
Under review as a conference paper at ICLR 2024

A BROADER IMPACT

There are no direct broader impacts from this work. However, this work promotes the adoption
of both empirical games and world models. Potential negative impacts may arise due to errors
introduced when compressing the true game into the confines of any model, which could lead to
negative consequences. World model errors within Dyna-PSRO are transferred across response
calculations potentially reinforcing biases about the world. If these biases are not rectified, they could
negatively influence policies learned from these models. The strategic diversity component of this
work aims to mitigate these potential biases, though it represents only the initial step in addressing
this concern. When considering empirical games, inaccuracies within them can lead to the suggestion
of flawed solutions. The adoption of these inaccurate solutions could have negative repercussions
for practitioners or other stakeholders involved in the game. Vigilance and thorough evaluation are
required to prevent these potential issues.

B COMPUTE

GPUs are used for training world models, and policies within Dyna-PSRO. Two types of GPUs were
used throughout this work interchangeably: TITAN X and GTX 1080 Ti. All other computation was
completed using CPUs. Each response calculation had additional CPUs corresponding to the number
of experience generation arenas described in Appendix C. Experiments were run on internal clusters.

C METHODS DETAILS

In this work, the both the policies and world models are implemented in JAX (Bradbury et al., 2018)
with Haiku (Hennigan et al., 2020). The software is architected using Launchpad (Yang et al., 2021)
with design patterns inspired by ACME (Hoffman et al., 2020). All replay buffers are implemented
using Reverb (Cassirer et al., 2021). Gambit (McKelvey et al., 2016) is used as a game solver via
linear complementarity (Eaves, 1971).

C.1 POLICY IMPLEMENTATION & TRAINING

Timestep

V

π

Agent

Timestep
Encoder

Memory
Core

Policy
Head

Value
Head

Figure 6: Agent Architecture.

All policies follow the general architecture depicted in Figure 6. This consists of four modules:

• Timestep Encoder: Processes all of the current observation’s information into a single
embedding vector. The timestep includes the new observation and the policy’s previous
action.

• Memory Core: The component of the agent that maintains and update’s the agent’s memory.
• Policy Head: Computes the agent’s policy.
• Value Head: Computes the agent’s state value function.

All of the components are simultaneously trained and their joint parameters are θπ ∈ Θπ. The
policies are trained using the IMPALA algorithm (Espeholt et al., 2018). For the IMPALA loss, the
coefficients for each component loss are:

LIMPALA = λπ · Lπ + λV · LV + λentropy · Lentropy,

15

Under review as a conference paper at ICLR 2024

with a discount factor of 0.99. The training details for each specific response calculation are itemized
below.

Baseline Parameters The learning rate begins is linearly decayed over 10 000 updates. Each
update is computed from a mini-batch of 128 examples that are generated from 8 arenas3 Policy
parameters are synchronized at the beginning of each episode. Each example in the mini-batch is a
sequence of 20 transitions. Moreover, sequences are stored in a replay buffer with a period of 19, to
ensure that the action played at the end of a sequence is trained. Sequences are stored in a replay
buffer with a max capacity of 1 000 000, and are evicted once sampled. Additional hyperparameters
are specified in Table 1.

Table 1: Baseline policy hyperparameters per game.
Hyperparameter Harvest: Categorical Harvest: RGB Running with Scissors

Optimizer Adam RMSProp RMSProp
λπ 1.0 1.0 1.0
λV 0.2 0.5 0.2
λentropy 0.04 0.01 0.003
Learning Rate Start 6e−6 6e−4 1e−4
Learning Rate Stop 6e−9 6e−9 1e−4
Max Grad Norm 10.0 1.0 0.1
Batch Size 128 128 128

Harvest: Categorical module implementations:

• Timestep Encoder: The encoder processes two timestep components: the current observation
and the previous action the policy took. First the observation is passed through a two-layer
fully connected neural network with hidden sizes of [256, 256]. The representation of the
observation is then concatenated with the previous action (represented as a one-hot vector),
and passed together through a second neural network with sizes [256, 256]. All of the layers
have ReLU (Fukushima, 1975) activations including the final layers of both networks. The
final representation is the output of the timestep encoder.

• Memory Core: A single-layer LSTM (Hochreiter & Schmidhuber, 1997) with 256 units.
• Policy Head: A single linear layer of size 8.
• Value Head: A single linear layer of size 1.

Harvest: RGB and Running with Scissors module implementations:

• Timestep Encoder: The encoder processes two timestep components: the current observation
and the previous action the policy took. The observation is first process by a two-layer
convolutional neural network with ReLU activations (Fukushima, 1975). The first layer
has 16 channels, a kernel with shape [8, 8], and a stride of [8, 8]. The second layer has 32
channels, a kernel shape of [4, 4], and a stride of [1, 1]. The output of this layer is then
flattened and concatenated with a one-hot encoding of the policy’s previous action. The
resulting embedding is then passed through a two-layer fully connected neural network with
hidden sizes of [128, 128], and ReLU activations.

• Memory Core: A single-layer LSTM (Hochreiter & Schmidhuber, 1997) with 128 units.
• Policy Head: A single linear layer of size 8.
• Value Head: A single linear layer of size 1.

Planning Parameters The planners have the same hyperparameters as the baseline method, but
with the addition of planning-specific settings. For all planners, an additional 4 arenas are used to
generate planned experiences (for background planning). The additional settings for each version of
planning are as follows:

3The term arena is used to refer to an experience generation process. This is more commonly referred to as
an “actor”; however, this terminology may be confounding with language in RL, Dyna, or multiagent learning.

16

Under review as a conference paper at ICLR 2024

• Warm-Start Background Planning: An additional 10 000 updates are performed on exclu-
sively planned experiences before play in the real game occurs.

• Concurrent Background Planning: Each mini-batch sampled after warm-starting contains
25% planned experiences, and 75% real experiences.

• Decision-Time Planning: In the training arenas (those that have the real game, and are not
used for evaluation), the agent selects actions with a beam-search of width 3 and depth 1.

Background planning also requires defining a search control procedure (Sutton, 1990; 1991; Sutton
& Barto, 2018). Search control defines how the agent prioritizes selecting starting states and actions
for background planning. This work considers the simplest search-control method: maintain a buffer
of the initial states and uniformly sample.

C.2 WORLD MODEL IMPLEMENTATION & TRAINING

C.2.1 ACTION-CONDITIONED SCHEDULED SAMPLING

Algorithm 1: Action-Conditioned
Scheduled Sampling
m← Initial recurrent state
for t ∈ T do

o← ot if Unif[0, 1] < ϵ(t) else ôt

ôt+1, r̂t+1,m← w(o,at,m)

Output: Predicted trajectory (ô0:T , r̂0:T)

As noted by Talvitie (2014), rolling out trajecto-
ries with an imperfect model tends to result in com-
pounding errors in prediction. Their work suggests
training a Markovian world model with previous
predictions (referred to as “hallucinated replay”), to
train the model to correct errors. For stateful world
models, as studied in this work, it has been demon-
strated that curricula of n-step future predictions can
train a fruitful world model (Michalski et al., 2014;
Oh et al., 2015; Chiappa et al., 2017). All of the
preceding work was studying single-agent systems;
therefore, they could assume a much more stable data distribution for training. As a result, these
fixed curricula style approaches may prove fatal as the data distribution may change dramatically
throughout training based on the coplayers’ strategies.

Instead, this work adapts the scheduled sampling (Bengio et al., 2015) algorithm as a stochastic
curricula, which will allow both short- and long-term predictions throughout the course of training.
Scheduled sampling is an algorithm for training auto-regressive sequence prediction models where at
each predictive step during training the model input is sampled from either the previous prediction or
the ground truth. Adapting this algorithm for world model rollouts requires biasing each predictive
step with the true actions while sampling between the predicted successor observation and the true
successor observation. Therefore, the predictions will always be biased on true actions, but must
learn to handle model-predicted observation. The sampling follows a schedule ϵ : Z → [0, 1] that
determines the probability of sampling the true observation over the previous prediction. When
ϵ is 1.0, the algorithm behaves akin to teacher forcing (Williams & Zipser, 1989) (with the same
action-conditional modification); whereas, as it approaches 0.0 it becomes fully auto-regressive.

C.2.2 IMPLEMENTATION

T
im

es
te

ps

World Model

Observation
Prediction

Reward
Prediction

Memory
CoreConcat

i in n

i

Timestep
Encoder

i in n

i

T
im

es
te

ps

Figure 7: World Model Architecture.

17

Under review as a conference paper at ICLR 2024

The high-level architecture of the world model is illustrated in Figure 7. The world model is composed
of several modules that are quite similar to the policy:

• Timestep Encoder: Processes all of the current observation’s information into a single
embedding vector. The timestep includes all new observational data that the agent gains
at the current point in time. Different from the agent’s timestep encoder, this encoder also
receives the ID that corresponds with the timestep.

• Memory Core: The component of the agent that maintains and update’s the agent’s memory.
Different from the agent’s timestep encoder, this memory core receives the representation of
each player’s timestep concatenated.

• Observation Prediction (Head): Predicts the successor observation for each player. As
all games considered in this work are gridworld games, the predicted observation is a
classification task for each future grid cell (that are within the respective player’s observation
window).

• Reward Prediction (Head): Predicts the reward received for each player. Rewards are treated
as categorical values.

Note, that the timestep encoder, observation prediction head, and reward prediction head each use
the same parameters across each player. Similar to the agent, all components are simultaneously
trained and their joint parameters are referred to as θw ∈ Θw. Both observation and reward losses are
optimized with a cross entropy objective, and averaged across players. The total world model loss is
as follows:

Lw = λobservation · Lobservation + λreward · Lreward.

The implementation of each component is as follows:

• Timestep Encoder: The same as the agent’s timestep encoder, but the player’s ID is also
provided alongside the action into the second neural network.

• Memory Core: Identical to the agent.
• Observation Prediction (Head): The observation prediction is based on the memory core’s

output and a one-hot ID of the predicted player’s ID. These inputs are concatenated and fed
into an transposed version of the timestep encoder.

• Reward Prediction (Head): A linear layer of size one. For Harvest: Categorical this output
is handled as a discrete prediction; whereas, it is continuous for the other games.

A world model is trained for 1 250 000 updates. Each example in the mini-batch is a sequence of 20
transitions, where the first 5 timesteps are used to burn-in the memory. Burn-in does not occur for
examples where the first 5 transitions are at the beginning of the episode. Moreover, sequences are
added into the replay buffer at a period of 14 so that all timesteps show up as prediction targets.

The world model is trained using action-conditioned scheduled sampling (Appendix 1, Algorithm 1).
The schedule ϵ follows the following schedule:

ϵ(t) =

1.0 t < 250000
4
3 −

t
750000 250000 ≤ t ≤ 1000000

0.0 t > 1000000.

This schedule starts out training as a variation of teacher forcing (Williams & Zipser, 1989), and
slowly transitions to fully auto-regressive. Additional hyperparameters are specified in Table 2.

C.3 STRATEGIC DIVERSITY

Learning a general world model assumes that the transitions are drawn from the space of all possible
transitions. This is typically not tractable, but instead draws are taken from a dataset generated from
play of a behavioral [joint] strategy σ. And the performance of the world model is measured under a
target [joint] strategy σ∗, instead of all possible strategies Σ. Differences between σ and σ∗ present
challenges in learning an effective world model.

We call the probability of drawing a state-action pair s, a under some joint strategy its reach
probability ησ̂ under joint strategy σ̂. From this, we define strategic diversity as the distribution

18

Under review as a conference paper at ICLR 2024

Table 2: World model hyperparameters per game.
Hyperparameter Harvest: Categorical Harvest: RGB Running with Scissors

λobservation 1.0 1.0 1.0
λreward 10.0 0.01 0.01
Optimizer Adam Adam Adam
Learning Rate 3e−4 3e−4 3e−4
Max Grad Norm 10.0 10.0 10.0
Batch Size 32 24 24

induced from reach probabilities. These terms allow us to observe two challenges for learning world
models.

First, the diversity of the behavioral strategy cover the target joint strategy’s diversity:

ησ
∗
(s,a)→ ησ(s,a). (1)

Otherwise, transitions will be absent from the training data. As an aside, it is possible to construct a
weaker claim for coverage. This is done through making additional assumptions about the generaliza-
tion capacity of a world model across transitions. For example, if transitions are drawn from two
discrete latent variables, unseen combinations of these variables may be generalized if the individual
values are known. However, generalization cannot be generally guaranteed, so we consider coverage.

The second challenge is that the closer the diversities are, the more accurate the learning objective
will be. In other words, we want

ησ
∗
(s,a) ≈ ησ(s,a). (2)

If closeness is not ensured, crucial dynamics knowledge may not be learned as the learning signal is
dominated from unimportant transitions. An example of the issue of closeness can be seen in the
“noisy TV problem,” (Burda et al., 2019). This exploration problem poses that novelty-seeking agents
may be stuck forever watching the ever new TV static, and not experiencing practical novelty. In
the same vein, if a world model is trained almost entirely on “noisy TV”-like experiences, and as a
rarely on the few salient experiences, it may never learn. Therefore, we should strive to correct the
distribution of experiences to be informed by a target strategy.

By design, empirical-game building algorithms offer a means to construct the target world model
objective. These algorithms require the specification of a solution concept that serves the dual roll
as the target strategy for a world model. Then through an iterative process, the empirical-game
constructs strategies that progressively approach the target. In turn, generating transitions that match
the target world model objective.

Claim 1. Dyna-PSRO produces a correct world-model objective ησ
∗

with a best-response oracle
and a correct empirical game for a game with a unique Nash Equilibrium σ∗.

Proof. Following McMahan et al. (2003), the Double Oracle algorithm will converge to a NE in the
limit of enumerating the full strategy space. Let σ0,σ1, . . . ,σe be the solutions discovered for each
epoch, ending at epoch e. Then a dataset composed of experiences generated by the current empirical
game solution evolves as follows:

ησ
0

→ ησ
1

→ . . .→ ησ
e

= ησ
∗
. (3)

The previous claim contains two strong assumptions: an exact best-response oracle and error-less
empirical game. These assumptions must be made, because PSRO is parameterized by its choice
of response oracle and empirical game model; therefore, PSRO’s convergence must be proven for
each choice. Theoretically PSRO has been shown to converge to an ϵ-NE, where ϵ depends on
the empirical game’s modelling error, to a corresponding NE in the true game (Tuyls et al., 2020;
Vorobeychik, 2010). Therefore, in practice Dyna-PSRO produces ησ

e ≈ ησ
∗
, which supports the

weaker claim that Dyna-PSRO generally improves the quality of a world model.

19

Under review as a conference paper at ICLR 2024

It is also worth noting the connections between this analysis and MARL regimes that seek to find any
solution the game. In these regimes, the priority is finding any performant strategy. This matches the
approach taken by the majority of studies in MARL falling under paradigms such as Independent RL
or Self-Play. Therefore, their target distribution is the best-response to the previous strategy ηBR(σi−1)

and changes in tandem with the strategies. When no best-response can be found, then the current
strategy matches the solution and the dataset correspondingly reflects this.

C.4 DYNA-PSRO

The Dyna-PSRO builds upon PSRO (Algorithm 3) by including the co-learning of a world model.
The high-level pseudocode of Dyna-PSRO is provided in Algorithm 5 an a high-level application
architecture diagram is depicted in Figure 8. There are three main co-routines of Dyna-PSRO:
response computation, world-model learning, and empirical-game simulation. The details of each
routine are first provided; then, how the routines interact with each other is explained.

Dyna-PSRO

Empirical
Game

Strategy
Server

World Model
Learner

Policy
Learner

Eval
Arena

Sim.
Arena

Train
Arena

Plan
Arena

TrainPlan

Response Oracle: IMPALA

World
τTrain , τ Eval

Figure 8: Overview of the major Dyna-PSRO processes.

C.4.1 EMPIRICAL GAME

The empirical game routine is responsible for maintaining the empirical game, including simulating
new payoffs and game reasoning. New profiles are sent to simulation (sim.) arenas for payoff
estimation in parallel. Once all profiles are estimated, the game is solved, and the solution is based
to the main Dyna-PSRO process. In the experiments in this work, the chosen solution is Nash
Equilibrium, and it is solved through the linear complementarity (Eaves, 1971) algorithm that is
implemented by Gambit (McKelvey et al., 2016).

C.4.2 WORLD MODEL

The world model routine is responsible for training the world model and serving its parameters. This
routine’s pseudocode is provided in Algorithm 2, and follows mostly the same method details as
the strategic diversity experiment. The difference is that instead of there being a precomputed fixed
dataset, the world model is now trained over a dynamic dataset. The dataset is represented by a
replay buffer that is populated from: (1) trajectories from the simulation arena used for expanding
the empirical game, and (2) trajectories from the training and evaluation arenas from the response
calculation. Notably, all of this data must be generated in the standard PSRO procedure, so it collected
with no additional cost. The world-model learner samples and evicts data randomly from this buffer.

20

Under review as a conference paper at ICLR 2024

Algorithm 2: World Model Learner
Input: World model w and data buffer Bw
Input: n no. of updates (default: ∞).
for i ∈ [[n]] do

Train w over τ ∼ Bw
Output: w

C.4.3 RESPONSE ORACLE

The response oracle uses the IMPALA (Espeholt et al., 2018) algorithm to compute an approximate
best-response to the opponent’s strategy according the the current empirical game. IMPALA uses
several processes that generate experiences for the agent to train on. These process are referred to in
this work as arenas. The train arenas generate real experiences, and the plan arenas generate planned
experiences. If the learner is using decision-time planning they will only use it in the train arenas.
A third set of arenas called eval arenas periodically evaluate the performance of the greedy policy
and record additional metrics. The arenas attempt to synchronize all parameters at the start of each
episode.

The policy learner runs for a fixed number of updates, querying the datastores for experiences to learn
from. The specifics of how each policy learns is described in Appendix C.1.

C.4.4 RUNTIME PROCEDURE

A sketch of the respective processes runtime is shown in Figure 9 As in PSRO, the main empirical-
game building loop iterates between response computation and empirical-game simulation.

Empirical
Game

Sim. Arenas
Solver

Learner
Eval Arenas
Train Arenas
Plan Arenas

LearnerWorld Model

Response
Oracle

...

Figure 9: Example Dyna-PSRO runtime. Planning is set to occur after the first epoch. Each players’
response oracle runs in parallel.

The runtime is defined by a parameter specifying on which PSRO epoch to begin planning. Before
that epoch, the response oracles do not use planning at all, because the world models are untrained.
All of these policies therefore are trained exclusively on real experiences just like standard PSRO.
However, these experiences are also being used to populate the world model’s replay buffer. Once the
first planning epoch has arrived, computing responses is temporarily paused. The world model is then
given a set number of updates to warm-start its parameters, before being used in response calculation.
Once the world model’s warm-start phase is over, all process proceed concurrently.

Throughout this work planning begins on the second epoch. The world models is given 1 million
updates of warm starting.

21

Under review as a conference paper at ICLR 2024

Algorithm 3: Policy-Space Response Ora-
cles (Lanctot et al., 2017)
Input: Initial strategy sets for all players Π0

Simulate utilities ÛΠ0

for each joint π0 ∈ Π0

Initialize solution σ∗,0
i = Uniform(Π0

i)
while epoch e in {1, 2, . . . } do

for player i ∈ [[n]] do
// Algorithm 4.

πe
i , _ = response_oracle(σ∗,e−1

−i)

Πe
i = Πe−1

i ∪ {πe
i }

Simulate missing entries in ÛΠe

from Πe

Compute a solution σ∗,e from Γ̂e

Output: Current solution σ∗,e
i for player i

Algorithm 4: Response Oracle
Input: Coplayer strategy profile σ−i

Input: Num updates k
πi ← θπ

B ← {} // Replay Buffer.
for many async episodes do

π−i ∼ σ−i

B = B ∪ {τ ∼ (πi, π−i)}
for i ∈ [[k]] do

Train πi over τ ∼ B
Output: πi,B

Algorithm 5: Dyna-PSRO

Input: Initial strategy sets for all players Π0

Input: No. of world model head-start updates nw

Input: Epoch to begin planning eplan

Simulate utilities ÛΠ0

for each joint π0 ∈ Π0

Initialize solution σ∗,0
i = Uniform(Π0

i)
w ← θw

Bw ← {} // World Model’s Replay Buffer.

while epoch e in {1, 2, . . . } do
for player i ∈ [[n]] do

if e > eplan then
πe
i , τ = async(planner_oracle(σ∗,e−1

−i , w)) // Algorithm 6.
else

πe
i , τ = async(response_oracle(σ∗,e−1

−i)) // Algorithm 4.
Bw = Bw ∪ {τ}
Πe

i = Πe−1
i ∪ {πe

i }
Wait on all futures πe, τ

Simulate missing entries in ÛΠe

from Πe

Add τ from simulation to Bw

Compute a solution σ∗,e from Γ̂e

if e == 1 then
w = world_model_learner(w, nw) // Algorithm 2.
w = async(world_model_learner(w)) // Parameters periodically sync.

Output: Current solution σ∗,e
i for player i

22

Under review as a conference paper at ICLR 2024

Algorithm 6: Planner Oracle
Input: Coplayer strategy profile σ−i

Input: World model w, real game dynamics p
Input: Warm-start background planning updates nBG:WS

Input: Training updates n
Input: Concurrent background planning fraction fBG:C

πi ← θπ

Bplan ← {} // Replay Buffer with planned experience.
Btrain ← {} // Replay Buffer with real experience.

// Asynchronously generate data on arenas.
for many async episodes do

π−i ∼ σ−i

Bplan = Bplan ∪ {τ ∼ (πi, π−i, w)}
for many async episodes do

π−i ∼ σ−i

Btrain = Btrain ∪ {τ ∼ (πi, π−i, p)}

// Train the response policy.
for i ∈ [[nBG:WS]] do

Train πi over τ ∼ Bplan

for i ∈ [[n]] do
Train πi over τ ∼

{
(1.0− fBG:C) · Btrain

}
∪
{
fBG:C · Bplan

}
Output: πi,B

C.5 COMBINED-GAME REGRET

Combined-game regret is an approximate measure of regret that all available estimates to approximate
the regret within the true game. Intuitively, combined-game regret is the regret of a strategy with
respect to all discovered policies. When comparing empirical-game building algorithms this is
formalized as follows:

SumRegret(σ,Π) =
∑
i∈n

max
πi∈Πi

Ûi(πi, σ−i)− Ûi(σi, σ−i), Πi ≡
⋃

method

Π̂method
i , (4)

where Π̂ is the restricted strategy set from one of the algorithms.

Figure 10: Combined-game construction. Left: Constituent empirical games. Middle: Combination
of the strategy sets and payoff functions. Right: Completion of the empirical game by estimating new
strategy profile payoffs.

The process of constructing a combined-game is illustrated in Figure 10. Where, the strategy sets
(depicted by the toons) across methods are first combined. The new combined game that results from

23

Under review as a conference paper at ICLR 2024

this can be initialized with the payoff estimates from the constituent empirical games. Unestimated
payoffs must then be simulated for the new strategy profiles. Then the complete combined game
can be used to compute the combined-game regret from the solutions computed throughout the
empirical-game building algorithms.

D GAMES

D.1 HARVEST: CATEGORICAL

In Harvest, players move around an orchard picking apples. The challenging commons element is
that apple regrowth rate is proportional to nearby apples, so that socially optimum behavior would
entail managed harvesting. Self-interested agents capture only part of the benefit of optimal growth,
thus non-cooperative equilibria tend to exhibit collective over-harvesting. The game has established
roots in human-behavioral studies (Janssen et al., 2010) and in agent-based modeling of emergent
behavior (Pérolat et al., 2017; Leibo et al., 2017; 2021).

Figure 11: Harvest: Categorical. Left: game state. Right: player observations.

For our initial experiments, we use a symmetric two-player version of the game, where in-game
entities are represented categorically (HumanCompatibleAI, 2019). This categorical representation
facilitates faster experimentation and simplifies the interpretation of results. Figure 11 depicts the
game state and player observations. Each player has a 10× 10 viewbox within their field of vision.
The cells of the grid world can be occupied by either agent shown in red and blue, the apples shown in
green, or a wall in gray. The possible actions include moving in the four cardinal directions, rotating
either way, tagging, or remaining idle. A successful tag temporarily removes the other player from
the game, but can only be done to other nearby players. Players receive a reward of 1 for each apple
picked. Episodes are limited to 100 timesteps.

D.2 HARVEST: RGB

Harvest: RGB is a different implementation of the Harvest game introduced by Harvest: Categorical
(Appendix D.1). Harvest: RGB is exactly the harvest implementation from MeltingPot (Leibo et al.,
2021) with the same orchard map. A rendering of the game state and observations is shown in
Figure 12. The main difference between the Harvest versions is that the observations are 88× 88× 3
images of the 11×11 viewbox in front of them. There are also minor differences in the implementation
of tagging and apple respawn mechanism. Episodes play for 1000 timesteps.

D.3 RUNNING WITH SCISSORS

Running With Scissors (RWS) is a temporally extended version of rock-paper-scissors (RPS). In it,
players collect rock, paper, and scissor items into their inventory. At any point the player has the
option to tag their opponent if they’re nearby. Then they play RPS corresponding to the distribution
of items in their inventories. The agents have the same action space as in the previous games. The
observation space is 40× 40× 3 image-based viewbox in fromt of them corresponding to a 6× 6 grid
around them. A portion of items are placed within the game deterministically, the rest are randomly

24

Under review as a conference paper at ICLR 2024

Figure 12: Harvest: RGB. Left: game state. Right: player observations.

sampled before play. If neither player tags each other before 1000 timesteps, the players are forced
into playing RPS.

Figure 13: Running With Scissors. Left: game state. Right: player observations.

25

Under review as a conference paper at ICLR 2024

E ADDITIONAL RESULTS

E.1 STRATEGIC DIVERSITY

Figure 14 displays the recall results that correspond to the accuracies portrayed in Figure 2. See
Section 3.1 for a discussion of these results. Figure 15 contains a simplified visualization of the
results from Section 3.1.

F
o
o
d

0.04±0.01 0.11±0.05 0.15±0.05 0.09±0.03 0.23±0.06 0.11±0.03 0.16±0.05

S
el

f

0.02±0.00 0.11±0.05 0.14±0.05 0.05±0.02 0.20±0.06 0.06±0.02 0.11±0.05

O
th

er
s

0.00±0.00 0.06±0.05 0.09±0.06 0.02±0.02 0.13±0.06 0.03±0.02 0.07±0.05

W
a
ll

0.14±0.02 0.32±0.05 0.36±0.05 0.29±0.04 0.46±0.05 0.32±0.05 0.38±0.05

E
m

p
ty

0.63±0.09 0.90±0.01 0.91±0.01 0.95±0.02 0.92±0.01 0.95±0.02 0.96±0.02

0

0.77±0.07 0.78±0.07 0.77±0.07 0.82±0.08 0.79±0.07 0.82±0.07 0.82±0.07

1

0.25±0.07 0.25±0.07 0.25±0.07 0.37±0.11 0.26±0.07 0.36±0.11 0.37±0.11

0.0

0.2

0.4

0.6

0.8

1.0

Profiles Sampled To Train World Model

O
b

se
rv

at
io

n
R

ew
ar

d

Figure 14: World model recall on Harvest: Categorical.

26

Under review as a conference paper at ICLR 2024

0.0

0.5

O
b

se
rv

a
ti

o
n

A
cc

u
ra

cy

0.0

0.5

R
ew

a
rd

R
ec

a
ll

Figure 15: Impact of inclusion of random policy on world model performance.

27

Under review as a conference paper at ICLR 2024

E.2 BACKGROUND PLANNING

Figure 16 shows the results of repeating the background planning experiment with world model .
Besides changing the world model, the methodology is consistent with that described in Section 3.2.1.
This result shows the planner achieving results comparable to the baseline method. Supporting the
adoption of planning, as it tends to not negatively impact the learning process.

0.0 0.5 1.0

Real Exp. ×106

0

10

20

30

40

R
et

u
rn

−1.0 −0.5 0.0 0.5 1.0

Plan Exp. Real Exp. ×106

Baseline

Plan: Real

Plan: Model

Figure 16: Effects of background planning on response computation using world model .
(5 seeds, with 95% bootstrapped CI).

Figure 17 shows the results of performing both BG: W and BG: C without DT. Without DT, we
observed no measurable benefit of including BG: C. As the proportion of planned experience increases
in BG: C this corresponded to a decrease in the performance. We speculate that this is because the
planner better fits its policy to interact with the world model instead of the real game.

0.0 0.5 1.0

Real Exp. ×106

0

10

20

30

40

R
et

u
rn

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

Real & Planned Exp. ×106

Baseline

BG: W

+BG: C (0.25)

+BG: C (0.50)

+BG: C (0.75)

Figure 17: Effects of concurrent background planning on response computation using world
model . Methods labelled “+BG: C (X)” perform both BG: W and BG: C, where X denotes the
proportion of planned experience within in batch of data. (5 seeds with 95% bootstrapped CI).

E.3 DECISION-TIME PLANNING

Figure 18 shows the results of repeating the decision-time planning experiment with world model .
Besides changing the world model, the methodology is consistent with that described in Section 3.2.2.
This result further exemplifies the trend shown in Figure 4, where the planners that did not use BG: W
failed to learn an effective policy. The planner that used BG: W achieved performance comparable to
the baseline. Finally, the planner that used both BG: W and BG: C achieves the strongest performance
at 33.07 ± 6.76. These results support the benefit of BG: W when using DT, and that effective
planning performs as least as good as the baseline.

Finally, we completed an ancillary experiment to determine if planning allowed the learner to escape
a locally optimal policy. To measure this we simply continued training the baseline on a significantly
larger data budget to measure if its performance would improve, and even match that of the planner.

28

Under review as a conference paper at ICLR 2024

0.0 0.5 1.0

Real Exp. ×106

0

10

20

30

40

50

R
et

u
rn

0.0 0.5 1.0 1.5 2.0 2.5

Real & Planned Exp. ×106

D
T

X
X
X
X

B
G

:
W

X
X

B
G

:
C

X
X

Figure 18: Effects of decision-time planning on response computation using world model .
(5 seeds, with 95% bootstrapped CI).

In Figure 19 we plot our results, and found that DT planning helped learner a stronger policy than a
learner without planning.

0.0 0.5 1.0

Real Exp. ×106

0

10

20

30

40

50

R
et

u
rn

0.0 0.5 1.0 1.5 2.0 2.5

Real & Planned Exp. ×106

D
T

X
X
X
X

B
G

:
W

X
X

B
G

:
C

X
X

Figure 19: Decision-time planning using compared against a baseline trained longer.
(5 seeds, with 95% bootstrapped CI.)

E.4 WORLD MODELS AS EMPIRICAL GAMES

In this section, we verify the need for separate models.

First, consider if an empirical game can substitute for a world model. The majority of previous work
on empirical games represents the model in the normal form. This representation abstracts away any
notion of dynamics within an episode into a choice in policy and the resulting payoff. Since empirical
games currently lack dynamics information completely, this supports the choice of separate models.
This is not without any exceptions. If the original game is one-shot and stateless (i.e., an episode is
played through a single action), then a normal-form empirical game is exactly a world model.

Now, consider if a world model can substitute for an empirical game. World models predict successor
states and rewards; and thus, can rollout planned trajectories to estimate payoffs. Note, that rolling out
a trajectory with a world model is an auto-regressive prediction that tends to result in compounding
errors (Talvitie, 2014; Holland et al., 2018). Despite this, it is plausible that a world model can
substitute as a high-fidelity empirical game.

Figure 20 compares an empirical game estimated from real game payouts empirical games estimated
with payouts predicted by a world model. In this experiment, the world models are the same that were
used in Section 3.1. In general, the empirical games estimated by world models have large errors
(L2 >100), with several having exceptionally large errors (L2 >1000). These result suggest that this
direction may be possible with future algorithmic improvements; however, currently, the prediction

29

Under review as a conference paper at ICLR 2024

E
N

F
G

141.06 1096.79 1379.07 17.33 826.00 162.59 22.62

0

25

50

Real

Profiles Sampled To Train World Model

Figure 20: Empirical normal-form games (ENFG) estimated by world model rollouts. The title of
each plot is its L2 distance with the real ENFG.

errors are too large to substitute empirical games with world models. Especially in games with long
time horizons.

30

