (roughly at rate 1/

√
m). We also plot

the bias proxy for a naive estimator of W , without bias correction (λ̃ = λ); clearly, our algorithm
has substantially smaller bias throughout.

8We choose H to be diagonal w.l.o.g. since the Gaussian sketch is invariant to orthogonal transformations.

10

Published as a conference paper at ICLR 2025

Our final set of experiments concerns the performance of the proposed optimization strategy in its
entirety, focusing on the benefits of bias reduction. We present experimental results for real-world
optimization tasks—for both ridge and logistic regression—using publicly available UCI datasets
(Chang & Lin, 2011). Due to space constraints, the details appear in the appendix. We compare our
method with an approximate parallel Newton method where Hessians are sketched (m chosen by
Algorithm 1), but no debiasing is done; that is, λ̃ = λ. It is evident from our results, summarized in
Figure 2, that bias correction accelerates convergence, often substantially.

0 10 20 30 40 50 60
Newton Steps

10 5

10 4

10 3

10 2

10 1

100

101

Lo
g

Op
tim

al
ity

 G
ap

segment (ridge regression)
No Debiasing
Debiasing (Ours)

0 10 20 30 40 50
Newton Steps

10 5

10 4

10 3

10 2

10 1

100

Lo
g

Op
tim

al
ity

 G
ap

ionosphere (ridge regression)
No Debiasing
Debiasing (Ours)

0 10 20 30 40 50
Newton Steps

10 5

10 4

10 3

10 2

10 1

100

101

Lo
g

Op
tim

al
ity

 G
ap

space_ga (ridge regression)
No Debiasing
Debiasing (Ours)

0 5 10 15 20
Newton Steps

10 5

10 4

10 3

10 2

10 1

100

101

Lo
g

Op
tim

al
ity

 G
ap

vehicle (ridge regression)
No Debiasing
Debiasing (Ours)

0 10 20 30 40 50
Newton Steps

10 6

10 5

10 4

10 3

10 2

10 1

Lo
g

Op
tim

al
ity

 G
ap

diabetes (logistic regression)
No Debiasing
Debiasing (Ours)

0 5 10 15 20
Newton Steps

10 6

10 5

10 4

10 3

10 2

10 1

100

Lo
g

Op
tim

al
ity

 G
ap

heart (logistic regression)
No Debiasing
Debiasing (Ours)

0 2 4 6 8 10
Newton Steps

10 6

10 5

10 4

10 3

10 2

10 1

Lo
g

Op
tim

al
ity

 G
ap

german_numer (logistic regression)
No Debiasing
Debiasing (Ours)

0 2 4 6 8 10
Newton Steps

10 6

10 5

10 4

10 3

10 2

10 1

Lo
g

Op
tim

al
ity

 G
ap

liver-disorders (logistic regression)
No Debiasing
Debiasing (Ours)

Figure 2: Improved convergence of our parallel sketched Newton method with bias correction. The
title of sub-figure corresponds to the dataset used. Repeating for T = 10 Monte-Carlo trials, the
curve corresponds to the median and the shaded part to a 20%-80% confidence interval.

ACKNOWLEDGMENTS

We are grateful to Daniel Lejeune for inspiring conversations about his work (LeJeune et al., 2022).

Mert Pilanci and Fangzhao Zhang were supported in part by National Science Foundation (NSF)
under Grant DMS-2134248; in part by the NSF CAREER Award under Grant CCF-2236829; in
part by the U.S. Army Research Office Early Career Award under Grant W911NF-21-1-0242; in
part by the Office of Naval Research under Grant N00014-24-1-2164. In addition, Fangzhao Zhang
was supported in part by a Stanford Graduate Fellowship.

The work of Elad Romanov was supported in part by the NSF under Grant DMS-1811614 (PI:
Donoho), and in part by the personal faculty funds of Prof. David Donoho, for whom he wishes to
extend his sincere appreciation.

REFERENCES

Artem Agafonov, Dmitry Kamzolov, Rachael Tappenden, Alexander Gasnikov, and Martin Takáč.
Flecs: A federated learning second-order framework via compression and sketching. arXiv
preprint arXiv:2206.02009, 2022. 4

Zhidong Bai and Jack W Silverstein. Spectral analysis of large dimensional random matrices,
volume 20. Springer, 2010. 4, 5, 19, 28, 29, 39

Burak Bartan and Mert Pilanci. Straggler resilient serverless computing based on polar codes. In
2019 57th Annual Allerton Conference on Communication, Control, and Computing (Allerton),
pp. 276–283. IEEE, 2019. 1

Sebastian Bischoff, Stephan Günnemann, Martin Jaggi, and Sebastian U Stich. On second-order
optimization methods for federated learning. arXiv preprint arXiv:2109.02388, 2021. 4

Stephen P Boyd and Lieven Vandenberghe. Convex optimization. Cambridge university press, 2004.
2, 9, 37

Chih-Chung Chang and Chih-Jen Lin. Libsvm: A library for support vector machines. ACM trans-
actions on intelligent systems and technology (TIST), 2(3):1–27, 2011. 11, 17

11

Published as a conference paper at ICLR 2025

Romain Couillet and Merouane Debbah. Random matrix methods for wireless communications.
Cambridge University Press, 2011. 5

Michal Derezinski, Burak Bartan, Mert Pilanci, and Michael W Mahoney. Debiasing distributed
second order optimization with surrogate sketching and scaled regularization. Advances in Neural
Information Processing Systems, 33:6684–6695, 2020. 3, 4, 6

Michał Dereziński and Michael W. Mahoney. Distributed estimation of the inverse hessian by de-
terminantal averaging, 2019. 9, 17

Nikita Doikov, Martin Jaggi, et al. Second-order optimization with lazy hessians. In International
Conference on Machine Learning, pp. 8138–8161. PMLR, 2023. 4

Anis Elgabli, Chaouki Ben Issaid, Amrit Singh Bedi, Ketan Rajawat, Mehdi Bennis, and Vaneet
Aggarwal. Fednew: A communication-efficient and privacy-preserving newton-type method for
federated learning. In International conference on machine learning, pp. 5861–5877. PMLR,
2022. 4

Zachary Frangella, Pratik Rathore, Shipu Zhao, and Madeleine Udell. Sketchysgd: reliable stochas-
tic optimization via randomized curvature estimates. arXiv preprint arXiv:2211.08597, 2022.
4

Robert M Gower and Peter Richtárik. Randomized iterative methods for linear systems. SIAM
Journal on Matrix Analysis and Applications, 36(4):1660–1690, 2015. 2

Robert M. Gower, Dmitry Kovalev, Felix Lieder, and Peter Richtárik. Rsn: Randomized subspace
newton, 2019. URL https://arxiv.org/abs/1905.10874. 4

Vineet Gupta, Tomer Koren, and Yoram Singer. Shampoo: Preconditioned stochastic tensor opti-
mization. In International Conference on Machine Learning, pp. 1842–1850. PMLR, 2018. 4

Trevor Hastie, Robert Tibshirani, and Jerome Friedman. The Elements of Statistical Learning: Data
Mining, Inference, and Prediction. Springer Science & Business Media, 2009. 1, 3

Majid Jahani and Sergey Rusakov. Doubly adaptive scaled algorithm for machine learning using
2nd order information. In International Conference on Learning Representations, 2022. 4

Eric Jonas, Qifan Pu, Shivaram Venkataraman, Ion Stoica, and Benjamin Recht. Occupy the cloud:
Distributed computing for the 99%. In Proceedings of the 2017 symposium on cloud computing,
pp. 445–451, 2017. 1

Peter Kairouz, H Brendan McMahan, Brendan Avent, Aurélien Bellet, Mehdi Bennis, Arjun Nitin
Bhagoji, Kallista Bonawitz, Zachary Charles, Graham Cormode, Rachel Cummings, et al. Ad-
vances and open problems in federated learning. Foundations and trends® in machine learning,
14(1–2):1–210, 2021. 4

Antti Knowles and Jun Yin. Anisotropic local laws for random matrices. Probability Theory and
Related Fields, 169:257–352, 2017. 5, 6, 20

Daniel LeJeune, Pratik Patil, Hamid Javadi, Richard G Baraniuk, and Ryan J Tibshirani. Asymp-
totics of the sketched pseudoinverse. arXiv preprint arXiv:2211.03751, 2022. 5, 6, 11

Vladimir A Marčenko and Leonid A Pastur. Distribution of eigenvalues for some sets of random
matrices. Mathematics of the USSR-Sbornik, 1(4):457, 1967. 4

Riley Murray, James Demmel, Michael W Mahoney, N Benjamin Erichson, Maksim Melnichenko,
Osman Asif Malik, Laura Grigori, Piotr Luszczek, Michał Dereziński, Miles E Lopes, et al.
Randomized numerical linear algebra: A perspective on the field with an eye to software. arXiv
preprint arXiv:2302.11474, 2023. 2

Sen Na, Michał Dereziński, and Michael W. Mahoney. Hessian averaging in stochastic newton
methods achieves superlinear convergence, 2022. URL https://arxiv.org/abs/2204.
09266. 4

12

https://arxiv.org/abs/1905.10874
https://arxiv.org/abs/2204.09266
https://arxiv.org/abs/2204.09266

Published as a conference paper at ICLR 2025

Jorge Nocedal and Stephen J Wright. Numerical optimization. Springer, 1999. 4

Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang, Zachary DeVito,
Zeming Lin, Alban Desmaison, Luca Antiga, and Adam Lerer. Automatic differentiation in
pytorch. 2017. 3

Pratik Patil and Daniel LeJeune. Asymptotically free sketched ridge ensembles: Risks, cross-
validation, and tuning. arXiv preprint arXiv:2310.04357, 2023. 2

Mert Pilanci and Martin J. Wainwright. Newton sketch: A linear-time optimization algorithm with
linear-quadratic convergence, 2015. 3, 9, 37

Xun Qian, Rustem Islamov, Mher Safaryan, and Peter Richtarik. Basis matters: Better
communication-efficient second order methods for federated learning. In International Confer-
ence on Artificial Intelligence and Statistics, pp. 680–720. PMLR, 2022. 4

Sashank J. Reddi, Jakub Konečný, Peter Richtárik, Barnabás Póczós, and Alex Smola. Aide: Fast
and communication efficient distributed optimization, 2016. 3

Farbod Roosta-Khorasani and Michael W Mahoney. Sub-sampled newton methods. Mathematical
Programming, 174:293–326, 2019. 4

Mher Safaryan, Rustem Islamov, Xun Qian, and Peter Richtarik. Fednl: Making newton-type
methods applicable to federated learning. In International Conference on Machine Learning,
pp. 18959–19010. PMLR, 2022. 4

Ohad Shamir, Nathan Srebro, and Tong Zhang. Communication efficient distributed optimization
using an approximate newton-type method, 2013. 3

Jack W Silverstein and Sang-Il Choi. Analysis of the limiting spectral distribution of large dimen-
sional random matrices. Journal of Multivariate Analysis, 54(2):295–309, 1995. 5

Joel A Tropp et al. An introduction to matrix concentration inequalities. Foundations and Trends®
in Machine Learning, 8(1-2):1–230, 2015. 31

Roman Vershynin. High-dimensional probability: An introduction with applications in data science,
volume 47. Cambridge university press, 2018. 27, 34, 39, 40

Nikhil Vyas, Depen Morwani, Rosie Zhao, Itai Shapira, David Brandfonbrener, Lucas Janson,
and Sham Kakade. Soap: Improving and stabilizing shampoo using adam. arXiv preprint
arXiv:2409.11321, 2024. 4

Martin J Wainwright. High-dimensional statistics: A non-asymptotic viewpoint, volume 48. Cam-
bridge university press, 2019. 3

Shusen Wang, Farbod Roosta-Khorasani, Peng Xu, and Michael W. Mahoney. Giant: Globally
improved approximate newton method for distributed optimization, 2017. 4, 17

Shusen Wang, Fred Roosta, Peng Xu, and Michael W Mahoney. Giant: Globally improved approx-
imate newton method for distributed optimization. Advances in Neural Information Processing
Systems, 31, 2018. 9

Yun Yang, Mert Pilanci, and Martin J Wainwright. Randomized sketches for kernels: Fast and
optimal nonparametric regression. 2017. 3

Fangzhao Zhang and Mert Pilanci. Optimal shrinkage for distributed second-order optimization.
2023. 3, 4, 6, 17

Lijun Zhang, Mehrdad Mahdavi, Rong Jin, Tianbao Yang, and Shenghuo Zhu. Recovering the
optimal solution by dual random projection. In Conference on Learning Theory, pp. 135–157.
PMLR, 2013. 2

Yuchen Zhang and Xiao Lin. Disco: Distributed optimization for self-concordant empirical loss.
In Francis Bach and David Blei (eds.), Proceedings of the 32nd International Conference on
Machine Learning, volume 37 of Proceedings of Machine Learning Research, pp. 362–370, Lille,
France, 07–09 Jul 2015. PMLR. 3, 17

13

Published as a conference paper at ICLR 2025

Appendix

Table of Contents
A Additional Experiments and Details 15

A.1 Extension of Table 1 . 15
A.2 Details for Figure 1 . 15
A.3 Additional Synthetic Optimization Tasks . 15
A.4 Details for Experiments on UCI Data Sets (Figure 2) 16
A.5 On the Merit of Centralized Data Access Versus Distributed Newton Methods . . 17

B Non-Asymptotic Random Matrix Theory Results 19

C Proof of Theorem 3.4 21

D Proof of Theorem 3.5 25

E Proof of Theorem B.1 27

F Proof of Lemma B.2 28

G Proof of Theorem B.3 29

H Proof of Theorem 3.6 31

I Proof of Lemma H.1 32

J Proof of Lemma H.3 33

K Proof of Lemma H.4 34

L Proof of Theorem 4.1 37

M Auxilliary Technical Results 39

14

Published as a conference paper at ICLR 2025

A ADDITIONAL EXPERIMENTS AND DETAILS

A.1 EXTENSION OF TABLE 1

We run experiments with random sketching matrices with i.i.d. entries of the following types: (1)
Gaussian (G): Si,j ∼ N (0, 1/m); Rademacher (R): Si,j ∼ Unif(±1/

√
m); (3) sparse Rademacher

(SR): Si,j = 0 w.p. 1 − p and Si,j ∼ Unif(±1/
√
pm) w.p. p for p = 1/10. The following is an

extension of Table 1, to include also the Rademacher (R) and sparse Rademacher (SR) sketch types:

α dH(λ) m0 Sketch Success rate Avg. dim.
1 8.8 10 G 1.0 20

2/3 59.7 10 G 1.0 160
1/2 190.4 10 G 1.0 640
1 8.8 10 R 1.0 20

2/3 59.7 10 R 1.0 160
1/2 190.4 10 R 1.0 640
1 8.8 10 SR 1.0 20

2/3 59.7 10 SR 1.0 160
1/2 190.4 10 SR 1.0 640

Table 2: Success of Algorithm 1. T = 20 Monte-Carlo trials.

Our method appears to be remarkably robust, per the finding in Table 2, to the extent that the table
may seem somewhat pointless to include. We nonetheless provide it (and code to run this experi-
ment) as a sort of sanity check.

A.2 DETAILS FOR FIGURE 1

We provide additional details for the experiments in Figure 1. In the middle and rightmost plots, the
estimator W̄ is obtained by averaging q = 500 local sketched Hessians, both with and without bias
correction.

Ensemble (L): We use L = 10−3. The matrix H is H = X⊤X , where X ∈ Rn×d has the singular
value decomposition (SVD) X = UDV ⊤; U ∈ Rn×d, V ∈ Rd×d have orthonormal columns
and D ∈ Rd×d is diagonal. U, V are sampled uniformly (Haar) from the corresponding Stieffel
manifolds (have a rotationally invariant distribution). For the leftmost plot n = 104, and d varies.
For the middle plot, we fix d = 103. The diagonal entries of D are random, and satisfy

Dk,k = (0.9 + εk)
k/2, εk ∼ N (0, 10−4) .

Ensemble (R): We use λ = 10−5. Similarly to ensemble (L), H = X⊤X for X ∈ Rn×d, with
the singular vectors of X of similarly uniformly random. We use n = 104, d = 103. The singular
values of X are non-random, with Dk,k = (k/d)2.

A.3 ADDITIONAL SYNTHETIC OPTIMIZATION TASKS

In this section we present additional experiments on synthetic optimization tasks, aiming to test the
performance of our proposed end-to-end parallel optimization method. Specifically, we consider
ridge and logistic regression. We test both Gaussian and Rademacher sketches (see Section A.1).

Distribution of covariates (design). We generate designs X ∈ Rn×d with n = 104 and d = 500.
Denote the SVD X = UDV ⊤. The singular vectors U ∈ Rn×d, V ∈ Rd×d are uniformly random.
The singular values decay exponentially, Dk,k = 0.99k/2.

Parameters. In all our experiments, λ = 10−3. For experiments with ridge regression, the number
of workers is q = 10; for logistic regression, it is q = 20.

Ridge regression. The responses are generated according to yi = x⊤i θ
⋆ + N (0, 0.01), where

the ground-truth regressor θ⋆ ∈ Rd is generated according to θ⋆ ∼ N (0, I). The unregularized

15

Published as a conference paper at ICLR 2025

Figure 3: Convergence of the parallel Newton method with Hessian sketching, on synthetic opti-
mization tasks.

objective F (θ) is the L2 loss:

F (θ) =
1

n

n∑
i=1

(x⊤i θ − yi)
2 = ∥Xθ − y∥2,

where x1, . . . , xn ∈ Rd are the rows of X . Recall that we aim to minimize the regularized objective
G(θ) := F (θ) + λ

2 ∥θ∥
2.

Logistic regression. We generate labels according to

yi = (sign
[
x⊤i θ

⋆ +N (0, 104)
]
+ 1)/2 ∈ {0, 1} ,

where θ⋆ ∼ N (0, I). The function F (θ) is the log loss:

F (θ) = − 1

n

n∑
i=1

[
yi log

(
1

1 + e−x
⊤
i θ

)
+ (1− yi) log

(
1− 1

1 + e−x
⊤
i θ

)]
.

Figure 3 plots the error G(θt) − argminθ G(θ) over the iterations t of the algorithm. Each plot
is obtained by T = 10 Monte-Carlo trials; the shaded area corresponds to a 20%-80% confidence
interval. It is evident that bias correction improves on the the convergence speed of the algorithm
over the uncorrected (λ̃ = λ) alternative.

A.4 DETAILS FOR EXPERIMENTS ON UCI DATA SETS (FIGURE 2)

0 5 10 15 20 25
Newton Steps

10 5

10 4

10 3

10 2

10 1

100

101

Lo
g

Op
tim

al
ity

 G
ap

triazines

q=1
q=10
q=50

0 5 10 15 20 25 30
Newton Steps

10 5

10 4

10 3

10 2

10 1

100

101

Lo
g

Op
tim

al
ity

 G
ap

pyrim

q=1
q=10
q=50

0 10 20 30 40 50
Newton Steps

10 5

10 4

10 3

10 2

10 1

100

Lo
g

Op
tim

al
ity

 G
ap

a1a

q=1
q=10
q=50

0 10 20 30 40 50 60
Newton Steps

10 6
10 5
10 4
10 3
10 2
10 1
100
101
102

Lo
g

Op
tim

al
ity

 G
ap

mpg

q=1
q=10
q=50

0 2 4 6 8 10
Newton Steps

0.3
0.4
0.5
0.6
0.7
0.8
0.9

bi
as

triazines

q=1
q=10
q=50

0 2 4 6 8 10
Newton Steps

0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

bi
as

pyrim

q=1
q=10
q=50

0 2 4 6 8 10
Newton Steps

0.2

0.4

0.6

0.8

1.0

bi
as

a1a

q=1
q=10
q=50

0 2 4 6 8 10
Newton Steps

0.25
0.50
0.75
1.00
1.25
1.50
1.75
2.00

bi
as

mpg

q=1
q=10
q=50

Figure 4: Convergence rate for optimization tasks on additional UCI data sets. Shaded area corre-
sponds to 20%-80% confidence interval.

16

Published as a conference paper at ICLR 2025

We provide additional details for the experiments reported in Figure 2, and present results for addi-
tional data sets from the UCI data repository (Chang & Lin, 2011).

We run experiments directly on the available data, without additional preprocessing. The objec-
tives, for ridge and logistic regression, are as described in Section A.3, but now the covariates and
reponses/labels are given and not generated.

Parameters. We use λ = 10−3 for all experiments. We vary the number of workers between
q ∈ {1, 10, 50}. For every data set, we run T = 10 Monte-Carlo trials.

Results. The experiments are reported in Figure 4. The plots on the top correspond to the opti-
mality gap G(θt) − argminθ G(θ), G being the regularized objective, as a function of the iteration
number t. The bottom plots are the inverse Hessian normalized Frobenius error ∥Wt − W̄t∥2F /d2.
We see that as q grows larger, the algorithm tends to converge faster; though the benefit of further
increasing q tends to diminish when q is large.

A.5 ON THE MERIT OF CENTRALIZED DATA ACCESS VERSUS DISTRIBUTED NEWTON
METHODS

A.5.1 BASELINE REVIEW

Here, we include comparisons with existing distributed Newton’s methods, which operate under a
slightly different paradigm as they focus on data splitting among workers. These experiments are
presented to illustrate that our debiasing approach, which operates under centralized data access
within a multi-worker setting, achieves superior acceleration for Newton’s methods.

We provide a review on all baseline methods we are comparing against. Consider any loss function
F (x) where x is the desired parameter. Given a dataset with n samples, we first split the dataset
uniformly across q workers in total, which results in each worker holding n/q9 data points. Then,
each worker i (i ∈ [q]), computes the i-th component of the Hessian (∇2F)i only based on its local
data, where the full Hessian is

∑n
i=1(∇2F)i + λI . The difference of all baseline methods lies only

in the process of finding approximate Newton directions in each iteration. In iteration t, GIANT
(Wang et al., 2017), Determinantal Averaging (Dereziński & Mahoney, 2019) (”Determinant” be-
low), Optimal Shrinkage (Zhang & Pilanci, 2023) (”Shrinkage” below), and DiSCO (Zhang & Lin,
2015) methods all take the next Newton step as x(t+1) = x(t) − η(t)Ĥ(t)−1

g(t) where η(t) is the
step size found by line search in current iteration, g(t) is the global gradient and Ĥ(t) is an estimate
of the Hessian at x(t). Specifically,

• GIANT takes estimated Hessian inverse as average over all local Hessian inverses, i.e.,
Ĥ(t)−1

= 1
q

∑
i ((∇2F)ti + λI)

−1
.

• Determinantal Averaging exploits the expectation identity E(det(A))(E(A))−1 =
E(det(A)A−1) which is valid under mild conditions for invertible A and approximates

the Hessian inverse by Ĥ(t)−1
=

∑
i det((∇

2F)ti+λI)((∇
2F)

t
i+λI)

−1∑
i det((∇2F)ti+λI)

.

• Optimal Shrinkage method approximates Hessian inverse with Ĥ(t)−1
=

1
q

∑
i (

1

1−
dt
λ

n/q

(∇2F)ti + λI)
−1 where dtλ is the effective dimension of (∇2F)t and

it requires n/q > dtλ. In the experiments, we follow the approach in (Zhang & Pilanci,
2023) and take dtλ used by worker i as effective dimension of local (∇2F)ti.

• DiSCO approximates Hessian inverse by using the first worker’s statistics Ĥ(t)−1
=

((∇2F)t1 + λI)−1.

• DANE considers a slightly different update rule which involves solving

x
(t+1)
i = argmin

x
Fi(x) +

λ

2
∥x∥22 − ((∇Fi(x(t)) + λx(t))− αg(t))Tx+

β

2
∥x− x(t)∥22,

9Here, we assume n
q

is an integer. For real-world datasets, any remainder when dividing n by q is disre-
garded for simplicity.

17

Published as a conference paper at ICLR 2025

then it takes the next iterate as x(t+1) = 1
q

∑
i x

(t+1)
i . We take α = 1 and β = 1

2 in our
experiments.

We compare these methods across two scenarios, namely ridge regression and logistic regression,
detailed in the following subsections.

A.5.2 RIDGE REGRESSION

Due to the varying sizes of samples in each dataset, we set number of workers to q = 10 for
”bodyfat”, ”splice”, and ”pyrim” datasets; q = 20 for ”segment”, ”eunite2001” and ”iris” datasets;
q = 30 for ”mg” dataset. For each method, we repeat the optimization process over 10 random
seeds, with the data split (or sketch) redrawn for each iteration, and plot the mean and one standard
deviation of the logarithmic optimality gap. Figure 5 shows the convergence progress for different
datasets. Since for quadratic loss, DANE and GIANT coincide, we thus write ”DANE/GIANT” to
represent both methods. It can be observed that our adaptive de-biased Hessian inverse estimation
accelerates convergence significantly and converges the fastest in almost all experiments. The most
significant improvement over baseline methods happens on ”eunite2001”, ”bodyfat”, and ”pyrim”
datasets, where all baseline methods take at least ∼ 20 iterations to reach certain accuracy and our
method takes ≤ 5 iterations. On ”segment” and ”mg” datasets, though most baseline methods are
already good and converge within 10 steps, our de-biased Hessian inverse estimator still provides
improvement in this case. Moreover, our method exhibits the smallest variance, which highlights its
robustness and stability.

0 2 4 6 8 10 12 14
Newton Steps

10 7
10 6
10 5
10 4
10 3
10 2
10 1
100
101

Lo
g

Op
tim

al
ity

 G
ap

segment
DANE/GIANT
Determinant
Shrinkage
DiSCO
Debiasing (Ours)

0 20 40 60 80 100
Newton Steps

10 7

10 5

10 3

10 1

101

103

Lo
g

Op
tim

al
ity

 G
ap

eunite2001
DANE/GIANT
Determinant
Shrinkage
DiSCO
Debiasing (Ours)

0 20 40 60 80 100
Newton Steps

10 4
10 3
10 2
10 1
100
101
102
103
104

Lo
g

Op
tim

al
ity

 G
ap

bodyfat
DANE/GIANT
Determinant
Shrinkage
DiSCO
Debiasing (Ours)

0 25 50 75 100 125 150 175 200
Newton Steps

10 5

10 4

10 3

10 2

10 1

100

Lo
g

Op
tim

al
ity

 G
ap

splice
DANE/GIANT
Determinant
Shrinkage
DiSCO
Debiasing (Ours)

0 5 10 15 20
Newton Steps

10 5

10 4

10 3

10 2

10 1

100

101

Lo
g

Op
tim

al
ity

 G
ap

mg
DANE/GIANT
Determinant
Shrinkage
DiSCO
Debiasing (Ours)

0 10 20 30 40 50 60 70 80
Newton Steps

10 6

10 5

10 4
10 3

10 2

10 1
100

101
102

Lo
g

Op
tim

al
ity

 G
ap

pyrim
DANE/GIANT
Determinant
Shrinkage
DiSCO
Debiasing (Ours)

0 20 40 60 80 100 120 140
Newton Steps

10 6
10 5
10 4
10 3
10 2
10 1
100
101
102

Lo
g

Op
tim

al
ity

 G
ap

mpg
DANE/GIANT
Determinant
Shrinkage
DiSCO
Debiasing (Ours)

0 20 40 60 80 100
Newton Steps

10 6

10 5

10 4

10 3

10 2

10 1

100
Lo

g
Op

tim
al

ity
 G

ap
iris

DANE/GIANT
Determinant
Shrinkage
DiSCO
Debiasing (Ours)

Figure 5: Comparison of Distributed Newton Methods for Ridge Regression: Our method demon-
strates the fastest convergence and the lowest variance across nearly all experiments, highlighting
its effectiveness and robustness.

A.5.3 LOGISTIC REGRESSION

Here we set q = 5 for ”liver-disorders” and ”ionosphere” datasets; q = 10 for ”heart” dataset; q =
20 for ”diabetes” and ”sonar” datasets; q = 50 for ”german numer” dataset; q = 250 for ”fourclass”
dataset; q = 500 for ”svmguide3” dataset. For each method, we repeat the optimization process over
10 random seeds, with the data split (or sketch) redrawn for each iteration, and plot the mean and
one standard deviation of the logarithmic optimality gap. Figure 6 shows the convergence progress
for various methods on different datasets. We observe that the convergence behavior for logistic
regression across different methods is more challenging to achieve compared to ridge regression.
This difference may be attributed to the non-quadratic nature of the logistic regression objective
function. From the results, one can observe that our de-biasing method always converges faster than
all baseline methods and the improvement is most significant on ”german numer”, ”ionosphere” and
”sonar” datasets where our method halves the iteration number compared to the second best method.
Moreover, DANE diverges on datasets such as ”german numer” and ”fourclass”, Determinantal
averaging encountered NaN values during optimization and we thus skip it for ”ionosphere” and
”sonar” datasets. This may be due to the numerical issues in the determinant calculations. Although
most of the methods suffer from high variability, our method still behaves stably with little variation.
This again proves the robustness of our Hessian inverse de-biaser.

18

Published as a conference paper at ICLR 2025

0 5 10 15 20 25 30 35 40
Newton Steps

10 6

10 5

10 4

10 3

10 2

10 1

Lo
g

Op
tim

al
ity

 G
ap

diabetes
DANE
GIANT
Determinant
Shrinkage
DiSCO
Debiasing (Ours)

0 10 20 30 40 50
Newton Steps

10 5

10 4

10 3

10 2

10 1

100

Lo
g

Op
tim

al
ity

 G
ap

heart
DANE
GIANT
Determinant
Shrinkage
DiSCO
Debiasing (Ours)

0 5 10 15 20
Newton Steps

10 6

10 5

10 4

10 3

10 2

10 1

Lo
g

Op
tim

al
ity

 G
ap

liver-disorders
DANE
GIANT
Determinant
Shrinkage
DiSCO
Debiasing (Ours)

0 10 20 30 40 50
Newton Steps

10 5

10 4

10 3

10 2

10 1

100

Lo
g

Op
tim

al
ity

 G
ap

german_numer
DANE
GIANT
Determinant
Shrinkage
DiSCO
Debiasing (Ours)

0 10 20 30 40 50 60
Newton Steps

10 5

10 4

10 3

10 2

10 1

100

Lo
g

Op
tim

al
ity

 G
ap

ionosphere
DANE
GIANT
Determinant
Shrinkage
DiSCO
Debiasing (Ours)

0 5 10 15 20 25 30
Newton Steps

10 4

10 3

10 2

10 1

100

101

Lo
g

Op
tim

al
ity

 G
ap

svmguide3
DANE
GIANT
Determinant
Shrinkage
DiSCO
Debiasing (Ours)

0 5 10 15 20 25 30
Newton Steps

10 4

10 3

10 2

10 1

100

Lo
g

Op
tim

al
ity

 G
ap

fourclass
DANE
GIANT
Determinant
Shrinkage
DiSCO
Debiasing (Ours)

0 5 10 15 20 25 30 35 40
Newton Steps

10 3

10 2

10 1

100

Lo
g

Op
tim

al
ity

 G
ap

sonar
DANE
GIANT
Determinant
Shrinkage
DiSCO
Debiasing (Ours)

Figure 6: Comparison with distributed Newton methods for logistic regression. Our method con-
verges the fastest and exhibits the smallest variance for almost all experiments, which shows its
effectiveness and robustness.

B NON-ASYMPTOTIC RANDOM MATRIX THEORY RESULTS

The proofs of Theorems 3.4-3.6, rely on non-asymptotic results from random matrix theory that
that we state in this section and prove later on. The results below concern the behavior of the
random matrices SHS⊤, H1/2S⊤SH1/2 where H ⪰ 0 and S ∈ Rm×d is an i.i.d. Gaussian matrix
Sij ∼ N (0, 1/m).

The following result concerns the smallest eigenvalue of the matrix SHS⊤ ∈ Rm×m.
Theorem B.1. Suppose S has i.i.d. Gaussian entries. There are constants c1, c2, c, C > 0 such that
the following holds. Set any η > 0. If m ≤ c1dH(η) then w.p. 1− Ce−cm,

λmin(SHS
⊤) ≥ c2η

1

m
dH(η) .

The following two results concern the closedness of the empirical (companion) Stieltjes transform

ŝ(z) :=
1

m
tr
(
SHS⊤ − zI

)−1
, (26)

to the deterministic function s(z), the solution of the Marchenko-Pastur equation (10).

The following concentration inequality is well known, cf. Bai & Silverstein (2010).
Lemma B.2. Suppose that S = 1√

m
[r1| · · · |rm]⊤ where the rows r1, . . . , rm ∈ Rd are independent

random variables. For any z < 0 and t ≥ 0,

Pr(|̂s(z)− Eŝ(z)| ≥ t) ≤ 2e−cmz
2t2 .

We provide a self-contained proof for completeness, see Section F.

Next, we show that Eŝ(z) approximately satisfies (10), with explicit non-asymptotic error bounds.
Note that (10) can be be equivalently rewritten (assuming z ̸= 0) as

s(z) = −1

z

(
1− 1

m
dH(1/s(z))

)
. (27)

Theorem B.3. Suppose that S has i.i.d. Gaussian entries. For any z < 0, Eŝ(z) satisfies:

Eŝ(z) = −1

z

(
1− 1

m
dH(1/Eŝ(z))

)
+ em(z;H) , (28)

where the error term em(z;H) satisfies

em(z;H) ≲
β

α

1

|z|
√
m
, (29)

19

Published as a conference paper at ICLR 2025

with α = αm(z;H), β = βm(z;H) defined as

α := |z|Eŝ(z) , (30)

β :=
1

m
dH(1/Eŝ(z)) . (31)

The proof of Theorem B.3, given in Section G, follows along a well-known computation technique
in random matrix theory, and explicitly leverages the orthogonal invariance of the Gaussian dis-
tribution. Note that the error terms α, β depend on Eŝ(z) itself. This feature, which somewhat
complicates the proofs of Theorems 3.4-3.5, is generally not a mere artifact of the calculation, see
e.g. the bounds of (Knowles & Yin, 2017) under asymptotic conditions.

20

Published as a conference paper at ICLR 2025

C PROOF OF THEOREM 3.4

Denote for brevity, per the description of Algorithm 1,

z0 := − 5

12
λ . (32)

The proof of Theorem 3.4 consists of two parts. First, we show that if m < 1.5dH(λ), then with
high probability (w.h.p.) ŝm(z0) < 1/λ, hence such m would not be returned. Then, we show that
when m ≥ 2dH(λ), then w.h.p. ŝm(z0) ≥ 1/λ, which would guarantee that the algorithm must
return such m (if it has not halted before). Consequently, the output of the algorithm must satisfy
m ≤ 4dH(λ).

The next lemma shows that Algorithm 1 does not return m which is much smaller than dH(λ).
Lemma C.1. Suppose that S has i.i.d. Gaussian entries. There is a (small) constant c0 such that if
m < c0dH(λ) then

Pr(̂s(z0) > 1/λ) ≤ Ce−cm .

Proof. The lemma is a consequence of Theorem B.1, which bounds the smallest eigenvalue of
SHS⊤. Set c0 = min{c1, 12c2/7} for c1, c2 from Theorem B.1. Assume thatm < c0dH(λ). Since
in particular m < c1dH(λ), the following event holds w.p. 1− Ce−cm:

ŝ(z0) ≤
1

λmin(SHS⊤)− z0
≤ 1

c2
1
mdH(λ) · λ+ 5

12λ
.

Moreover, since c2/c0 ≥ 7/12,

c2
1

m
dH(λ) > c2

1

c0
≥ 7

12
.

Hence, under this event, ŝ(z0) < 1/λ.

Next, we treat the regime of moderate m, namely when c0dH(λ) ≤ m < 1.5dH(λ). The main tool
here is the non-asymptotic estimate of Theorem B.3. The reason we have to assume m ≳ dH(λ) is
that only then we can guarantee the error term is controlled.

The following simple lemma is useful.
Lemma C.2. For any µ > 0 and γ ≥ 1,

dH(γµ) ≤ dH(µ) ≤ γdH(γµ) . (33)

Proof. The inequality dH(γµ) ≤ dH(µ) is trivial. As for the other one,

dH(γµ) = tr(H(H + γµI)−1) =
1

γ
tr(H(

1

γ
H + µI)−1)

(⋆)

≥ 1

γ
tr(H(H + µI)−1) =

1

γ
dH(µ) ,

where (⋆) follows because H ⪰ 0, hence 1
γH + µI ⪯ H + µI and therefore H(1γH + µI)−1 ⪰

H(H + µI)−1.

Lemma C.3. Suppose that S has i.i.d. Gaussian entries. Moreover, suppose that c0dH(λ) ≤ m <
1.5dH(λ). There is a numerical constant M such that if moreover m ≥M then

Eŝ(z0) ≤
14

15
· 1
λ
.

In particular, Pr(̂s(z0) > 1/λ) ≤ Ce−cm.

Proof. Note that the second part follows directly from the first part and Lemma B.2; we therefore
focus on bounding Eŝ(z0). Suppose it were the case that Eŝm(z0) ≥ η 1

λ where η ≤ 1 is some
constant. Apply Theorem B.3 with z = z0. Let us bound the parameters α, β used for error control.
First,

α := |z0|Eŝ(z0) ≥
5

12
λ · η 1

λ
≥ 5

12
η . (34)

21

Published as a conference paper at ICLR 2025

Next, since Eŝ(z0) ≤ 1
|z0| =

12
5

1
λ we have 1/Eŝ(z0) ≥ 5

12λ, so

β :=
1

m
dH(1/Eŝ(z0)) ≤

1

m
dH(

5

12
λ)

(⋆)

≤ 12

5

1

m
dH(λ)

(⋆⋆)

≤ 12

5

1

c0
, (35)

where (⋆) follows from Lemma C.2 and (⋆⋆) from the assumption m ≥ c0dH(λ). In particular, the
error em(z0, H) in (29) can be bound as em(z0, H) = Oη(

1
λ
√
m
). Furthermore, as Eŝ(z0) ≥ η 1

λ by
assumption,

β ≥ 1

m
dH(

1

η
λ) ≥ η

1

m
dH(λ) >

2

3
η , (36)

where we used Lemma C.2 and the assumption m < 1.5dH(λ). With these estimates in mind,
consider (28),

Es(z0) = − 1

z0
(1− β − z0εm(z0, H)) =

1

λ
· 12
5
(1− β − z0em(z0, H)) ≤ 1

λ
· 12
5
(1− 2

3
η +Oη(

1√
m
)) .

As Eŝm(z0) ≥ η 1
λ , we deduce from the above

η ≤ 12

5
(1− 2

3
η +Oη(

1√
m
)) ,

so that rearranging,

η ≤ 12

13
(1 +Oη(

1√
m
)) .

By requiring that m ≥ Cη for large enough Cη , we can ensure that the error term is as small a
constant as we like, so that necessarily (for example) η ≤ 14

15 .

Next, we show that if the algorithm has reached m ≥ 2dH(λ), then it will halt in that iteration. We
start with two helper lemmas.
Lemma C.4. Suppose that E[S⊤S] = I . Then for all z < 0,

Eŝ(z) ≥ −1

z

(
1− 1

m
dH(−z)

)
. (37)

(Note that since Eŝ(z) ≤ −1/z, we have dH(−z) ≥ dH(1/Eŝ(z)), so that (37) is perfectly consis-
tent with (28).)

Proof. Recall that the matrices SHS⊤ ∈ Rm×m andH1/2S⊤SH1/2 have the same non-zero eigen-
values, and therefore

Eŝ(z) :=
1

m
E tr(SHS⊤ − zI)−1 =

1

m
E tr(H1/2S⊤SH1/2 − zI)−1 +

1

m
(d−m)

1

z
.

Note that since z < 0, the matrix functionA 7→ tr(A−zI)−1 is convex on the cone of PSD matrices
A ⪰ 0. Thus, by Jensen’s inequality,

1

m
E tr(H1/2S⊤SH1/2 − zI)−1 ≥ 1

m
tr(E[H1/2S⊤SH1/2]− zI)−1 =

1

m
tr(H − zI)−1 ,

so that

Eŝ(z) ≥ 1

m
tr(H−zI)−1+

1

m
(d−m)

1

z
=

1

m
tr[(H−zI)−1+

1

z
I]− 1

z
= −1

z

(
1− 1

m
dH(−z)

)
.

The next lemma formally establishes that the inverse function of s(z) is increasing on an appropriate
interval. As in (11), denote Ψ : (0,∞) → R,

Ψ(s) = −1

s
(1− 1

m
dH(1/s)) , (38)

so that for all z < 0, Ψ(s(z)) = z. Note however that in general, Range(s) may only be a proper
subset of (0,∞); nonetheless, (38) is well-defined.

22

Published as a conference paper at ICLR 2025

Lemma C.5. Let µ > 0, and suppose that m ≥ dH(µ). Then Ψ is increasing on (0, 1/µ).

Proof. Write

Ψ(s) = −1

s
+

1

m
tr(H(I + sH)−1) ,

so that its derivative is

Ψ′(s) =
1

s2
− 1

m
tr(H2(I + sH)−2)

=
1

s2

(
1− 1

m
tr(H2(H + 1/s)−2)

)
≥ 1

s2

(
1− 1

m
tr(H(H + 1/s)−1)

)
=

1

s2

(
1− 1

m
dH(1/s)

)
, (39)

where the inequality follows since 0 ⪯ H(H + 1/s)−1 ⪯ I . When s < 1/µ, we have 1/s > µ so
that dH(1/s) < dH(µ), hence Ψ′(s) > 0.

We now prove:

Lemma C.6. Suppose that S has i.i.d. Gaussian entries, and moreover that m ≥ 2dH(λ). There is
a numerical M such that whenever m ≥M ,

Eŝ(z0) ≥
24

23
· 1
λ
.

In particular, Pr(̂s(z0) ≤ 1/λ) ≤ Ce−cm.

Proof. Suppose that Eŝ(z0) ≤ 1
(1−η)

1
λ for some η ∈ (0, 1); we shall show that η has to be somewhat

large so to not generate a contradiction. First, by Lemma C.4 (with z = −λ),

Eŝ(z0) ≥ Eŝ(−λ) = 1

λ
(1− 1

m
dH(λ)) =

1

2
· 1
λ
,

where the last inequality follows since m ≥ 2dH(λ). Of course, this lower bound does not suffice
for our purposes: we want a bound which is > 1

λ (strictly). It does allow us, however, to control the
error term in Theorem B.3 at z = z0 (specifically, to lower bound α). We can bound the parameters
α, β in Theorem B.3 as

α := |z0|Eŝ(z0) ≥
5

12
λ · 1

2

1

λ
≥ 5

24
,

β :=
1

m
dH(1/Eŝ(z0)) ≤

1

m
dH(−z0) =

1

m
dH(

5

12
λ) ≤ 12

5

1

m
dH(λ) ≤ 6

5
,

where, in upper bounding β, we used Eŝ(z0) ≤ 1
−z0 and Lemma C.2. With these, Theorem B.3

implies

Eŝ(z0) = − 1

z0
(1− 1

m
dH(1/Eŝm(z0))) +O(

1

λ
√
m
) .

Multiplying by z0 and dividing by Eŝ(z0),

z0 = − 1

Eŝ(z)

(
1− 1

m
dH(1/Eŝ(z))

)
+O(

λ√
m
)

= Ψ(Eŝ(z)) +O(
λ√
m
) ,

where in modifying the error term we used Eŝ(z0) ≳ 1
λ .

Note that m ≥ 2dH(λ) implies m ≥ dH(12λ) by Lemma C.2. By Lemma C.5, this implies that Ψ is
increasing on (0, 2 1

λ). Thus, if we further assume that η < 1/2, then Ψ is increasing on (0, 1
1−η

1
λ),

23

Published as a conference paper at ICLR 2025

and so Ψ(Eŝ(z)) ≤ Ψ(1
1−η

1
λ). Using this with the previous display, and writing z0 = − 5

12λ,

− 5

12
λ ≤ Ψ(

1

1− η

1

λ
) +O(

λ√
m
)

= −(1− η)λ

(
1− 1

m
dH((1− η)λ)

)
+O(

λ√
m
)

(⋆)

≤ −(1− η)λ

(
1− 1

1− η

1

m
dH(λ)

)
+O(

λ√
m
)

(⋆⋆)

≤ −(1− η)λ

(
1− 1

1− η

1

2

)
+O(

λ√
m
)

= −λ(1
2
− η) +O(

λ√
m
) ,

where (⋆) uses dH((1 − η)λ) ≤ 1
1−ηdH(λ) (Lemma C.2) and (⋆⋆) uses the assumption m ≥

2dH(λ). Dividing by (−λ),
5

12
≥ 1

2
− η +O(

1√
m
) .

For large enough m ≥ M , the O(·) term is ≤ 1
24 , therefore η ≥ 1

24 . That is, we deduce that
necessarily Eŝ(z0) ≥ 1

1− 1
24

1
λ = 24

23
1
λ .

We are ready to conclude the proof of Theorem 3.4.

Proof. (Of Theorem 3.4.) Let mj = 2jm0, j = 0, 1, . . ., be the value of m at iteration j of the
algorithm. Set

J− = ⌈log2(1.5dH(λ)/m0)⌉, J+ = ⌈log2(2dH(λ)/m0)⌉ ,

chosen so that: 1) J− is the smallest j such that mj ≥ 1.5dH(λ); 2) 2dH(λ) ≤ mJ+ < 4dH(λ).
Thus, to establish (19) it suffices to show that the algorithm halts at an iteration j satisfying J− ≤
j ≤ J+. Accordingly, the error probability can be bounded as

Pr((19) does not hold) ≤
J−−1∑
j=0

Pr(̂smj
(z0) > 1/λ) + Pr(ŝmJ+ (z0) ≤ 1/λ) .

Assume that m0 ≥M is large enough. By Lemmas C.1 and C.3, for all j ≤ J− − 1, Pr(̂smj (z0) >
1/λ) ≤ Ce−cmj . By Lemma C.6, Pr(̂smJ+ (z0) ≤ 1/λ) ≤ Ce−cmJ+ . Thus,

Pr((19) does not hold) ≤
J−−1∑
j=0

Ce−c2
jm0 + Ce−c2

J+
m0 ≤

∞∑
j=0

Ce−c2
jm0 ≲ e−cm0 .

We deduce that if m0 ≳ log(1/δ), then the error probability is ≤ δ.

24

Published as a conference paper at ICLR 2025

D PROOF OF THEOREM 3.5

Recall the (deterministic) Marchenko-Pastur equation (10); rearranging yields

z = − 1

s(z)

(
1− 1

m
dH(1/s(z))

)
, (40)

so that setting s(−λ̃) = 1/λ yields λ̃ = λ(1 − 1
mdH(λ)). Further recall that we do not have

access to s(z), but instead to its random counterpart ŝ(z). We know that its expectation Eŝ(z)
approximately satisfies the Marcheko-Pastur equation with an error term (Theorem B.3), and that
we have concentration around the expectation (Lemma B.2). The proof of Theorem 3.5 down to
controlling and propagating these error terms.

Lemma D.1. Suppose that m ≥ 1.5dH(λ) and m ≥M for large enough M .

A unique root z⋆ < 0 such that Eŝ(z⋆) = 1
λ exists, and z⋆ < −cλ for small enough c > 0.

Consider a sufficiently small O(λ)-neighborhood of z⋆, I⋆ = [z⋆ − ηλ, z⋆ + ηλ] for small enough
η > 0. Then,

1. Eŝ(z) ≳ 1
λ for all z ∈ I⋆.

2. |Eŝ(z)− Eŝ(z′)| ≲ |z − z′| 1
λ2 for z, z′ ∈ I⋆.

Proof. The existence of z⋆, as well as the bound Eŝm(z) ≥ η 1
λ , can be shown by an argument

similar to Lemma C.6; we omit the technical details. Specifically, one can show that for small
enough c, Eŝ(−cλ) ≥ (1 + c) 1λ . Since Es(·) is continuous increasing, and Eŝ(−∞) = 0, a root
Eŝ(z⋆) = 1

λ exists and z⋆ < −cλ.

Next, we prove Item 2 above. We have

|Eŝm(z)− Eŝm(z′)| = E
1

m
tr[(SmHS

⊤
m − zI)−1(SmHS

⊤
m − z′I)−1]|z − z′| ≤ |z − z′|

|zz′|
≲

1

λ2
|z − z′| ,

since |z|, |z′| ≳ λ, as z, z′ ∈ Iη .

Item 1 follows immediately from Item 2.

We need to establish a result of the following kind: if z < 0 is such that Eŝ(z) ≈ 1
λ , then necessarily

z ≈ z⋆. This necessitates a lower bound (rather than an upper bound, such as given in Lemma D.1,
Item 2) on the derivative of Eŝ(z) around z⋆.

Lemma D.2. Suppose that m ≥ 1.5dH(λ) and m ≥M for large enough M .

For a sufficiently small O(λ)-neighborhood of z⋆, z⋆ ∈ I⋆,

|Eŝ(z)− Eŝ(z′)| ≳ 1

λ2
|z − z′| −O(

1

λ
√
m
) . (41)

Proof. By Theorem B.3, having established that Eŝ(z) ≳ 1
λ for all z ∈ I⋆, uniformly for all z ∈ I⋆,

Eŝ(z) = −1

z

(
1− 1

m
dH(1/Eŝ(z))

)
+O(

1

λ
√
m
) .

uniformly for all z ∈ I⋆. Dividing by Eŝ(z) and multiplying by z,

z = Ψ(Eŝ(z)) +O(
λ√
m
) , (42)

where Ψ(s) = − 1
s (1 − 1

mdH(1/s)) is the inverse function of s(z) (see e.g. (38)). Note that for
z, z′ ∈ I⋆, |Eŝ(z) − Eŝ(z′)| ≲ |z − z′| 1

λ2 = O(1λ). Thus, to conclude the proof of the lemma,
it suffices to give an upper bound on the derivative (or Lipschitz constant) of Ψ in a small O(1/λ)
neighborhood of Eŝ(z⋆) = 1

λ .

25

Published as a conference paper at ICLR 2025

Indeed, if s = 1
λ (1 + ε) for small ε = O(1), then by Lemma C.2, 1

1+|ε|dH(λ) ≤ dH(1/s) ≤
1

1−|ε|dH(λ). Since 1
mdH(λ) ≤ (1.5)−1 = O(1), | 1mdH(1/s) − 1

mdH(1/λ)| = O(ε). Thus, for
s1, s2 in a sufficiently smallO(1λ)-neighborhood of 1

λ , | 1mdH(1/s1)− 1
mdH(1/s2)| = O(λ|s1−s2|),

and so |Ψ(s1)−Ψ(s2)| = O(λ2|s1 − s2|). Using (42), we deduce that for z1, z2 in a small enough
O(λ) neighborhood of z⋆,

|z1 − z2| =
∣∣∣∣Ψ(Eŝ(z1))−Ψ(Eŝ(z2)) +O(

λ√
m
)

∣∣∣∣
≲ λ2|Eŝ(z1)− Eŝ(z2)|+O(

λ√
m
) .

The desired estimate (41) follows dividing by λ2.

We are ready to conclude the proof of Theorem 3.5. Let ε > 0, δ ∈ (0, 1) be, respectively, the
precision on confidence parameters. Suppose that ε = O(1) is small, such that [z⋆−2λε, z⋆+2λε] ⊆
I⋆, therefore setting

z⋆± = z⋆ ± λε (43)
we have z⋆± ∈ I⋆. By Lemma D.2, Eq. (41), provided that m ≳ 1/ε2 is large enough,

Eŝ(z⋆−) ≤
1

λ
− C1ε

1

λ
+O(

1

λ
√
m
) ≤ 1

λ
− C2ε

1

λ
,

Eŝ(z⋆+) ≥
1

λ
+ C1ε

1

λ
−O(

1

λ
√
m
) ≥ 1

λ
+ C2ε

1

λ
.

By Lemma B.2, if m ≳ 1
ε2 log(1/δ) is large enough, then w.p. 1 − δ, |̂s(z⋆−) − Eŝ(z⋆−)|, |̂s(z⋆+) −

Eŝ(z⋆+)| ≤ C2
1
λε/2. On this event,

ŝ(z⋆−) ≤
1

λ
− 1

2
C2ε

1

λ
<

1

λ
, ŝ(z⋆+) ≥

1

λ
+

1

2
C2ε

1

λ
>

1

λ
.

In particular, the output λ̂ of Algorithm 2, being the solution ŝ(−λ̂) = 1/λ, satisfies z⋆− ≤ −λ̂ ≤ z⋆+,
so |λ̂− (−z⋆)| ≤ ε. Finally, by Eq. (42),

z⋆ = Ψ(1/λ) +O(
λ√
m
) = −λ̃+O(

λ√
m
) = −λ̃+O(λε)

whenever m ≳ 1/ε2 large enough. Since λ̃ ≥ λ(1− (1.5)−1) = 1
3λ = Ω(λ), this implies

|λ̂− λ̃|
λ̃

= O(ε) .

Thus, Theorem 3.5 is proved.

In the sequel, the following bound on E|λ̂− λ̃| will be useful.
Lemma D.3. Suppose that m ≥ 1.5dH(λ) and m ≥M for large enough M . For any p > 0,

E|λ̂− λ̃|p ≤ Cpλ
pm−p/2 . (44)

Proof. Let t0 > 0 be a small enough constant, such that [z⋆ − λt0, z
⋆ + λt0] ⊆ I⋆. By the above,

Pr(|λ̂ − λ̃| ≥ t0λ) = Pr(−λ̂ /∈ [z⋆ − λt0, z
⋆ + λt0]) ≤ Ce−cm. Set z⋆±(t) = z⋆ ± λt, so that by

the above, Pr(̂sm(z⋆+(t)) < 1/λ),Pr(̂sm(z⋆−(t)) > 1/λ) ≤ Ce−cmt
2

for all t ≤ t0. We have

Pr(|λ̂−λ̃| ≥ tλ) = Pr(−λ̂ /∈ [z⋆−(t), z
⋆
+(t)]) = Pr({ŝm(z⋆+(t)) < 1/λ}∪{ŝm(z⋆−(t)) > 1/λ}) ≤ 2Ce−cmt

2

.

Thus,
E|λ̂− λ̃|p = E[|λ̂− λ̃|p1|λ̂−λ̃|≤λt0] + E[|λ̂− λ̃|p1|λ̂−λ̃|>λt0] ≤ E[|λ̂− λ̃|1|λ̂−λ̃|≤λt0] + Cλpe−cm ,

and

E[|λ̂− λ̃|p1|λ̂−λ̃|≤λt0] =

∫ t0

0

λpptp−1 Pr(|λ̂− λ̃| ≥ λt)dt ≲ pλp
∫ t0

0

tp−1e−cmt
2

dt ≤ Cpλ
pm−p/2 .

And so, E|λ̂− λ̃|p ≲ λ 1√
m

+ λe−cm = O(λ 1√
m
).

26

Published as a conference paper at ICLR 2025

E PROOF OF THEOREM B.1

By definition, if H̃ ⪯ H (in PSD order) then SH̃S⊤ ⪯ SHS⊤, in particular λmin(SHS
⊤) ≥

λmin(SH̃S
⊤). Choose H̃ = H(µH + I)−1, noting that ∥H̃∥ ≤ 1/µ can be bounded irrespective

of ∥H∥.

We now lower bound λmin(SH̃S) using a standard net argument, cf. (Vershynin, 2018). For any
ε > 0, let Nε be an ε-net of Sm−1 of minimum size. One can show that |Nε| ≤

(
1 + 2

ε

)m
. We have

λmin(SH̃S
⊤) = min

∥x∥=1
x⊤SH̃S⊤x ≥ min

x∈Nε

x⊤SH̃S⊤x− 2∥SH̃S⊤∥ε . (45)

Note that for fixed x ∈ Sm−1, y = S⊤x has independent, mean zero, sub-Gaussian entries with
max1≤i≤d ∥yi∥ψ2 = O(1) and variance 1/m.

We first give a high-probability upper bound on ∥SH̃S⊤∥. Let N1/4 a 1/4-net of minimum size, so
that

∥SH̃S⊤∥ = max
∥x∥=1

x⊤SH̃Sx ≤ max
x∈N1/4

x⊤SH̃Sx+ 2 · ∥SH̃S⊤∥ · 1
4
,

hence ∥SH̃S⊤∥ ≤ 2maxx∈N1/4
x⊤SmH̃Smx. By the Hanson-Wright inequality, Lemma 95 (see

also (Vershynin, 2018, Theorem 6.2.1)),

Pr(∥SH̃S⊤∥ ≥ 2m−1 tr(H̃) + t) ≤ |N1/4| max
x∈N1/4

Pr
(
x⊤SH̃Sx ≥ m−1 tr(H̃) + t/2

)
≤ 9m2 exp

(
−cmin{ m

2t2

∥H̃∥2F
,
mt

∥H̃∥
}

)
.

Note that

tr(H̃) =
1

µ
dH(1/µ), ∥H̃∥ ≤ 1/µ, ∥H̃∥F ≤

√
∥H̃∥ tr(H̃) ≤ 1

µ

√
dH(1/µ) .

Set t = C1 max{ 1√
m
∥H̃∥F , ∥H̃∥} large enough. For such choice, w.p. 1− Ce−cm,

∥SH̃S∥ ≤ 2

m
tr(H̃) + C1 max{ 1√

m
∥H̃∥F , ∥H̃∥}

≲
1

µ

dH(1/µ)

m
+

1

µ
max{1,

√
d1/µ

m
} (46)

Next, we give a high-probability lower bound on minx∈Nε x
⊤SH̃S⊤x in (45). Again by Hanson-

Wright,

Pr(min
x∈Nε

x⊤SH̃S⊤x ≤ m−1 tr(H̃)− t) ≤
(
1 +

2

ε

)m
2 exp

(
−cmin{ m

2t2

∥H̃∥2F
,
mt

∥H̃∥
}

)
,

so that w.p. 1− Ce−cm, for small ε > 0,

min
x∈Nε

x⊤SH̃S⊤x ≥ 1

µ

dH(1/µ)(H)

m
− C2 log(1 + 1/ε)

1

µ
max{1,

√
dH(1/µ)(H)

m
} (47)

Inserting (46)-(47) into (45) implies that w.p. 1− Ce−cm,

λmin(SHS
⊤) ≥ (1−O(ε))

1

µ

dH(1/µ)

m
−O(ε+log(1+1/ε))

1

µ
max{1,

√
dH(1/µ)(H)

m
}. (48)

By choosing ε > 0 a sufficiently small numerical constant, we can deduce the following: there
are numerical constants c, C, c1, c2 > 0 such that if dH(1/µ)/m > 1/c1, then w.p. 1 − Ce−cm,
λmin(H̃) ≥ c2

1
µ

dH(1/µ)
m . To recover the claimed result, use µ = 1/η.

27

Published as a conference paper at ICLR 2025

F PROOF OF LEMMA B.2

The following argument is standard (cf. (Bai & Silverstein, 2010)) and presented for completeness.

Let r1, . . . , rm ∈ Rd be the rows of S; that is, S⊤ = [r1| . . . |rm]. Let

Σ̂m = H1/2S⊤SH1/2 =
1

m

n∑
i=1

H1/2rir
⊤
i H

1/2 . (49)

This is a sample covariance matrix, corresponding to m samples with population covariance
E[Σ̂m] = H . Recall that Σ̂m ∈ Rd×d and SmHS⊤

m ∈ Rm×m have the same non-zero eigenvalues.
Denote

Pm(z) = (Σ̂m + zI)−1 , (50)

so that

ŝ(z) = m−1 tr(Pm(z)) +m−1(d−m)
1

z
. (51)

Central to the proof is the following leave-one-out decomposition:

Pm(z) = P−k
m (z)−

1
mP

−k
m (z)H1/2rkr

⊤
k H

1/2P−k
m (z)

1 + 1
mr

⊤
k H

1/2P−k
m (z)H1/2rk

, (52)

P−k
m (z) = (Σ̂m − 1

m
H1/2rkr

⊤
k H

1/2 + zI)−1, k = 1, . . . ,m . (53)

The above can be readily shown by the Sherman-Morrison lemma (Lemma M.1).

We shall now prove Lemma B.2 by a standard martingale concentration argument. Let Fk be the
σ-algebra generated by r1, . . . , rk, k = 0, 1, . . . ,m, and E≤k[·] := E[·|Fk]. Decompose into a sum
of martingale differences,

ŝ(z)− E[̂s(z)] = m−1
m∑
k=1

(E≤k − E≤k−1)[trPm(z)]

= m−1
m∑
k=1

(E≤k − E≤k−1)[Dm,k(z)] , (54)

where, using (52),

Dm,k(z) =
1
mr

⊤
k H

1/2(P−k
m (z))2H1/2rk

1 + 1
mr

⊤
k H

1/2P−k
m (z)H1/2rk

. (55)

Note that 0 ⪯ P−k
m (z) ⪯ 1

−z I , hence

|Dm,k(z)| ≤
1

−z
·

1
mr

⊤
k H

1/2(P−k
m (z))H1/2rk

1 + 1
mr

⊤
k H

1/2P−k
m (z)H1/2rk

≤ 1

−z
.

Thus, (54) is a sum of bounded martingale differences |(E≤k − E≤k−1)[Dm,k(z)]| ≤ 2
−z . To

conclude, use the Azuma-Hoeffding inequality (Lemma M.4).

Remark: The above calculation (regarding the boundedness of Dm,k(z)) is, essentially, the proof of
the well-known low-rank perturbation bound for resolvents, Lemma M.3, which we shall use later.

28

Published as a conference paper at ICLR 2025

G PROOF OF THEOREM B.3

We implement a well-known computation technique in random matrix theory (cf. Bai & Silverstein
(2010)), while carefully keeping track of the error terms.

We rely explicitly on properties of the Gaussian distribution. Denote the eigendecomposition H =∑d
ℓ=1 τℓvℓv

⊤
ℓ and

H\ℓ = H − τℓvℓv
⊤
ℓ , sℓ = Svℓ .

for ℓ = 1, . . . , d. Note that s1, . . . , sd ∼ N (0,m−1Im) are independent (since v1, . . . , vd are
orthogonal).

Recall Eq. (51), so that

ŝ(z) = − 1

m
(d−m)

1

z
+

1

m
tr(H1/2S⊤SH1/2 − zI)−1

= − 1

m
(d−m)

1

z
+

1

m

d∑
ℓ=1

v⊤ℓ (H
1/2S⊤SH1/2 − zI)−1vℓ . (56)

We now compute an expression for v⊤ℓ (H
1/2S⊤

mSmH
1/2 − zI)−1vℓ, the ℓ-th diagonal element

of the resolvent (H1/2S⊤
mSmH

1/2 − zI)−1 written in the population covariance eigenbasis V =
[v1| . . . |vd]⊤.

Upon a coordinate permutation (where ℓ becomes the first), we have

V ⊤(H1/2S⊤SH1/2 − zI)V =

[
τℓ∥sℓ∥2 − z

√
τℓsℓSH

1/2
\ℓ√

τℓH
1/2
\ℓ S

⊤sℓ H
1/2
\ℓ S

⊤SH
1/2
\ℓ − zI

]
.

By the block matrix inverse formula (Lemma M.2),

v⊤ℓ (H
1/2S⊤SH1/2 − zI)−1vℓ = (V ⊤(H1/2S⊤SH1/2 − zI)V)−1

ℓ,ℓ

=
(
τℓ∥sℓ∥2 − z − τℓsℓSH

1/2
\ℓ (H

1/2
\ℓ S

⊤SH
1/2
\ℓ − zI)−1H

1/2
\ℓ S

⊤sℓ

)−1

(⋆)
=
(
τℓ∥sℓ∥2 − z − τℓsℓ(SH\ℓS

⊤ − zI)−1SH\ℓS
⊤sℓ
)−1

= −1

z

(
1 + τℓsℓ(SH\ℓS

⊤ − zI)−1sℓ
)−1

, (57)

where in (⋆) we used the identity X⊤f(XX⊤)X = f(X⊤X)X⊤X which holds for any matrix X
and analytic function f(·).
We now wish to estimate the expectation of (57). Denote

Dℓ = sℓ(SH\ℓS
⊤ − zI)−1sℓ − Eŝ(z)

= Dℓ,1 +Dℓ,2 +Dℓ,3

where

Dℓ,1 = sℓ(SH\ℓS
⊤ − zI)−1sℓ −

1

m
tr(SH\ℓS

⊤ − zI)−1 ,

Dℓ,2 =
1

m
tr(SH\ℓS

⊤ − zI)−1 − 1

m
tr(SHS⊤ − zI)−1 ,

Dℓ,3 =
1

m
tr(SHS⊤ − zI)−1 − 1

m
E tr(SHS⊤ − zI)−1 .

We have

v⊤ℓ (H
1/2S⊤SH1/2 − zI)−1vℓ = −1

z
(1 + τℓEŝ(z))−1

+
1

z

τℓDℓ

(1 + τℓsℓ(SH\ℓS⊤ − zI)−1sℓ)(1 + τℓEs(z))
,

29

Published as a conference paper at ICLR 2025

so that using (56),

Es(z) =
1

m
(d−m)

1

z
+

1

m

d∑
ℓ=1

Ev⊤ℓ (H1/2S⊤SH1/2 − zI)−1vℓ

=
1

m
(d−m)

1

z
− 1

m

d∑
ℓ=1

1

z
(1 + τℓEŝ(z))−1

+ em(z)

= −1

z
+

1

z

1

m
tr
[
I − (I + Eŝ(z)H)−1

]
+ em(z)

= −1

z

(
1− 1

m
dH(1/Eŝ(z))

)
+ em(z) , (58)

where

em(z) =
1

zm

m∑
ℓ=1

E
[

τℓDℓ

(1 + τℓsℓ(SH\ℓS⊤ − zI)−1sℓ)(1 + τℓEs(z))

]
.

We may now bound

|em(z)| ≤ 1

m|z|

d∑
ℓ=1

τℓ
1 + τℓEŝ(z)

max
1≤ℓ≤d

E|Dℓ|

=
1

|z|Eŝ(z)
1

m
dH(1/Eŝ(z)) max

1≤ℓ≤d
E|Dℓ| . (59)

We now decompose E|Dℓ| ≤ E|Dℓ,1|+ E|Dℓ,2|+ E|Dℓ,3|. By Lemma M.8 (Item 1),

E|Dℓ,1| ≤
√

E|D1,ℓ|2 ≲
1

m
E∥(SmH\ℓSm − zI)−1∥F ≤ 1

|z|
√
m
.

By the low rank resolvent perturbation lemma, Lemma M.3, almost surely

|Dℓ,2| ≲
1

|z|m
.

Finally, by Lemma B.2,

E|Dℓ,3| = E|̂s(z)− Eŝm(z)| ≲ 1

|z|
√
m
.

Thus,

|em(z)| = O

(
1

|z|Eŝ(z)
1

m
dH(1/Eŝ(z))

1

|z|
√
m

)
, (60)

and so the proof is concluded.

30

Published as a conference paper at ICLR 2025

H PROOF OF THEOREM 3.6

Let λ̂ the output of Algorithm 2, and denote

E = (H + λI)1/2Ŵ (H + λI)1/2 − I, Ŵ := S⊤(SHS⊤ + λ̂I)−1S . (61)

We have Ē = 1
q

∑q
ℓ=1 E(ℓ), where E(1), . . . , E(q) i.i.d.∼ E .

The proof proceeds in two parts. First we show that the expectation E[E] is small; then, we show
that Ē concentrates around E[Ē] = E[E] using matrix concentration inequalities.

The following lemma, proven in Section I, bounds E[E].
Lemma H.1. Suppose that S has i.i.d. Gaussian entries. Assume that m ≥ 1.5dH(λ). We have

∥E[E]∥ = O(
1√
m
) .

To establish concentration, we use the matrix Bernstein inequality (Tropp et al., 2015, Theorem
6.6.1). We cite it here.
Lemma H.2. Let X1, . . . , Xn ∈ Rd×d be independent Hermitian random matrices. Assume that
E[Xn] = 0, ∥Xn∥ ≤ L, and denote

ν2 =

∥∥∥∥∥
N∑
n=1

E[X2
n]

∥∥∥∥∥ . (62)

Then for all t ≥ 0,

Pr

(∥∥∥∥∥
N∑
n=1

Xn

∥∥∥∥∥ ≥ t

)
≤ d exp

(
−t2/2

ν2 + Lt/3

)
. (63)

We shall apply Lemma H.2 with a truncated version of E , ẼL = E1∥E∥≤L − E[E1∥E∥≤L] for a
suitably chosen L. To this end, we give the following high-probability bound on ∥Φ∥.
Lemma H.3. Suppose that S has i.i.d. Gaussian entries. For δ ∈ (0, 1) and q ≥ 1, set

Lδ,q = C
d

m
+ C

log(q/δ)

m
(64)

for large enough C > 0. Then,

1. W.p. 1− δ/q, ∥E∥ ≤ Lδ,q.

2. E[∥E∥1∥E∥≥Lδ,q
] = O(1

me
−d).

3. E[∥E∥21∥E∥≥Lδ,q
] = O(d

m2 e
−d).

We prove Lemma H.3 in Section J.

The last component needed to apply matrix Bernstein is the variance proxy (62). Note that we
always have ν2 ≤ L2N , so that

Pr

(∥∥∥∥∥ 1

N

N∑
n=1

Xn

∥∥∥∥∥ ≥ ε

)
≤ d exp(−cN min

{(ε
L

)2
,
ε

L

}
) . (65)

However, if the variance E[X2] ≪ L2, one may obtain substantially sharper bounds for small
ε≪ L. This is the case in our setting. The following is proved in Section K.
Lemma H.4. Suppose that S has i.i.d. Gaussian entries. Assume that m ≥ 1.5dH(λ). Then

E[E2] = O(d/m) .

With the above, we are ready to conclude the proof of Theorem 3.6.

31

Published as a conference paper at ICLR 2025

Proof. (Of Theorem 3.6.)

Consider the truncated matrices Ẽ(1)
Lδ,q

, . . . , Ẽ(q)
Lδ,q

with Lδ,q as in Lemma H.3. By Item 1 of
Lemma H.3 (and union bound over ℓ = 1, . . . , q), with probability 1− δ, we have

Ē =
1

q

q∑
ℓ=1

Ẽ(ℓ)
Lδ,q

+ E
[
E1∥E∥≤Lδ,q

]
. (66)

Note that∥∥E [E1∥E∥≤Lδ,q

]∥∥ =
∥∥E[E] + E

[
E1∥E∥>Lδ,q

]∥∥ ≤ ∥E[E]∥+ E
[
∥E∥1∥E∥>Lδ,q

]
= O(1/

√
m) ,

(67)

where the first inequality uses Jensen’s inequality, and the second inequality follows from
Lemma H.3 Item 2 and Lemma H.1. Similarly,∥∥∥E [Ẽ2

Lδ,q

]∥∥∥ ≲
∥∥E [E2

]∥∥+ E
[
∥E∥21∥E∥>Lδ,q

]
= O(d/m) , (68)

where we used Lemma H.4.

Now, by the matrix Bernstein inequality (Lemma H.2), the bound

∥Ē∥ ≤ ε+O(1/
√
m) (69)

holds with probability at least

1− d exp

(
−cqmin{ ε2

d/m
,
ε

Lp,q
}
)
. (70)

When q ≤ exp(O(d)) and 1/δ ≤ exp(O(d)) we have Lδ,q = O(d/m), so for ε = O(1) the smaller
term is ε2

d/m . And so, q ≳ d log d
m

log(1/δ)
ε2 ensures that the probability above is ≥ 1− δ.

I PROOF OF LEMMA H.1

We use the machinery from Section G. As before, we denote the eigendecomposition of H ,

H = V diag(τ1, . . . , τd)V
⊤, V = [v1| · · · |vd]

and

H\ℓ = H − τℓvℓv
⊤
ℓ , sℓ = Svℓ, s1, . . . , sd

i.i.d.∼ N (0,m−1Im) .

We shall compute the expectation of Ŵ = S⊤(SHS⊤ + I)−1S in the eigenbasis V , that is,
E[V ⊤ŴV].

Denote, for brevity,

T (λ̂) = (SHS⊤ + λ̂I)−1, T\ℓ(λ̂) = (SH\ℓS
⊤ + λ̂I)−1 ,

so that by the Sherman-Morrison formula (Lemma M.1), writing SHS⊤ = SH\ℓS
⊤ + τℓsℓs

⊤
ℓ ,

T (λ̂) = T\ℓ(λ̂)−
τℓT\ℓ(λ̂)sℓsℓT\ℓ(λ̂)

1 + τℓsℓT\ℓ(λ̂)sℓ
. (71)

Let j ̸= ℓ. Note that λ̂, T\ℓ(λ̂) do not change under a sign flip sj 7→ −sj . Since sj has a symmetric

distribution (sj
d
= −sj), we deduce that

E[v⊤ℓ Ŵvj] = E[s⊤ℓ T (λ̂)sj] = 0 , (72)

that is, E[V ⊤ŴV] is diagonal. Consequently, E[V ⊤EV] = E[V ⊤(H + λI)1/2Ŵ (H + λI)1/2V]
is diagonal as well (since V is an eigenbasis of H).

32

Published as a conference paper at ICLR 2025

Let us calculate the diagonal elements. By (71),

v⊤ℓ Ŵvℓ = s⊤ℓ T (λ̂)sℓ =
s⊤ℓ T\ℓ(λ̂)sℓ

1 + τℓs⊤ℓ T\ℓ(λ̂)sℓ
=

1

(s⊤ℓ T\ℓ(λ̂)sℓ)
−1 + τℓ

, (73)

so

v⊤ℓ Φvℓ =
λ+ τℓ

(s⊤ℓ T\ℓ(λ̂)sℓ)
−1 + τℓ

− 1

=
λ− (s⊤ℓ T\ℓ(λ̂)sℓ)

−1

(s⊤ℓ T\ℓ(λ̂)sℓ)
−1 + τℓ

= O(|λs⊤ℓ T\ℓ(λ̂)sℓ − 1|) . (74)

Let λ̃ be given by (9), so that by Theorem 3.5, λ̂ is close to λ̃ with high probability. Let

∆1 = λs⊤ℓ T\ℓ(λ̂)sℓ − λs⊤ℓ T\ℓ(λ̃)sℓ ,

∆2 = λs⊤ℓ T\ℓ(λ̃)sℓ − λ
1

m
trT\ℓ(λ̃) ,

∆3 = λ
1

m
trT\ℓ(λ̃)− λ

1

m
trT (λ̃) ,

∆4 = λ
1

m
trT (λ̃)− λ

1

m
trT (λ̂) = λ

1

m
trT (λ̃)− 1 ,

so that
λs⊤ℓ T\ℓ(λ̂)sℓ − 1 = ∆1 +∆2 +∆3 +∆4 .

We have

E|∆1| = E[λ|s⊤ℓ T\ℓ(λ̂)T\ℓ(λ̃)sℓ||λ̂− λ̃|] = E
[
λ

λ̂λ̃
∥sℓ∥2|λ̂− λ̃|

]
≲

1

λ
(E∥sℓ∥4∥)1/2(E|λ̂− λ̃|2)1/2 ≲

1√
m
,

E|∆3| = λ
1

m
E[tr(T\ℓ(λ̂)T\ℓ(λ̃))|λ̂− λ̃|] ≤ E

[
λ

λ̂λ̃
|λ̂− λ̃|

]
≲

1√
m
,

E|∆4| ≲
1√
m

where we used Lemma D.3 and that λ̂ = Ω(λ) w.p. 1. As for ∆2, by Lemma M.8 Item 1,

E|∆2| ≲ λ
1

m
(E∥T\ℓ(λ̃)∥2F)1/2 ≲

1√
m
.

Thus, we conclude that ∥EE∥ = ∥ diag(EV ⊤EV)∥ = O(1√
m
).

J PROOF OF LEMMA H.3

Clearly, ∥E∥ ≤ 1 + ∥(H + λI)1/2Ŵ (H + λI)1/2∥. By the inequality
√
a+ b ≤

√
a +

√
b (for

a, b ≥ 0), we have ∥(H + λI)1/2(H1/2 + λ1/2I)−1∥ ≤ 1, so

∥Φ∥ ≤ ∥(H1/2 + λ1/2)Ŵ (H1/2 + λ1/2)∥ ≤ 2∥H1/2ŴH1/2∥+ 2λ∥Ŵ∥ ,

where the second inequality follows from the fact that Ŵ is PSD, and therefore for any u, v, (u +

v)Ŵ (u+ v) = ∥u+ v∥2
Ŵ

≤ 2∥u∥2
Ŵ

+ 2∥v∥2
Ŵ

where ∥u∥2
Ŵ

:= u⊤Ŵu is a norm. We have

H1/2ŴH1/2 = H1/2S⊤(SHS⊤ + λ̂I)−1SH1/2 = (H1/2S⊤SH1/2 + λ̂I)−1H1/2S⊤SH1/2

= I − λ̂(H1/2S⊤SH1/2 + λ̂)−1 ,

33

Published as a conference paper at ICLR 2025

so that ∥H1/2ŴH1/2∥ ≤ 2. Moreover, ∥Ŵ∥ = ∥S⊤(SHS⊤ + λ̂I)−1S∥ ≤ 1
λ̂
∥S⊤S∥. Recalling

that λ̂ ≥ 5λ/12 (by construction), λ∥Ŵ∥ ≤ 12
5 ∥S⊤S∥. Combining all the above, ∥E∥ ≤ 5 +

24
5 ∥S⊤S∥.

By (Vershynin, 2018, Theorem 4.6.1), for every t ≥ 0, w.p. 1− 2e−t,

∥S⊤S∥ ≤ 1 + C1 max{µ, µ2} where µ =

√
d

m
+

√
t

m
.

for C1 large enough. Since m ≤ d, note that max{µ, µ2} = µ2 ≤ 2 dm + 2 t
m . Item 1 follows by

setting t ∼ log(q/δ).

As for Item 2,

E[∥S⊤S∥1∥S⊤S∥>1+4C1
d
m
] =

∫ ∞

1+4C1
d
m

Pr(∥S⊤S∥ ≥ s)ds

= 2C1
1

m

∫ ∞

d

Pr(∥S⊤S∥ ≥ 1 + 2C1
d

m
+ 2C1

t

m
)dt

≲
1

m

∫ ∞

d

e−tdt =
1

m
e−d .

Deducing Item 2 of the lemma is now easy from the above estimate.

Finally, for Item 3,

E[∥S⊤S∥21∥S⊤S∥>1+4C1
d
m
] =

∫ ∞

1+4C1
d
m

2sPr(∥S⊤S∥2 ≥ s2)ds

= 2C1
1

m

∫ ∞

d

(
1 + 2C1

d

m
+ 2C1

t

m

)
Pr(∥S⊤S∥ ≥ 1 + 2C1

d

m
+ 2C1

t

m
)dt

≲
1

m

∫ ∞

d

(
1 + 2C1

d

m
+ 2C1

t

m

)
e−tdt = O(

d

m2
e−d) .

K PROOF OF LEMMA H.4

We continue from Section I, expressing E in the eigenbasis of H .

Recall that E = (H + λ)1/2S⊤T (λ̂)S(H + λ)1/2 − I . Then starting from (71), we have for any
ℓ, j = 1, . . . , d,

v⊤ℓ Evj = (τℓ + λ)1/2(τj + λ)1/2
sjT\ℓ(λ̂)sℓ

1 + τℓsℓT\ℓ(λ̂)sℓ
− 1ℓ=j . (75)

Consequently, if j ̸= k then note that E[v⊤j Evℓv⊤k Evℓ] = 0, since sj , sk have a symmetric distribu-
tion.

Recall, we are interested in bounding ∥E[E2]∥ = ∥E[(V ⊤EV)2]∥. We have

E[(V ⊤EV)2j,k] =

d∑
ℓ=1

E[(V ⊤EV)j,ℓ(V
⊤EV)k,ℓ] ,

which is zero when j ̸= k; that is, E[(V ⊤EV)2] is diagonal. Let us compute the diagonal elements,
j = k. We have

E[(V ⊤EV)2k,k] = E[(V ⊤EV)k,k(V
⊤EV)k,k] +

∑
ℓ ̸=k

E[(V ⊤EV)k,ℓ(V
⊤EV)k,ℓ] . (76)

34

Published as a conference paper at ICLR 2025

The first term is

E[(V ⊤ΦV)2k,k] = E

(λ− (s⊤ℓ T\ℓ(λ̂)sℓ)
−1

(s⊤ℓ T\ℓ(λ̂)sℓ)
−1 + τℓ

)2

= O(|λs⊤ℓ T\ℓ(λ̂)sℓ − 1|2) , (77)

where we used (74). Similar to Section I, one can show this is O(1/m). For the second term, using
(75),

d∑
ℓ=1,ℓ̸=k

(V ⊤EV)k,ℓ(V
⊤EV)k,ℓ =

d∑
ℓ=1,ℓ̸=k

(τk + λ)(τℓ + λ)
(skT\k(λ̂)sℓ)

2

(1 + τks⊤k T\k(λ̂)sk)
2

= (τk + λ)
1

(1 + τkskT\k(λ̂)sk)2
s⊤k T\k(λ̂)

 d∑
ℓ=1,ℓ̸=k

(τℓ + λ)sℓs
⊤
ℓ

T\k(λ̂)sk . (78)

For small c′ > 0, let Ω be the event that s⊤k T\k(λ̂)sk ≥ c′/λ; by similar calculations as in Section I,
for some c, C > 0, Pr(Ωc) ≤ Ce−cm. Then

d∑
ℓ=1,ℓ̸=k

(V ⊤EV)k,ℓ(V
⊤EV)k,ℓ1Ω ≲

λ2

τk + λ
s⊤k T\k(λ̂)

 d∑
ℓ=1,ℓ̸=k

(τℓ + λ)sℓs
⊤
ℓ

T\k(λ̂)sk1Ω

≤ λ2

τk + λ
s⊤k T\k(λ̂)

 d∑
ℓ=1,ℓ̸=k

(τℓ + λ)sℓs
⊤
ℓ

T\k(λ̂)sk ,
so taking the expectation,

E

 d∑
ℓ=1,ℓ̸=k

(V ⊤EV)k,ℓ(V
⊤EV)k,ℓ1Ω

 ≲
λ2

τk + λ

1

m
E tr

T\k(λ̂)
 d∑
ℓ=1,ℓ̸=k

(τℓ + λ)sℓs
⊤
ℓ

T\k(λ̂)

≲
λ

τk + λ

1

m
E tr

 d∑
ℓ=1,ℓ̸=k

(τℓ + λ)sℓs
⊤
ℓ

T\k(λ̂)

≤ 1

m

d∑
ℓ=1,ℓ̸=k

(τℓ + λ)Es⊤ℓ T\k(λ̂)sℓ .

Using (71),

Es⊤ℓ T\k(λ̂)sℓ = E

[
s⊤ℓ T\k,ℓ(λ̂)sℓ

1 + τℓs⊤ℓ T\k,ℓ(λ̂)sℓ

]
≤

E[s⊤ℓ T\k,ℓ(λ̂)sℓ]
1 + τℓE[s⊤ℓ T\k,ℓ(λ̂)sℓ]

, (79)

where we used Jensen’s inequality with the concave function x 7→ x
1+τℓx

, x > 0. By a calculation

similar to Section I, E[s⊤ℓ T\k,ℓ(λ̂)sℓ] =
1
λ +O(1

λ
√
m
), hence

Es⊤ℓ T\k(λ̂)sℓ ≤
E[s⊤ℓ T\k,ℓ(λ̂)sℓ]

1 + τℓE[s⊤ℓ T\k,ℓ(λ̂)sℓ]
≲

1

τℓ + λ
.

Consequently,

E

 d∑
ℓ=1,ℓ̸=k

(V ⊤EV)k,ℓ(V
⊤EV)k,ℓ1Ω

 ≲
1

m

d∑
ℓ=1,ℓ̸=k

(τℓ + λ)Es⊤ℓ T\k(λ̂)sℓ ≲
d

m
. (80)

35

Published as a conference paper at ICLR 2025

Finally, towards bounding the expectation under the complement event Ωc note we can write

d∑
ℓ=1,ℓ̸=k

(V ⊤EV)k,ℓ(V
⊤EV)k,ℓ = (τk + λ)

1

(1 + τkskT\k(λ̂)sk)2

d∑
ℓ=1,ℓ̸=k

(τℓ + λ)(s⊤ℓ T\k(λ̂)sk)
2

≤ (τk + λ)
s⊤k T\k(λ̂)sk

(1 + τkskT\k(λ̂)sk)2

d∑
ℓ=1,ℓ̸=k

(τℓ + λ)s⊤ℓ T\k(λ̂)sℓ

≤ (τk + λ)
s⊤k T\k(λ̂)sk

1 + τkskT\k(λ̂)sk

d∑
ℓ=1,ℓ̸=k

(τℓ + λ)s⊤ℓ T\k(λ̂)sℓ , (81)

where the first inequality, (s⊤ℓ T\k(λ̂)sk)
2 ≤ (s⊤ℓ T\k(λ̂)sℓ)(s

⊤
k T\k(λ̂)sk), follows by Cauchy-

Schwartz. We have

(τk + λ)
s⊤k T\k(λ̂)sk

1 + τkskT\k(λ̂)sk
=

τk + λ

τk + (s⊤k T\k(λ̂)sk)
−1

= 1 +
λ− (s⊤k T\k(λ̂)sk)

−1

τk + (s⊤k T\k(λ̂)sk)
−1

≤ 1 + |λ(s⊤k T\k(λ̂)sk)− 1| .

Recall Ω, the event that λs⊤k T\k(λ̂)sk ≥ c′; we now need to bound
E[
∑d
ℓ=1,ℓ̸=k(V

⊤EV)k,ℓ(V
⊤EV)k,ℓ1Ωc]. Under Ωc, 0 ≤ λs⊤k T\k(λ̂) < c′, and so

(τk + λ)
s⊤k T\k(λ̂)sk

1+τkskT\k(λ̂)sk
1Ωc = O(1). Plugging this into (81),

E[
d∑

ℓ=1,ℓ̸=k

(V ⊤EV)k,ℓ(V
⊤EV)k,ℓ1Ωc] ≲

d∑
ℓ=1,ℓ̸=k

(τℓ + λ)E[s⊤ℓ T\k(λ̂)sℓ1Ωc] . (82)

Using (79),

(τℓ + λ)E[s⊤ℓ T\k(λ̂)sℓ1Ωc] = E

[
τℓ + λ

τℓ + (s⊤ℓ T\k,ℓ(λ̂)sℓ)
−1
1Ωc

]
≤ E

[(
1 + |λ(s⊤ℓ T\k,ℓ(λ̂)sℓ)− 1|

)
1Ωc

]
≲ E[(1 + ∥sℓ∥2)1Ωc] ≲ Pr(Ωc) +

√
E∥sℓ∥4 Pr(Ωc) ≲ e−cm ,

as Pr(Ec) ≲ e−cm. Thus, E[
∑d
ℓ=1,ℓ̸=k(V

⊤EV)k,ℓ(V
⊤EV)k,ℓ1Ωc] ≤ de−cm. And so, we finally

conclude

E[
d∑

ℓ=1,ℓ̸=k

(V ⊤ΦV)k,ℓ(V
⊤ΦV)k,ℓ] = E

d∑
ℓ=1,ℓ̸=k

(V ⊤EV)k,ℓ(V
⊤EV)k,ℓ1Ω + E

d∑
ℓ=1,ℓ̸=k

(V ⊤EV)k,ℓ(V
⊤EV)k,ℓ1Ωc

≲
d

m
+ de−cm = O(d/m) . (83)

36

Published as a conference paper at ICLR 2025

L PROOF OF THEOREM 4.1

Define the Newton decrement at a point θ ∈ Rd:

N(θ) =
(
(∇G(θ))⊤(∇2G(θ))−1(∇G(θ))

)1/2
. (84)

Denote the approximate Newton decrement, where W̄ (θ) is an approximation of the true inverse
Hessian:

Ñ(θ) =
(
(∇G(θ))⊤W̄ (θ)(∇G(θ))

)1/2
. (85)

Note that if W̄ is η-accurate in the sense of Definition 2, then√
1− ηN(θ) ≤ Ñ(θ) ≤

√
1 + ηN(θ) . (86)

For self-concordant functions, it is known that the Newton decrement yields an upper bound on the
suboptimality gap G(θ)−G(θ⋆):
Lemma L.1. If N(θ) < N0 for some numerical constant N0 ≤ 0.68, then

G(θ)−G(θ⋆) ≤ N2(θ) .

Proof. See (Boyd & Vandenberghe, 2004, Section 9.6.3), specifically Eq. (95).

Clearly, by (86), the approximate Newton decrement Ñ(θ) provides an upper bound on the optimality
gap provided that the inverse Hessian is η-accurate, albeit a looser one.

The key tool in our analysis are the following estimates, due to (Pilanci & Wainwright, 2015).
Lemma L.2. Operate under the conditions of Theorem 4.1. There exist numerical constants Λ, ν >
0 with Λ < 1/16 such that the following holds. Assume that 0 ≤ η < 1/2.

• If at an iteration t, one has N(θt−1) ≥ Λ, then at the next (approximate) Newton step:
G(θt) − G(θ⋆) ≤ −abν, where a, b > 0 are the parameters for backtracking line search
(see Algorithm 3).

• If N(θt−1) ≤ Λ then at the next iteration N(θt) ≤ N(θt−1).

Proof. See (Pilanci & Wainwright, 2015, Lemma 6.4).

Note that Lemma L.2 implies that within at most

T0 = (G(θ0)−G(θ⋆))/(abν) (87)

iterations, we are guaranteed to reach θt such that N(θt) ≤ Λ; furthermore, once we have achieved
that, N(θt′) ≤ Λ holds for every subsequent iteration t′ ≥ t.

The following is the main estimate for the remainder of the analysis:
Lemma L.3. Operate under the conditions of Theorem 4.1, and assume that η < 1/2. Then

N(θt) ≤
(1 + η)N2(θt−1) + ηN(θt−1)

(1− (1 + η)N(θt−1))
2 . (88)

Proof. This result is (Pilanci & Wainwright, 2015, Lemma 6.6).

One can further simplify (88) assuming that N(θt−1) < 1/16. Coarsely lower bounding the denom-
inator and upper bounding the numerator:

N(θt) ≤ 2N2(θt−1) + 2ηN(θt−1) ≤
{
4N2(θt−1) if N(θt−1) ≥ η,

4ηN(θt−1) if N(θt−1) ≤ η
, (89)

provided that N(θt−1) < 1/16.

With the above estimates in hand, we are ready to prove Theorem 4.1.

37

Published as a conference paper at ICLR 2025

Proof. (Of Theorem 4.1.) Recall that we assume that η < 1/5, and in particular η < 1/2. By
Lemma L.2, within T0 iterations, the approximate Newton method reaches θt such that N(θt′) <
1/16 for all t′ ≥ t. In particular, also G(θ) − G(θ⋆) ≤ (1 + η)1/162 ≤ 3/500. Let ε > 0 be the
desired precision; suppose that ε < 3/500. We consider two cases.

First, assume that η ≤ ε < 3/500. Let T1(ε) be the smallest integer t such that the dynamic

At = 4A2
t−1, A0 = 1/16 (90)

satisfies At ≤ ε. It is easy to verify that At = 1/4(1/4)2
t

(e.g. by induction), hence T1(ε) =
O(log log(1/ε)). We conclude that when ε ≥ η, T(ε) ≤ T0 + T1(ε).

The second case is when ε < η, therefore we are in the regime of (89) where decay is linear rather
than quadratic. Let T2(ε) be the smallest integer t such that the dynamic

Bt = 4ηBt−1, B0 = η (91)

satisfies Bt ≤ ε. Clearly Bt = (4η)tB0, hence T2(ε) = O(log(η/ε)log(1/η)) (here we used that 4η < 1, by
assumption). We conclude that when ε < η, T(ε) ≤ T0 + T1(η) + T2(ε).

38

Published as a conference paper at ICLR 2025

M AUXILLIARY TECHNICAL RESULTS

Lemma M.1 (Sherman-Morrison). Let A ∈ Rn×n be invertible, and u, v ∈ Rn.

The matrix A+ uv⊤ is invertible if and only if 1 + v⊤A−1u ̸= 0. In that case,

(A+ uv⊤)−1 = A−1 − A−1uv⊤A−1

1 + v⊤A−1u
. (92)

Lemma M.2 (Block matrix inversion). Let A,B,C,D be matrices of conforming dimensions. Pro-
vided that A,D are both invertible,[

A B
C D

]−1

=

[
(A−BD−1C)−1 0

0 (D − CA−1B)−1

] [
I −BD−1

−CA−1 I

]
. (93)

Lemma M.3. (Resolvent low-rank perturbation.) Let A,B,C ⪰ 0 be PSD matrices, and z > 0.
Then ∣∣trC(zI +A)−1 − trC(zI +B)−1

∣∣ ≤ rank(A−B)
∥C∥
z

.

For reference, see for example (Bai & Silverstein, 2010).

Let {∅,Ω} =: F0 ≤ F1 ≤ F2 ≤ . . . be a filtration of σ-algebras over some given probability
space Ω. Recall that a random process {Xn}∞n=1 is a martingale difference (adapted to this filtration)
if 1) for every n, Xn is Fn-measurable; and 2) Fn−1-almost surely, E[Xn|Fn−1] = 0.

Lemma M.4 (Azuma-Hoeffding). Suppose that (Xn,Fn)Nn=1 is a martingale difference, and
{Bn}Nn=1 constants. Suppose that for all 1 ≤ n ≤ N , almost surely, |Xn| ≤ Bn. Then for all
t ≥ 0,

Pr(|
N∑
n=1

Xn| ≥ t) ≤ 2 exp

(
− 1

2 t
2∑N

n=1B
2
n

)
.

The sub-Gaussian and sub-Exponential norms of a (scalar) random variable are, respectively

∥X∥ψ2
= inf

{
σ > 0 : EeX

2/σ2

≤ 2
}
, ∥X∥ψ1

= inf
{
σ > 0 : Ee|X|/σ ≤ 2

}
. (94)

We call X sub-Gaussian, resp. sub-Exponential, if ∥X∥ψ2
<∞, resp. ∥X∥ψ1

<∞.

For a random vector r, we define ∥r∥ψi = sup∥v∥=1 ∥v⊤r∥ψi . That is, it is the largest ψi-norm of a
one-dimensional projection of r.

Lemma M.5. The following holds.

1. ∥ · ∥ψi
is a norm on the subspace of random variables X such that ∥X∥ψi

<∞.

2. If X,Y are sub-Gaussian (possible statistically dependent), then XY is sub-Exponential,
with ∥XY ∥ψ1 ≤ ∥X∥ψ2∥Y ∥ψ2 .

3. If |Y | ≤ B almost surely for B ≥ 0 constant, ∥XY ∥ψi
≤ B∥X∥ψi

.

4. (Centralization.) For any X , ∥X − E[X]∥ψi ≤ ∥X∥ψi .

We refer to the book (Vershynin, 2018) for reference.

Lemma M.6 (Bernstein). Suppose that (Xn,Fn)Nn=1 is a martingale difference. Then for all t ≥ 0,

Pr(|
N∑
n=1

Xn| ≥ t) ≤ 2 exp

(
−cmin{ t

maxn=1,...,N ∥Xn∥ψ1

,
t2∑N

n=1 ∥Xn∥2ψ1

}

)
.

39

Published as a conference paper at ICLR 2025

Next, we cite the following version of the Hanson-Wright inequality, see (Vershynin, 2018).
Lemma M.7 (Hanson-Wright). Suppose that r has independent sub-Gaussian entries, with E[ri] =
0,E[r2i] = 1, maxi ∥ri∥ψ2

≤ K. For any matrix A and t ≥ 0,

Pr(|r⊤Ar − tr(A)| ≥ t) ≤ exp

(
−cmin{ t

K2∥A∥
,

t2

K4∥A∥2F
}
)
, (95)

where c > 0 is a universal constant.

Lastly, the following lemma collects, for convenience, some properties satisfied by any isotropic
random vector r that satisfies a concentration inequality of the form (95).
Lemma M.8. Suppose r is istropic E[r] = 0,E[rr⊤] = I , and satisfies (95) for some K > 0.

1. For any matrix A (independent of r), E[|r⊤Ar − tr(A)|2] ≲ K4∥A∥2F .

2. For any vector v (independent of r), ∥v⊤r∥ψ2
≲ K∥v∥. That is, r is sub-Gaussian, with

∥r∥ψ2
≲ K.

Proof. Start with the first item. Write E[|r⊤Ar − tr(A)|2] =
∫∞
0

Pr(|r⊤Ar − tr(A)|2 > s)ds =

2
∫∞
0
tPr(|r⊤Ar − tr(A)|2 > t)dt. Using (95), we crudely bound∫ ∞

0

tPr(|r⊤Ar − tr(A)|2 > t)dt ≤
∫ ∞

0

t exp(−c t2

K4∥A∥2F
)dt+

∫ ∞

0

t exp(−c t

K2∥A∥
)dt ≲ K4∥A∥2F .

As for the second item, note that ∥vvT ∥ = ∥vvT ∥F = ∥v∥2. Hence,

Pr(|v⊤r| ≥ t) = Pr(r⊤vv⊤r ≥ t2) ≲ exp(−min{ t2

K2∥v∥2
,

t4

K4∥v∥4
}) .

That is, ∥v⊤r∥ has a Gaussian tail with variance proxy K2∥v∥2.

40

