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Prior Metadata-Driven RAW Reconstruction:
Eliminating the Need for Per-Image Metadata

Anonymous Authors

ABSTRACT
While RAW images are efficient for image editing and perception

tasks, their large size can strain camera storage and bandwidth.

Reconstruction methods of RAW images from sRGB data typically

require additional metadata from the RAW image, which increases

camera processing computations. To address this problem, we pro-

pose using Prior Meta as a reference to reconstruct the RAW data

instead of relying on per-image metadata. Prior metadata is ex-

tracted offline from reference RAW images, which are usually part

of the training dataset and have similar scenes and light conditions

as the target image. With this prior metadata, the camera does not

need to provide any extra processing other than the sRGB images,

and our model can autonomously find the desired prior information.

To achieve this, we design a three-step pipeline. First, we build a

pixel searching network that can find the most similar pixels in the

reference RAW images as prior information. Then, in the second

step, we compress the large-scale reference images to about 0.02%

of their original size to reduce the searching cost. Finally, in the last

step, we develop a neural network reconstructor to reconstruct the

high-fidelity RAW images. Our model achieves comparable, and

even better, performance than RAW reconstruction methods based

on metadata.

CCS CONCEPTS
• Art and Culture→ Art and Culture.

KEYWORDS
RAW Image, sRGB, Metadata, Reconstruction, Prior Metadata

1 INTRODUCTION
RAW images are unprocessed radiance captured by the camera,

with a larger bit width of usually 10-16 bits, compared to the 8-bit

sRGB data of compressed images. This gives RAW data wider light

tolerance and retains more detailed information for dark and high-

dynamic scenes [21, 22, 38]. Additionally, RAW images have the

advantage of maintaining their original linear status, as they are not

processed by non-linear modules in the ISP [6, 36]. This makes them

more suitable for deep learning models to understand the original

information distribution. Numerous studies have demonstrated the

great potential of RAW images in computer vision tasks such as

super-resolution [36, 39, 41], denoising [2, 11, 20, 21], and object
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Figure 1: Comparison with Previous RAW Reconstruction
Methods. (a)Methods based onmetadata introduce additional
computational burden to the mobile camera. (b) Our method
does not require the camera to provide additional informa-
tion. Instead, it searches for similar pixels from the reference
RAW images as a reference.

detection [13, 27, 38]. However, the high cost of collecting RAW

data limits its application in many scenarios. On the one hand,

the detailed information preserved in RAW images results in a

much larger file size than their corresponding sRGB images, which

can impose significant storage and bandwidth burdens on cameras

when capturing large amounts of data. On the other hand, most

labeled data for computer vision tasks are based on sRGB data

without corresponding RAW data, which limits the applicability of

RAW data in many perception tasks.

To address these limitations, several methods have been pro-

posed to reconstruct the RAW images based on their correspond-

ing sRGB images. One approach involves using a deep neural net-

work to de-render the RAW images, using only the sRGB data as

input [9, 37, 42]. These methods are convenient as they don’t re-

quire any additional inputs besides the sRGB information. However,

they may suffer from relatively lower performance since the ISP

processing removes detailed information from the original RAW

data. It is challenging for deep neural networks to perfectly re-

cover these dropped details without proper reference. Another

approach is to use extra metadata as a reference to improve the

accuracy [17, 24, 28, 33]. These methods employ a sampler in the

camera to sample some RAW pixels into the metadata. When de-

rendering the RAW data, another reconstructor is used, which takes

the sRGB images and corresponding metadata as input to produce

https://doi.org/10.1145/nnnnnnn.nnnnnnn
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the original RAW images, as shown in Fig. 1(a). These methods

achieve good performance in terms of the quality of the predicted

RAW images. However, the sampler running in the camera device

adds an additional computational burden, resulting in O(𝑊𝐻 ) com-

putation and space complexity, where𝑊 and𝐻 represent the width

and height of the RAW image. Also, these methods cannot be used

to recover existing sRGB images without metadata. This limitation

restricts the use of existing sRGB datasets for RAW-based computer

vision tasks.

In contrast, we propose to search for similar pixels in existing

RAW images as a reference, instead of relying on online metadata

sampling when capturing new photos. Therefore, our method does

not introduce any additional computation and storage on the cam-

era device. In other words, the complexity of our method on the

camera is 0. While each photo is unique and distinct from all others,

at the pixel level, we can identify similar pixels that were captured

under similar lighting conditions and depict similar objects. Al-

though these pixels may not be an exact match for the target pixel,

they can provide valuable prior information for the deep neural

network. Therefore, we utilize these pixels as references and refer

to them as Prior Metadata, as shown in Fig. 1(b).

To achieve this goal, we first train a pixel searching model using

contrast learning. This model takes sRGB data as input and gen-

erates an embedding vector for each pixel in the image. We then

minimize the vector distance if the corresponding RAW pixels are

similar and increase the distance if the RAW pixels are different.

Using this model, we can identify the most similar RAW pixels in

the reference dataset and assemble prior RAW images using these

pixels. Based on the prior RAW images, we build a reconstructor

based on the prior RAW images and the corresponding sRGB images.

However, when the reference dataset is very large, the searching

procedure becomes computationally and memory intensive. On

the other hand, if the reference dataset is too small, it may not

contain enough pixel variety to build the prior RAW images. To

overcome this challenge, we design a clustering and grouping al-

gorithm that selects several representative pixels from the entire

reference dataset to replace the actual reference dataset. Based on

our analysis and experiments, we have found that sampling around

5,000 pixels can effectively represent the entire dataset and achieve

similar performance. This accounts for only about 0.02% of the

total pixels in the reference dataset. Experiments demonstrate that

our method achieves impressive RAW construction accuracy. Even

without the online metadata sampled from the target RAW images,

our method can effectively construct the RAW images compared to

state-of-the-art online metadata-based methods. In summary, our

contribution can be summarized in four aspects:

• We propose a new pipeline for extracting prior metadata

from the existing RAW images and employing it as a refer-

ence for RAW reconstruction.

• We propose a contrastive training approach to train the Pixel

Searching Network. This network enables the search for

the most similar RAW pixels in the reference dataset, using

features extracted from sRGB images.

• We propose a prior metadata clustering and grouping algo-

rithm that can identify the most representative pixels for the

reference dataset, thus reducing the search cost.

• We propose a RAW Reconstructor with a Prior Metadata

Fusion Module. This approach efficiently utilizes reliable

information encoded in the prior metadata while discarding

unreliable information. The model achieves excellent per-

formance in RAW reconstruction, outperforming metadata-

based methods that require per-image metadata extracted

from the target RAW.

2 RELATEDWORKS
2.1 RAW Image Application
The application of RAW data to low-level tasks has attracted more

and more attention in computer vision. For example, relying on the

linear relationship between RAW data and scene radiation, image

denoising and image super-resolution tasks benefit from it. The

work in [2] designs a RAW domain denoising network using syn-

thetic noise data by adding shot noise and read noise, which gets

significant improvements in denoising capabilities compared to

state-of-the-art RGB-based denoising models. The work in [35] pro-

poses a highly accurate noise model based on the characteristics of

CMOS photosensors to address the extreme low-light RAW denois-

ing problem. In [36], Xing et al. present an end-to-end joint learning

framework for demosaicing, denoising, and super-resolution, which

enables satisfactory results to be achieved on multiple visual tasks

based on RAW data. In addition, benefiting from a bigger dynamic

range, RAW data also perform better in the low-light enhancement

task. It is interesting to note that Chen et al. [6] build a dataset with

low-light images and corresponding long-exposure high-quality

images, and the promising results inspire future work. After this,

the work in [10] and [16] improve the accuracy and speed of the

model, respectively.

Except for the above-mentioned low-level tasks, the advantages

of RAW data in high-level tasks have also been discovered, such as

object detection and segmentation. On the one hand, since ISP pro-

cessing is only for human eye viewing, it is a practical problem to

remove unnecessary steps of ISP to obtain faster processing speed,

which is crucial for some real-time systems that require low time

consumption and fast response, such as autonomous driving. As

for related works, [23, 30, 40] are dedicated to configuring ISP as

learnable procedures. Through the end-to-end optimization process

of the neural network, we are able to skillfully mine ISP operations

that are beneficial to downstream tasks and configure their param-

eters reasonably. On the other hand, a larger bit width can provide

more information for perception tasks in dark scenes and highly

dynamic scenes. Works [38] and [7] respectively prove that RAW

data with higher bits can achieve better results in object detection

and instance segmentation tasks under dark light conditions. In

work [27], the researchers propose a neural auto-exposure system

that jointly trains an object detector and an image signal process-

ing pipeline. Experiments on the vehicle detection data set prove

that reasonable processing of RAW data can greatly improve the

detection accuracy of the model in HDR scenes. Even though the

benefits of the RAW format in these tasks have been discovered,

further exploration is needed.
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2.2 RAW Reconstruction Methods
Due to the difficulty in obtaining RAW data, the convenient use

of sRGB images to reverse-generate RAW images has gradually

become a hot topic. According to whether they rely on metadata

information, popular sRGB2RAW methods are classified into two

categories.

Blind RAW reconstruction. Image signal processing enhances

the captured image to make it more visually appealing to humans.

This is achieved through various steps, such as white balance, de-

mosaicing, and gamma correction, many of which can be explicitly

modeled. As a result, some methods for reconstructing RAW im-

ages [2, 9] aim to reverse certain key steps of modern ISPs in order

to obtain the unprocessed RAW image. For example, [9] models

six key stages of the ISP, including demosaic, lens shading correc-

tion, white balance, color correction, gamma correction, and tone

mapping. For camera-specific modules (such as color correction),

this method represents them by constructing a learnable dictionary.

While these methods offer strong interpretability, they often lack

generalization ability due to the specific nature of the camera ISP.

To overcome this limitation, other approaches [37, 42] propose us-

ing the concept of cycle constraints to simultaneously learn the

bidirectional process of RAW-to-sRGB and sRGB-to-RAW conver-

sion. For instance, [37] proposes using the Normalizing Flow model

to learn an invertible ISP network. Due to the inherent reversibility

of the Normalizing Flow model, we can conveniently perform RAW-

to-sRGB conversion and its inverse process. Unfortunately, due to

the inevitable information loss in ISP, blind RAW reconstruction

methods struggle to achieve satisfactory results.

RAW reconstruction with metadata.Metadata-based methods

leverage additional information to assist in the reconstruction pro-

cess, such as ISP parameters [25], sampled RAW pixels [17, 24, 28],

and latent features [33]. Early methods [25] store key parameters in

the ISP forward rendering process, such as color correctionmatrices,

auto white balance parameters, etc., but the obvious disadvantage

is that some key operations cannot be quantitatively stored, such

as tone mapping. The most commonly used sampling-based meth-

ods employ strategies to save a subset of pixels from the original

resolution RAW image. For instance, methods in [17, 28] utilize

uniformly sampled pixels as metadata and then employ interpola-

tion algorithms or neural networks to recover the remaining pixels.

The work in [28] learns the content-related pixels using a sampler

network, and then performs an efficient recovery process through

a U-Net network. These metadata provide reliable auxiliary infor-

mation for RAW image recovery, but generating corresponding

metadata for each image on the camera side can be time-consuming

and labor-intensive.

In contrast to the aforementioned methods, our model directly

extracts representative pixels from existing RAW images as prior

information, which serves as guidance and eliminates the need for

an additional metadata generator.

3 METHOD
3.1 Pipeline
To achieve prior metadata-based RAW reconstruction, we propose

a new pipeline shown in Fig. 1(b). The pipeline consists of three

main steps. The first step is training a Pixel Searching Network,

sRGB

Target sRGB

Reference sRGB

Pixel Encoder
FTarget

FReference

Affinity Matrix

Contrast

Contrastive Learning



RAW

Reference RAW GT RAW

Constructed RAW

RAW

Asse

Similar Pixels

Figure 2: Illustration of the Pixel Searching Pipeline. The
first step in our pipeline is to train a pixel searching model.
This model is used to search for the most relevant pixels
from the reference dataset for the target pixels.

which converts sRGB pixels into a RAW-aware embedding. This

embedding allows us to search the entire reference dataset for

similar pixels to the target pixel. These similar pixels can then

be used as prior information for RAW image reconstruction. This

approach is based on the observation that archived RAW images

captured by the same type of devices (same sensor) can provide

valuable information for the RAW reconstruction process. At the

pixel level, previous RAW pixels captured in similar scenes with

similar lighting conditions can serve as high-quality references for

recovering the current pixel. The design and training of the Pixel

Searching Encoder will be discussed in detail in § 3.2.

To achieve better generalization, the reference dataset should

contain a variety of scenes with different lighting conditions and

objects. However, this would require a large-scale reference dataset,

causing a significant computational burden when searching for

similar pixels. To address this issue, we propose the second step

in our pipeline: clustering and grouping the pixels into a few of

the most representative ones. Despite the large size of the entire

reference dataset, many pixels exhibit similarity. Therefore, we can

evaluate the similarity between the pixels in the reference dataset

and select a few highly representative pixels to represent the entire

dataset. To accomplish this, we design a clustering and grouping

algorithm, which will be introduced in detail in § 3.3.

While similar pixels in the reference dataset can provide valu-

able prior information, the assembled RAW image created from

these pixels may not perfectly match the target RAW. Therefore,

a deep neural network is required to address these differences. To

fully utilize the prior information from the prior metadata and the

target sRGB image, we introduce a Prior Metadata Fusion Module.

This module incorporates all useful information for RAW recon-

struction. We then use an encoder-decoder network to reconstruct

the target RAW based on the fused inputs. This procedure will be

demonstrated in Section § 3.4.

3.2 Pixel Searching Encoder
The transformation fromRAW to sRGB, denoted as sRGB = 𝑓 (RAW),
is an information-loss procedure. As a result, the inverse transfor-

mation, RAW = 𝑓 −1 (sRGB), is not a one-to-one mapping. This
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Figure 3: Illustration of the Prior Information Compression Method. To optimize the searching computation, the next step in
our pipeline involves clustering and grouping the reference dataset into compressed prior metadata. This compressed metadata
is significantly smaller, comprising only about 0.02% of the original size.

means that the same sRGB pixels can represent different RAW val-

ues depending on the context. This feature makes it challenging

to identify similar RAW pixels in the reference images based on

the sRGB values of the target images. Instead of searching for sim-

ilar pixels based on the similarity of sRGB values, we develop a

deep neural network that learns to find similar RAW pixels using

an sRGB image as input. This network converts the surrounding

sRGB context of the pixel into a high-dimensional vector and eval-

uates the distance between the vectors to identify the most similar

RAW pixels. When evaluating the distance between pixels, the

Pixel Searching Encoder takes into account not only the similarity

between their sRGB values but also the lighting conditions and

scenes depicted in the context patch. This approach enhances the

efficiency of finding similar RAW values.

The Pixel Searching Encoder adopts a ResNet [12]-like structure

as a feature extractor with two major modifications. On the one

hand, the similarity among RAW pixels is considered a low-level

feature, so we decrease the parameter number of the network to

prevent overfitting. On the other hand, the down-sample ratio

of the encoder will affect the resolution of the feature map. To

maintain a higher resolution of the pixel encoding, we adjust the

total down-sampling ratio of the encoder to 2. This means that the

output resolution of the encoding feature map is half the size of the

original sRGB image.

To effectively train the Pixel Searching Encoder, we propose a

contrastive training method as illustrated in Fig. 2(a). The main

idea is to bring sRGB features closer together if their RAW values

are similar and push them apart if they are not. To achieve this,

we first randomly divide the original training dataset into two

subdatasets: a target dataset and a reference dataset. The images

in the reference dataset will serve as references and will be used

to search for similar RAW pixels for the target image. During the

training process, we randomly select batches from the target dataset

and separate batches from the reference set as references. We input

the target and reference images into the Pixel Searching Encoder

to extract feature maps:

𝑓𝑡 = Encoder(sRGB𝑡 )
𝑓𝑟 = Encoder(sRGB𝑟 ) .

(1)

We then multiply the two feature maps to generate an affinity

matrix between the target and reference images:

A = 𝑓𝑡 ⊗ 𝑓𝑟 . (2)

Finally, we apply a softmax function to the affinity matrix in the

reference dimension and multiply it with the reference RAW pixels

to produce an assembled RAW image:

FRAW𝑡 = Softmax(A) ⊗ RAW𝑟 . (3)

The assembled RAW image FRAW𝑡 is utilized to calculate the

L2 loss with the actual target RAW images. During this process, the

values of the reference pixels remain fixed, and only the affinity

matrix can be optimized using the gradient descent algorithm. Con-

sequently, the Pixel Searching Encoder will learn to maximize the

inner product between feature embeddings for similar RAW pixels

and minimize it for dissimilar ones.

3.3 Prior Information Compression
The computation of the affinity matrix has a space and time com-

plexity of O(𝑀𝐿𝑁 ), where𝑀 and 𝑁 represent the number of pixels

in each target and reference image, and 𝐿 is the size of the refer-

ence dataset. During the inference phase, this calculation becomes

computationally intensive if the reference dataset size 𝐿 is very

large. However, it is important to have a diverse reference dataset

that includes various conditions where the target images may be

captured. Only with this diverse reference dataset, the model can

efficiently select the most similar pixel for the target image.

In addition to using reference images to assemble the target

RAW images, we can also assemble the reference dataset itself

by incorporating specific pixels from the reference dataset. This

approach allows us to select a subset of the most representative

pixels from the dataset to represent the entire reference dataset.

To achieve this, as shown in Fig. 2(b), we propose a clustering

and grouping algorithm that effectively selects and generates the

representative pixels for the reference dataset.

We first manually select 100 representative images from the

training dataset as a reference dataset. These images are then con-

verted into feature maps using the Pixel Searching Encoder trained

with our contrastive learning method. Each image in the reference
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Figure 4: Illustration of the Reconstructor. The prior metadata is generated offline and remains fixed. Our reconstructor only
needs the target sRGB during inference. To effectively use the prior metadata, we propose the Prior Metadata Fusion module,
which combines features from the sRGB image and the prior metadata.

dataset is cropped and resized into a resolution of 1024 × 1024,

resulting in output feature maps with a resolution of 512× 512. The
reference dataset contains a total of 26, 214, 400 pixels. We then use

the K-Means algorithm to cluster the feature embeddings into sev-

eral different groups. Since the reference dataset has a large number

of sampling points, the clustering procedure requires significant

computation resources. To address this issue, we utilize the faiss

algorithm [14], which is a library for efficient similarity search and

clustering of dense vectors. With this algorithm, we can perform

the clustering procedure on a single computer within a fewminutes,

making our methods more easily applicable. In our experiment, we

use the inner product as the clustering distance measurement and

randomly select the initial centroid of each cluster. We cluster a

total of 5, 000 groups in our experiment and select the 200 nearest

features in the reference dataset for each group. Finally, we average

the 200 features and their corresponding sRGB and RAW pixel val-

ues to produce the final prior metadata. Compared to the original

26, 214, 400 pixels, the 5, 000 pixels in the prior metadata represent

only about 0.02% of the total. However, in our experiment, the 5, 000

pixels in the prior metadata achieve virtually the same performance

as the entire reference dataset, which will be introduced detailedly

in § 4.

3.4 Prior Metadata Based Reconstructor
By utilizing the grouped prior metadata and the Pixel Searching

Encoder, we can assemble a target RAW image through similarity

searching. However, it is important to understand that the assem-

bled RAW image cannot be directly used as reconstructed RAW data

because of slight discrepancies with the actual RAW image at each

pixel. In some cases, there may be pixels in unique scenarios that

cannot find exact matches. Additionally, fine details like edges may

not be accurately represented by the reference pixels. To overcome

this limitation, we have implemented a deep learning network to

address and rectify these disparities.

As illustrated in Fig. 4, the reconstructor we propose comprises

two primary modules: a Prior Metadata Fusion Module and a RAW

Encoder Decoder Module. The initial stage in effectively recon-

structing the desired RAW image is to efficiently merge all available

prior data. To accomplish this, we have developed the module to

integrate the information encoded in the prior metadata and the

target sRGB image.

Prior Metadata Fusion Module: Fig. 4 provides an overview of

this module. To start, we transform the target sRGB image into a

feature map for similarity searching using the well-trained Pixel

Searching Encoder. Then, using the affinity matrix A that cap-

tures the relationship between the target features and the prior

metadata features, we produce an assembled RAW image and its

corresponding sRGB image:

F sRGB𝑡 = Softmax(A) ⊗ sRGB𝑟

FRAW𝑡 = Softmax(A) ⊗ RAW𝑟 .
(4)

The assembled sRGB image can provide valuable information for

assessing the accuracy of each pixel in the assembly. When the

searched sRGB pixel has little difference from the target pixels,

there is a high probability that the searched RAW pixel is similar to

the target RAW pixel. However, due to the non-injective nature of

this theory, it may not always be correct. Nonetheless, it can help

filter out most of the unreliable pixels. Using this information, we

calculate the distance D between the assembled sRGB image and

the target sRGB image:

D = 𝑎𝑏𝑠 (F sRGB𝑡 − sRGB𝑡 ) . (5)

Then, we combine this distance information with the target sRGB

image and the assembled RAW image. We then send them into a

convolutional network for prior-aware feature extraction:

𝑓𝑝 = Conv
fuse
( [D, sRGB𝑡 , FRAW𝑡 ]). (6)

To eliminate the unreliable pixels in this feature map, we utilize an

additional convolutional network to generate spatial self-attention:

𝑓𝑐 = 𝑓𝑝 · Sigmoid(Conv
conf
(𝑓𝑝 )). (7)

In addition to providing detailed prior information to individual

pixels in the generated target RAW image, the prior metadata can

also serve as a global reference for reconstructing the target RAW

image. To achieve this, we need the model to learn how to extract

relevant information from the prior metadata. Therefore, we employ

a multi-head attention mechanism that considers the feature 𝑓𝑐 as
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the query, the prior feature 𝑓𝑟 as the key, and the prior RAW pixels

RAW𝑟 as the value. During the training phase, this attentionmodule

is optimized in an end-to-end manner and effectively aggregates the

desired global reference for each pixel in the feature map. Finally,

the RAW reconstruction feature map 𝑓𝑜 is obtained using a feed-

forward network (FFN):

𝑓𝑜 = 𝐹𝐹𝑁 (MHA(𝑓c, 𝑓𝑟 , RAW𝑟 )) . (8)

Finally, we use the Encoder-Decoder Module to reconstruct the

final RAW image.

RAW Encoder-Decoder Module: We utilize an Encoder-Decoder

structure, as described in [24], to accomplish the RAW reconstruc-

tion. This module takes the RAW reconstruction feature map as

input and progressively reduces the features to a
1

16
resolution,

allowing for the encoding of information with a large receptive

field. Following the encoding procedure, the decoder gradually up-

samples the feature map and combines it with the corresponding

feature maps from the encoder, in order to recover the detailed

information that was lost during the down-sampling procedure. In

contrast to previous structures, we additionally fuse the upsam-

pled feature map with the RAW reconstruction feature map, as it

encodes important detailed information from the assembled RAW

image. To achieve this, we first interpolate the RAW reconstruction

feature map to the same size as the upsampled feature map, and

then employ a convolution operation to fuse the two feature maps.

Finally, we utilize a head network to decode the feature map into

3-channel RAW images and limit the value range to 0-1 using a

sigmoid function.

4 EXPERIMENTS
4.1 Implementation Detail
Dataset To evaluate the performance of our method for the RAW

reconstruction task, we chose the representative NUS dataset [8]

as a benchmark. This dataset consists of photos captured by three

different cameras: Samsung NX2000, Olympus E-PL6, and Sony SLT-

A57, with 202, 208, and 268 RAW images, respectively. Following

the approach of Nam et al., all the RAW images were processed

using the demosaic procedure and bilinear interpolation to obtain

the 3-channel RAW-RGB image with the original resolution. To

obtain the corresponding sRGB images, we used a software ISP

emulator [15] to convert the RAW images into the sRGB format.

Loss In the training phase, the reconstruction network uses the

sRGB images as input to assemble the prior RAW and prior sRGB im-

ages. This is done by taking the sRGB inputs and the prior metadata

generated by the clustering and grouping algorithm. The model

then produces the RAW prediction based on the sRGB images and

the prior information. To determine the loss function, we utilize 𝐿2
loss and 𝑆𝑆𝐼𝑀 [34] loss as:

𝐿 = 𝛼𝐿2 (𝑦,𝑌 ) + 𝛽𝑆𝑆𝐼𝑀 (𝑦,𝑌 ), (9)

where 𝑦 and 𝑌 are the prediction and ground truth, respectively. 𝛼

and 𝛽 are the balance ratio.

Metrics In this paper, we adopt PSNR (Peak Signal-to-Noise Ra-

tio) and SSIM (Structural Similarity Index Measure) [34] as our

main evaluation metrics, following precedents in the field. PSNR

Algorithm 1 Contrastive Training Algorithm

1: procedure ContrastiveTraining(𝑑𝑎𝑡𝑎𝑡 , 𝐸𝑛𝑐𝑜𝑑𝑒𝑟 )
2: for each (𝑠𝑅𝐺𝐵𝑡 , 𝑠𝑅𝐺𝐵𝑟 , 𝑅𝐴𝑊𝑡 , 𝑅𝐴𝑊𝑟 ) in 𝑑𝑎𝑡𝑎𝑡 do
3: 𝑓𝑡 ← 𝐸𝑛𝑐𝑜𝑑𝑒𝑟 (𝑠𝑅𝐺𝐵𝑡 )
4: 𝑓𝑟 ← 𝐸𝑛𝑐𝑜𝑑𝑒𝑟 (𝑠𝑅𝐺𝐵𝑟 )
5: A ← 𝑓𝑡 × 𝑓𝑟
6: A𝑠 ← 𝑆𝑜 𝑓 𝑡𝑚𝑎𝑥 (A)
7: FRAW𝑡 ← A𝑠 × 𝑅𝐴𝑊𝑟

8: 𝑙𝑜𝑠𝑠 ← 𝐿𝑜𝑠𝑠 (FRAW𝑡 , 𝑅𝐴𝑊𝑡 )
9: 𝐸𝑛𝑐𝑜𝑑𝑒𝑟 .𝑢𝑝𝑑𝑎𝑡𝑒_𝑤𝑒𝑖𝑔ℎ𝑡𝑠 (𝑙𝑜𝑠𝑠)
10: end for
11: end procedure

Algorithm 2 Prior Information Compression Algorithm

1: procedure PriorInformationCompression(𝑑𝑎𝑡𝑎𝑟 , 𝐸𝑛𝑐𝑜𝑑𝑒𝑟 )
2: 𝑓𝑟𝐴𝑙𝑙 ← [𝐸𝑛𝑐𝑜𝑑𝑒𝑟 (𝑠𝑅𝐺𝐵𝑟 ) for 𝑠𝑅𝐺𝐵𝑟 in 𝑟𝑔𝑏_𝑑𝑎𝑡𝑎𝑟 ]
3: 𝑅𝐴𝑊𝑟𝐴𝑙𝑙 ← 𝑅𝐴𝑊𝑟 for 𝑅𝐴𝑊𝑟 in 𝑟𝑎𝑤_𝑑𝑎𝑡𝑎𝑟 ]
4: 𝑠𝑅𝐺𝐵𝑟𝐴𝑙𝑙 ← 𝑠𝑅𝐺𝐵𝑟 for 𝑠𝑅𝐺𝐵𝑟 in 𝑟𝑔𝑏_𝑑𝑎𝑡𝑎𝑟 ]
5: 𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑠 ← 𝐾𝑀𝑒𝑎𝑛𝑠𝐶𝑙𝑢𝑠𝑡𝑒𝑟𝑖𝑛𝑔(𝑓𝑟𝐿𝑖𝑠𝑡)
6: for each 𝑐𝑙𝑢𝑠𝑡𝑒𝑟 in 𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑠 do
7: 𝑛𝑒𝑎𝑟_𝑖𝑑𝑥 ← 𝑠𝑒𝑙𝑒𝑐𝑡𝑁𝑒𝑎𝑟𝑒𝑠𝑡 (𝑐𝑙𝑢𝑠𝑡𝑒𝑟, 200)
8: 𝑅𝐴𝑊𝑎𝑣𝑔 ←𝑚𝑒𝑎𝑛(𝑛𝑒𝑎𝑟_𝑖𝑑𝑥, 𝑅𝐴𝑊𝑟𝐴𝑙𝑙)
9: 𝑠𝑅𝐺𝐵𝑎𝑣𝑔 ←𝑚𝑒𝑎𝑛(𝑛𝑒𝑎𝑟_𝑖𝑑𝑥, 𝑠𝑅𝐺𝐵𝑟𝐴𝑙𝑙)
10: 𝑓𝑎𝑣𝑔 ←𝑚𝑒𝑎𝑛(𝑛𝑒𝑎𝑟_𝑖𝑑𝑥, 𝑓𝑟𝐴𝑙𝑙)
11: 𝑠𝑡𝑜𝑟𝑒 (𝑅𝐴𝑊𝑎𝑣𝑔, 𝑠𝑅𝐺𝐵𝑎𝑣𝑔, 𝑓𝑎𝑣𝑔, 𝑝𝑟𝑖𝑜𝑟 )
12: end for
13: end procedure

Algorithm 3 PriorMetadata Based RAWReconstructing Algorithm

1: procedure Reconstructor(𝑠𝑅𝐺𝐵𝑡 , 𝑝𝑟𝑖𝑜𝑟 , 𝐸𝑛𝑐𝑜𝑑𝑒𝑟 , 𝐷𝑒𝑐𝑜𝑑𝑒𝑟 )
2: 𝑓𝑡 ← 𝐸𝑛𝑐𝑜𝑑𝑒𝑟 (𝑠𝑅𝐺𝐵𝑡 )
3: A𝑠 ← 𝑎𝑓 𝑓 𝑖𝑛𝑖𝑡𝑦𝑀𝑎𝑡𝑟𝑖𝑥 (𝑓𝑡 , 𝑝𝑟𝑖𝑜𝑟 )
4: F 𝑠𝑅𝐺𝐵𝑡 , F𝑅𝐴𝑊𝑡 ← 𝑎𝑠𝑠𝑒𝑚𝑏𝑙𝑒 (A𝑠 , 𝑝𝑟𝑖𝑜𝑟 )
5: 𝑑𝑖 𝑓 𝑓 ← 𝑎𝑏𝑠 (F 𝑠𝑅𝐺𝐵𝑡 − 𝑠𝑅𝐺𝐵𝑡 )
6: 𝑓𝑝 ← 𝐶𝑜𝑛𝑣

fuse
( [𝑑𝑖 𝑓 𝑓 , 𝑠𝑅𝐺𝐵𝑡 , F𝑅𝐴𝑊𝑡 ])

7: 𝑓𝑐 ← 𝑓𝑝 · 𝑆𝑖𝑔𝑚𝑜𝑖𝑑 (𝐶𝑜𝑛𝑣conf (𝑓𝑝 ))
8: 𝑓𝑜 ← 𝐹𝐹𝑁 (𝑀𝐻𝐴(𝑓𝑐 , 𝑝𝑟𝑖𝑜𝑟 ))
9: 𝑂𝑢𝑡𝑝𝑢𝑡 ← 𝑈𝑁𝑒𝑡 (𝑓𝑜 , 𝑠𝑅𝐺𝐵𝑡 )
10: end procedure

measures the ratio of the maximum possible signal to the corrupt-

ing noise, indicating image reconstruction quality. SSIM, on the

other hand, assesses changes in structural information, luminance,

and contrast, offering a perception-based measure of image qual-

ity. These metrics together provide a balanced evaluation of both

technical and perceptual aspects of RAW image reconstruction.

4.2 Working Flow
To improve understanding and implementation of the proposed

method, we have included pseudo codes for themainmodules in our

approach. Algorithm. 1 demonstrates the contrastive training phase

of our Pixel Searching Encoder, while Algorithm. 2 showcases the

reference clustering and grouping algorithm. Lastly, Algorithm. 3

presents the Prior Metadata Based RAW Reconstructing Algorithm.
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Figure 5: Illustration Comparison with Metadata-based Methods. As demonstrated in this figure, our method achieves the
highest level of accuracy with the least amount of error compared to other methods when compared to the Ground Truth RAW
images.

4.3 Ablation Study
Clustering and Grouping To assess the impact of the clustering

and grouping algorithm, we conducted a series of ablation studies

on Olympus E-PL6 [8]. As shown in Table 1, Pixel Searching directly

assembles the output RAW by searching for similar RAW pixels

from the entire reference dataset. Clustering and Grouping involve

assembling the RAW output with search pixels based on prior meta-

data grouping. The results indicate that the clustering and grouping

algorithm does not noticeably reduce the performance in terms

of PSNR and SSIM, but it significantly reduces the computational

burden of the searching procedure.

There are two hyperparameters that can affect the performance

and efficiency: the number of clusters and the group size. The num-

ber of clusters determines the number of pixels included in the prior

metadata. A larger number of clusters results in greater pixel vari-

ety, but it also increases the computational burden when searching

for similar pixels. On the other hand, the group size determines the

number of pixels used for grouping. A larger group size leads to

more stable feature generation, but it reduces the diversity of the

final features. As shown in the table, when we choose an appro-

priate cluster number and group size, the clustering and grouping

algorithm does not noticeably compromise performance compared

to searching from the entire reference dataset. In this case, we have

selected a cluster size of 5,000 and a grouping size of 1,000, resulting

in a final pixel number that is only 0.02% of the original reference

dataset.

Network Design To evaluate the impact of different modules in

the network, we conducted several ablation studies, as summarized

in the table. Our baseline network is a U-Net network that takes

only sRGB images as input. “Prior RAW" refers to the baseline

network that takes both sRGB images and assembled RAW images

as input. “Reliable Attention" represents the Prior RAW network

with the reliable attention module to suppress unreliable areas.

“Non-Local" indicates the Non-Local fusion module. As shown in

the table, incorporating Prior RAW data can significantly improve

Method PSNR SSIM

Pixel Searching 44.32 0.9935

Clustering and Grouping 43.98 0.9932

Cluster Number 10,000 43.85 0.9930

Cluster Number 5,000 43.98 0.9932

Cluster Number 3,000 43.95 0.9932

Cluster Number 1,000 39.15 0.9896

Group Size 1500 42.86 0.9929

Group Size 1000 43.98 0.9932

Group Size 500 41.56 0.9943

sRGB+UNet 44.32 0.9831

+ Prior RAW 50.35 0.9970

+ Reliable Attention 51.85 0.9974

+ Non Local 52.05 0.9975

Table 1: Ablation studies of our method on the Olympus E-
PL6. We compare the performance of different parts of our
pipeline, such as pixel searching, reference compression, and
the influence of different modules in the reconstructor.

the baseline model. The Reliable Attention module helps eliminate

side effects from unreliable areas and improves the performance

compared to the original Prior RAW input. Finally, by using the

Non-Local fusion module, the model further refines the prediction

and achieves the best performance.

4.4 Comparison
As shown in the ablation study, even the assembled RAW images

achieve a high level of accuracy. When analyzing Fig. 5, it becomes

evident that the errors in the assembled RAW images are not uni-

formly distributed. Instead, they exhibit high error values in specific

areas such as the sky area, while other areas have low error values.
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Method

Extra Camera Extra Camera Samsung NX2000 Olympus E-PL6 Sony SLT-A57

Computation Storage PSNR SSIM PSNR SSIM PSNR SSIM

RIR [26] O(𝑊𝐻 ) O(𝑊𝐻 ) 45.66 0.9939 48.42 0.9924 51.26 0.9982

SAM [29] O(𝑊𝐻 ) O(𝑊𝐻 ) 47.03 0.9962 49.35 0.9978 50.44 0.9982

CAM [24] O(𝑊𝐻 ) O(𝑊𝐻 ) 48.08 0.9968 50.71 0.9975 50.49 0.9973

CAM + Finetune [24] O(𝑊𝐻 ) O(𝑊𝐻 ) 49.57 0.9975 51.54 0.9980 52.55 0.9980

Ours 0 0 48.98 0.9970 52.05 0.9975 53.11 0.9983

Table 2: Comparison with Metadata-based RAW Reconstruction Methods. The extra camera computation and storage are the
additional resource costs on the camera devices, where𝑊 and 𝐻 represent the width and height of the image, respectively.

Method PSNR SSIM

CA [31] 34.74 0.9317

ACDC [32] 34.68 0.9152

IPAD [19] 34.91 0.9345

BitNet [5] 38.48 0.9657

BE-CALF [18] 38.94 0.9680

Nam et. al. [24] 39.57 0.9719

Nam et. al. + Finetune [24] 39.73 0.9721

Ours 39.79 0.9732

Table 3: Quantitative comparison of bit-depth recovery (4-to-
8-bit) methods on the Kodak dataset [1].

This can be attributed to the high-illumination and low-texture na-

ture of these areas, making it difficult to find accurate similar pixels

in the reference set. To understand the underlying cause of this

phenomenon, we examined the affinity matrix for both the areas

with high error values and those with low error values. We found

that the maximum values of the affinity matrix for the low-error

areas are approximately 0.9, while for the high-error areas, they fall

below 0.6. Based on this finding, we attribute this discrepancy to

the lack of similar pixels in the reference dataset for the high-error

areas, leading to the mismatching problem. Consequently, the Pixel

Searching Encoder is unable to find suitable references for these

pixels, resulting in the observed discrepancies.

We have named our final method PriorRAW, which incorporates

the steps of prior metadata generation, metadata fusion, and the

Encoder-Decoder network. As shown in Table 2, PriorRAWachieves

state-of-the-art performance overall and significantly improves the

performance of assembled RAW images. From the visualization, it is

evident that the high error values in the assembled RAW images are

greatly reduced. This indicates that the neural network has learned

to address the error caused by the mismatched pixels problem

and has achieved improved overall performance by combining

information from sRGB inputs and the prior metadata. Compared to

metadata-based methods, we have observed that errors in metadata-

based methods are concentrated in high-frequency regions. This

is because the sampled metadata is unable to accurately recover

the original pixels in areas with rich details. However, our method

does not have this issue. Instead, the error areas of our model are

concentrated in highlights areas, which suffer from the most severe

information loss in the sRGB image and are therefore difficult to

recover the original RAW pixels.

4.5 More Applications
The proposed method for RAW reconstruction based on prior meta-

data can also be utilized as a versatile image reconstruction pipeline.

In order to assess its effectiveness in tasks beyond RAW recon-

struction, we choose to evaluate our methods through a bit-depth

recovery task. Bit-depth recovery involves reconstructing a high bit-

depth image from a low bit-depth version, with the aim of restoring

finer tonal details and reducing quantization artifacts. This process

plays a crucial role in enhancing image quality by expanding its

dynamic range and preserving subtle nuances that may be lost in

lower bit-depth variations. To accomplish this, we have selected

two widely-used datasets, namely MIT-Adobe 5K [4] and Sintel [3],

for training the 4-to-8-bit recovery model. Then, we choose the

representative Kodak [1] dataset for evaluation purposes.

As shown in Table 3, we compare our methods with several rep-

resentative algorithms for bit-depth recovery. By incorporating the

prior metadata extracted from high-bit depth data, our model with

the fusion module and encoder-decoder structure significantly out-

performs state-of-the-art bit-depth recovery algorithms, achieving

a PSNR of 39.79.

5 CONCLUSION
In this paper, we focus on efficiently reconstructing RAW images

using sRGB inputs. Unlike previous methods, we propose a new

reconstruction pipeline based on prior metadata. Our approach is

based on the idea that pixels captured under similar lighting con-

ditions for similar objects can provide valuable prior information

for reconstructing the current pixel. To achieve this, we design a

contrastive learning method to train the Pixel Searching Encoder,

enabling it to efficiently identify the most similar pixels in the refer-

ence dataset. We also develop a clustering and grouping algorithm

to compress the reference features and sRGB-RAW pixel pairs into a

smaller scale during the inference phase, while maintaining perfor-

mance. Finally, using the assembled prior metadata and the sRGB

input, we design a fusion module and an Encoder-Decoder network

to reconstruct the final RAW images. Experiments show that our

method achieves excellent performance on the RAW reconstruc-

tion task and can be used for similar tasks like bit-depth recovery.

Our goal is to contribute to a wider range of reconstruction tasks,

enhancing their applicability.
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