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Abstract
Gaussian Processes (GPs) are a very flexible class of nonparametric models frequently used
in supervised learning tasks because of their ability to fit data with very few assumptions,
namely just the type of correlation (kernel) the data is expected to display. Automatic
Bayesian Covariance Discovery (ABCD) is an iterative GP regression framework aimed at
removing the requirement for even this initial correlation form assumption. An original
ABCD implementation exists and is a complex stand-alone system designed to produce
long-form text analyses of provided data. This paper presents a lighter, more functional
and configurable implementation of the ABCD idea, outputting only fit models and short
descriptions: the Python package GPy-ABCD, which was developed as part of an adaptive
modelling component for the FRANK query-answering system. It uses a revised model-
space search algorithm and removes a search bias which was required in order to retain
model explainability in the original system.

Introduction
Automatic Bayesian Covariance Discovery (ABCD) (Lloyd, James Robert et al., 2014) is an
unsupervised learning system acting as a framework which iteratively runs Gaussian Pro-
cess (GP) regressions in order to select the best fitting model within some functional-form
search-space limits. Its noteworthy utility lies not just in the generally close fit one can ex-
pect from it, but in the high level of interpretability its outputs carry, being able to describe
even functional forms which vary over the given domain. An example for clarity: a pattern
which an ABCD system is able to identify and describe in text would be (paraphrasing
to shorten it) “the data starts as a linear function but then begins a periodic exponential
growth”. The original ABCD implementation (now the main constituent of the Automatic
Statistician (Steinruecken, Christian et al., 2019)), is a large project with parts written
in MATLAB, Python, Mathematica, Fortran and more, and the outputs it produces are
very detailed multi-page, text-based analyses of the given data, describing contributions
from each component of the identified modular functional form. This paper describes a
more functional and highly configurable ABCD system implementation which focusses on
improving the model-space search and not on the output analysis, instead returning just
the models and 1-paragraph descriptions. GPy-ABCD is an open-source Python pack-
age (Fletcher, 2020) built on the GPy library developed by the Sheffield machine learning
group (2012); it is intended as a standard modelling tool to be used in a broader analysis
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workflow; in particular, the workflow it was developed for is an adaptive statistical mod-
elling component for the Functional Reasoning for Acquiring Novel Knowledge (FRANK)
Query-Answering (QA) system (Nuamah et al., 2016; Bundy et al., 2018).

1. Background

Grosse, Roger et al. (2012) noted (as others had before) that many common probabilis-
tic models can be represented as compositions of simpler ones, and they used the class
of matrix decomposition models to construct a context-free grammar generating a compo-
sitional model space. Duvenaud, David et al. (2013) built on this work and created the
proof-of-concept which later became the ABCD system (Lloyd, James Robert et al., 2014).
Extensions to this research include joint data modelling (separating common features from
individual ones) (Tong and Choi, Jaesik; Hwang, Yunseong and Choi, Jaesik, 2015), model
criticism (Lloyd, James Robert and Ghahramani, Zoubin, 2015) and Bayesian corrections
to final-model variance (Janz, David et al., 2016), while the original ABCD became part
of the Automatic Statistician (Riaz Moola; Kim, Hyunjik and Teh, Yee Whye, 2017; Stein-
ruecken, Christian et al., 2019), also exploring uses in classification tasks (Nikola Mrkšić).
GPy-ABCD is based on the Automatic Statistician’s ABCD and was designed as a simple
and developer-friendly modelling tool since its functionality was required within the FRANK
QA system (Nuamah et al., 2015, 2016; Nuamah and Bundy, 2019, 2018; Bundy et al., 2018).
Briefly, FRANK fits into the so-called “Third wave of AI”, employing both symbolic and
statistical reasoning to answer data-focussed queries, e.g. “Will the African country with
highest GDP in 2040 have a higher population than the equivalent South-American one?”,
which requires language parsing, online data sourcing, symbolic reasoning and statistical
modelling to answer. In particular, GPy-ABCD was created as part of FRANK’s adap-
tive statistical modelling component Statistical Methodology Advisor at Reasoning Time
(SMART), whose purpose is to select and execute specific statistical methodologies to match
specific query and data properties. In this context GPy-ABCD would be selected in place of
other statistical methods for queries involving functional shape description (e.g. “How does
rainfall in the UK behave over time?” or “Is population growth in Asia periodic/linear/-
exponential?”). GPy-ABCD is concerned with re-implementing only the simplest-output
ABCD functionality, as that is what is required by FRANK. Comparing the respective
broader systems, i.e. the Automatic Statistician and FRANK, the former is concerned with
producing in-depth analyses of directly provided data of specific kinds, while the latter is a
general-purpose QA system automating data procurement and method choice.

2. The ABCD Idea

Parametric regression methods are defined by strict assumptions on the nature of the data
being analysed, i.e. the form of the predicting function the parameters of which they tune
(e.g. in the case of polynomials, the assumption is the power up to which to model).
Nonparametric models on the other hand place much lower restrictions on the predicting
function’s form, using the data itself to adjust it, making them ideal candidates for learn-
ing tasks. Standard examples of nonparametric modelling methods are Support Vector
Machines, GPs and different variations of Splines, all of which still require some initial
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assumptions to restrict their functional forms. In the case of GPs (briefly explained in
Appendix A) the assumption is the choice of covariance function the data is expected to
exhibit, and although the generality of the common kernels allows extreme fitting flexibility,
what is lost in exchange is a level of data interpretability, making kernel choice still subject
to the modeller’s judgement prior to fitting. ABCD is an iterative GP regression frame-
work which explores a space of modularly-constructed kernels in order to identify the ones
which best balance closeness of fit and expression complexity, thus reducing the required
modelling assumptions even further. As laid out in (Lloyd, James Robert et al., 2014), the
core components of this framework are the following:

1. An open-ended and expressive language of models
2. An efficient generation and search procedure to explore the model space
3. A model evaluation and comparison method balancing complexity and closeness of fit
4. A procedure to automatically generate full reports of the best candidate

3. Implementation
The following sub-sections cover GPy-ABCD’s components as outlined above; they prioritise
abstract description over specific details since each section is mirrored by one in Appendix
B, where differences from the original ABCD are also explained.

3.1 The Model Language

The model language is defined by a context-free grammar constituted by a specific selection
of base GP kernels which can be combined by direct addition and multiplication to produce
more complex modular kernels. The criterion by which base kernels are selected is to cover
data features which are common and simple enough to be easily interpretable, resulting in
the following set (Duvenaud, David et al., 2013) (details in Section B.1):

• White Noise (WN) kernel to model uncorrelated noise
• Constant (C) kernel to model constant functions (useful for simple mean shifts)
• Linear (LIN) kernel to model linear functions and, when repeatedly multiplied by

itself, higher order polynomials
• Squared Exponential (SE) kernel to model generic smooth functions
• (Generalised) Periodic (PER) kernel to model generic periodic functions

Though present and usable, the SE kernel is disabled by default in GPy-ABCD since its
versatility and small number of parameters make it too competitive against more complex
but more interpretable expressions. Figure 1 shows examples of curves from a simple mul-
tiplication of kernel expressions. In addition to the above, the grammar contains two more
composite kernels built on lower-level sigmoidal kernels (see Appendix B.1):

• Change-Point (CP) operator: CP [k1, k2] = S × k1 + Sr × k2
• Change-Window (CW) operator: CW [k1, k2] = SI × k1 + SIr × k2

These allow the inclusion in the language of models which permanently or temporarily
change covariance form, e.g. from linear to periodic (examples in Figure 2 ).
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Figure 1: LIN×PER: periodic functions
with linearly varying amplitudes

Figure 2: CP (LIN,PER): linear func-
tions becoming periodic

3.2 Kernel Expressions & Simplification
The core of GPy-ABCD is the KernelExpression (abstract) class, which is the symbolic
representation of kernels: a non-trivial kernel is represented by a tree of KernelExpression
nodes which represent kernel operations; the base kernel arguments are contained directly
in the node, while more complex arguments are linked to (children nodes). For example
LIN × (PER+C) has two nodes: a root containing the factor LIN and a child containing
the sum of PER and C. The kernel expression classes have methods providing the following
general functionality:

• They self-simplify when modified
• They can produce GPy kernel objects
• They can extract the fit model parameters from a matching GPy object
• They can rearrange to a (canonical) sum-of-products form
• They can generate text descriptions of their sum-of-products form

Simplification of Kernel Expressions (KEs) is just mathematical rearrangement into more
succinct forms by some basic rules (see Section B.2). Here are two simplification examples
for clarity: LIN × PER×WN → LIN ×WN and (SE × SE +LIN)×C → SE +LIN .
These simplifications are self-triggering and take place both before model fitting and when
later reducing to canonical sum-of-products form.

3.3 The Model-Space Search
GPy-ABCD’s model-space search algorithm is a key difference from the original ABCD; it
is essentially a beam search using a context-free grammar as the successor states’ generator
(and beam search is essentially a limited-bandwidth best-first-search). The overall algorithm
is visualised in Figure 3 and explained below, with the main configurable inputs underlined;
a more detailed description making reference to all inputs to the main search function in
the library is provided in Section B.3. After fitting an initial (heuristic) list of simple KEs,
a predetermined number (M) of search rounds is performed; each round consists of the ex-
pansion (by grammar production rules) of the N best-fitting KEs so far, which are then
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Figure 3: The full model-space search algorithm

simplified and filtered for duplicates before fitting (the simplified KEs do not need to be in
sum-of-products form in order to retain final model interpretability, which was a limitation
of the original ABCD; see Section B.2). Each model is scored by a given utility function
which balances closeness of fit with expression complexity (see Section B.3.1 for a discussion
on possibilities). The main algorithm output is then the ordered list of best fitting models.

3.4 Model Description

By converting a fit kernel to its canonical sum-of-product form, each product’s factors are
ordered by a fixed pattern: PER, WN, SE, C, LIN and finally any sigmoidal kernel. This is
done in order to assign fixed roles to specific kernels if present in particular combinations;
the first available kernel takes the role of principal functional form and all the others of its
modifiers. The sentence production is then performed by simple templates which describe
each kernel differently according to its role and fill in parameter values. Tables detailing
these combinations are available in the ABCD literature (Lloyd, James Robert et al., 2014),
but as an example, an example output for LIN × (PER+ C) would be:

“The fit kernel consists of 2 components:
- A linear function with offset -0.09; this component has overall variance 1.04
- A periodic function with period 6.24 and lengthscale 1774.03, with linearly
varying amplitude with offset -0.09; this component has overall variance 0.54”

where the “2 components” are from distributing the product. This system works well
because the base kernels were chosen from the beginning with the purpose of interpretability.
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4. Evaluation
The main hypothesis under evaluation for GPy-ABCD is twofold:

• That it recognises the correct patterns in synthetic data as an ABCD system should
(i.e. that its kernels do indeed work individually and together)

• That it fits and describes complex data similarly enough (taking into account the
algorithm difference) to the original ABCD system implementation

Separately, it needs to fulfil the role it was originally designed for in the FRANK QA system,
which means being able to provide the data required to introduce the new types of queries
mentioned in Section 1. Appendix C expands on the below summary.

The 1st point was evaluated by trying to recover known kernels when fitting noisy
data produced from a set of formulae of varying complexities (e.g. LIN × (PER + C)
is the “obvious” match for y = 2x cos(x−5

2 )2). The system identified the intended kernel
in all cases (though not necessarily in the top result) except for the class of CW kernels
with non-stationary first-arguments (e.g. CW (LIN, · · · )); see Section C.1 for a discussion
on the reasons. The 2nd point was evaluated by trying to replicate the core outputs of
the original ABCD system on the datasets in their literature. Although no noticeable
differences in closeness of fit were present, the KEs identified by the two systems were
broadly similar but not matching, with GPy-ABCD’s expressions being generally simpler
than the original’s; this is reasonable since the comparison setup tried to match the number
of rounds of the respective algorithms and not their search depth (see Section C.2), but the
effects of the differences in implementation and underlying frameworks and fitting libraries
are an unquantified factor. With regards to the last point of evaluation, GPy-ABCD is
indeed able to provide FRANK with the means to implement the target functionality, and
some useful infrastructure was added to both projects in order to manage computation
times (since ABCD is a very computationally expensive method in a QA context).

Conclusion
GPy-ABCD is a working implementation of an ABCD modelling system, replicating and
improving the core components of the original one (i.e. not the production of detailed
analyses); comparing the two, GPy-ABCD stands out for the improved model-search algo-
rithm and extensive customisability. Though there is room for further numerical method
improvements and investigation of search path behaviour differences with the original im-
plementation, the system performs well on both synthetic and real data, and can help
users identify and describe patterns in the exploratory data analysis phase of research.
Partly due to having been developed to serve as one of many components in a broader
adaptive-modelling system, GPy-ABCD constitutes a solid base on which to build further
functionality and research: the identified issue of statistical appropriateness of the choice of
utility function (Section B.3.1) is the primary theory-based next step, while more practical
expansion directions include extending the system to handle multidimensional data and
adding more fitting methods (two things which GPy is already equipped for), as well as
further increasing user customisation to encompass providing arbitrary base kernels, since
specific scenarios (including dimension-based) may require broader or narrower selections
to work well or for optimisation purposes.
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Appendix A. Gaussian Process Regression

Definition 1 (Rasmussen and Williams, 2006) A Gaussian Process (GP) is a collection
of random variables, any finite number of which have a joint Gaussian distribution.

A GP f is fully defined by its mean function m and covariance (“kernel”) function k (f(x) ∼
GP(m(x), k(x,x′))), but given the Bayesian nature of the fitting process, specifically the
fact that a mean-0 prior does not limit the posterior mean to 0 as well, it is common
to assume the prior mean to be 0 and therefore let GPs be completely specified by their
covariance function, which also simplifies notation. From the simple description above it
should be clear that a GP regression does not fit an analytic expression for the given data but
instead one for the process which could have produced it (accounting for noise): the tuned
parameters are for the (covariance of the) distribution from which the input could have been
sampled. Consequently predictions made from a GP model are not simple points or vectors
with errors, but individual univariate or multivariate Gaussian distributions. k(x,x′) is
usually also referred to as the GP’s “kernel”, and in typical GP regression scenarios the
key feature a user is looking for in their kernel is generality, leading many applications
to use the very flexible SE kernel (often also referred to as Radial Basis Function kernel):
kSE(x,x

′) = σ2 exp
(
− (x−x′)2

2l2

)
, where σ2 is the variance and l is the lengthscale. Variance

and lengthscale are parameters shared by many kernels, and intuitively, taking the kernel
as a description of similarity between data observations, the variance regulates the average
distance from the whole process mean, while the lengthscale regulates the average length
of the fit curve’s undulations (also serving as a gauge of reliable extrapolation distance).
The above being granted, the choice of kernel is instead at times the crucial step in one’s
analysis in order to match the given data features and known context since it determines
the generalisation properties of the resulting GP model; this is the task which an ABCD
system (Section 2) is meant to perform in place of human analysts. The capabilities of
the GPy Python library cover considerably more features than an ABCD back-end requires
since within it all aspects of GP fitting are developer-configurable.

Appendix B. Details & Comparison

The following sub-sections mirror the structure of Section 3, further exploring implementa-
tion details and comparing them with the original ABCD.

B.1 The Model Language

The base kernel expressions are reported below, where σ2 is variance:

• WN(x,x′) = σ2δx,x′ , where δx,x′ is the Kronecker delta function
• C(x,x′) = σ2

• LIN(x,x′) = σ2(x − c)(x′ − c), where c is the horizontal offset (a polynomial root
in multiplications)

• SE(x,x′) = σ2 exp
(
− (x−x′)2

2l2

)
9
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• PER(x,x′) = σ2

exp

 cos

(
2π(x−x′)

p

)
l2

−I0
(

1
l2

)
exp

(
1
l2

)
−I0

(
1
l2

) , where p is the period and I0 is the modi-

fied Bessel function of the first kind of order zero

The sigmoidal kernels used by the change operators are constructed as follows:

• Choosing a sigmoidal function sig (the used one is x
1+|x|)

• Can define a step-function (and its reverse) by scaling sig to the range [0, 1]: σ(x) =
1
2

(
1 + sig(x−l

s )
)

and σ(x) = 1−σ(x) = σ(x; s → −s), where l and s are location and
slope parameters

• Can then also define sigmoidal versions of indicator functions: hat(x) = σ(x)+σ(x+w)−1
h(w)

and well(x) = 2−σ(x)−σ(x+w)
h(w) , where w is the (strictly positive) window width and

h(w) is the maximum numerator value (i.e. the hat height or well depth), scaling the
expressions to 1

The sigmoidal kernels are then straightforward to construct:

• Sigmoidal (S) and Reverse Sigmoidal (Sr) kernels:
S(x,x′) = σ(x)σ(x′) and Sr(x,x′) = σ(x)σ(x′)

• Sigmoidal Indicator (SI) and Reverse Sigmoidal Indicator (SIr) kernels:
SI(x,x′) = hat(x)hat(x′) and SIr(x,x′) = well(x)well(x′)

Only WN, C and SE are already present in GPy, while the rest had to be newly imple-
mented; more specifically, GPy does provide versions of LIN and PER, and both were tested
but eventually discarded in favour of re-implementations of the original ABCD’s. GPy’s
LIN kernel is simpler than ABCD’s in that it does not include the offset value c, meaning
that any covariance which is truly linear but NOT through the origin would require the sum
kernel of LIN +C. This would be reasonable from a purity-of-model point of view, making
the presence in covariance of a vertical shift immediately visible in symbolic form (vs seeing
c ̸= 0), but in practice it is needlessly cumbersome, both computationally and combina-
torially, when it comes to polynomial kernels, e.g. the kernel space exploration depth of,
say, LIN × LIN × LIN is shallower than (LIN + C)× (LIN + C)× (LIN + C) (though
an ad-hoc production rule could shorten it at the price of making rounds more expensive).
Secondly, not including the intrinsic c parameter removes the useful side-effect of being able
to simply read out polynomial roots in products of LINs, which is an important feature on
its own especially in describing fit kernels with text. GPy’s PER kernel is in fact the one on
which ABCD’s is based, which suffers from the opposite problem of the above LIN in that it
does allow vertical shifts while modelling periodicity, which, given the considerably higher
complexity than a simple line, makes it more competitive than it needs to be in fitting
data which is not periodic (but has, say, two similar peaks). Specifically, ABCD’s PER is
the purely-periodic component of GPy’s (MacKay’s standard periodic kernel) (Duv, 2014);
given the direct availability of the latter, both were tested and the utility of the former was
re-verified: ABCD’s PER on its own is able to model, say, cos(x), but not, say, cos(x) + 1
(instead requiring the addition of C). While the GPy-ABCD uses the ABCD versions of the
above two kernels, it does not share the same sigmoidal ones. The original ABCD SI and
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SIr formulae were the same as the S and Sr ones but with the product of opposite-slope
sigmoidals in place of every sigmoidal, i.e. SI(x,x′) = (σ(x)(1− σ(x)))(σ(x′)(1− σ(x′)))
and SIr(x,x′) = (1 − σ(x)(1 − σ(x)))(1 − σ(x′)(1 − σ(x′))); there are a few intertwined
merits to the versions GPy-ABCD uses:

• the height/depth is fixed to 1 by the denominator and therefore it does not indirectly
depend on (x− x′) (which would require further scaling by fitting parameters)

• computing the gradients is less computationally intensive
• the window start and end locations are more distinctly identifiable

Being the most complex in the grammar, the CW kernel is unsurprisingly the one requiring
the most care in implementation in order to reduce numerical instability and increase result
consistency; to this end, many variations of the SI kernel were tried, in both mathematical
nature of sig and specific parametrisations. In the first respect the tried sigs were, in
order of decreasing computational complexity, tanh(x), x√

1+x2
and x

1+|x| , where the last
(and ultimately selected) one has the peculiarity of a very steep derivative culminating in
a sharp (removable) discontinuity. In the second respect, some tried parametrisations were
start and end locations, central location and width, and start location and width, with
the last being ultimately selected; to the same end, in the currently running version the
slope parameter is fixed to a constant, thus reducing the kernel complexity and making
it more competitive against those with fewer parameters. An issue has been opened on
GPy’s repository regarding possibilities of alternated fitting and relative constraining of
specific parameters (the two implicit window locations), which would aid convergence in
this kernel’s fitting machinery. Implementation wise, GPy’s BasisFuncKernel was used
as a base for all sigmoidal kernels, allowing the definition of kernel and gradients by their
components, i.e. by σ, σ, hat and well, then letting GPy combine them on its own.

B.2 Kernel Expressions & Simplification

One definition is required before listing the simplification rules:

Definition 2 A kernel function is stationary if it has no dependence on x and x′ except
through x− x′, meaning that it is not affected by equal shifts in both points

All base kernels in use here are therefore stationary except for LIN and the sigmoidal
ones. The simplification rules are the following (addition and multiplication commutativity,
associativity and distributivity apply):

• WN is addition-idempotent, multiplication-idempotent and also acts as multiplicative-
zero for stationary kernels, therefore there can be at most one per sum and one with
no other stationary factors per product

• C is also addition-idempotent and multiplication-idempotent, but it acts as multiplicative-
one, therefore there can be at most one per sum and it is in products only when alone

• SE is multiplication-idempotent
• Since all base kernels include a variance parameter, when in a product they can all

be removed in favour of a single product-wide variance
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Code-wise GPy-ABCD’s design is very different from the original ABCD, having had the
benefit of hindsight to globally generalise ad-hoc structures and procedures within a broadly
similar algorithm, but there is an important difference in functionality when it comes to
expression simplification. The original ABCD has two global operating modes when it comes
to expression handling (ABCD-Interpretability and ABCD-Accuracy), the key difference
being that the former only works with sum-of-products-form kernel expressions (i.e. it
immediately simplifies any nested form even during model space exploration), while the
latter completely avoids this type of simplification, returning nested expressions as outputs
too, which are not describable in text. Each mode is named after its advantage, the idea
being that forcing the exploration to go through specific expression forms achieves eventual
model explainability at the price of a slight bias on the process. GPy-ABCD avoids this
choice by taking the best of both paths: it does not enforce canonical form during model
space search (still simplifying as needed) and it only reduces to sum-of-product form at
the very end to add explainability (the difficulty here is only the aforementioned care in
handling parameters during post-fit rearranging).

B.3 The Model-Space Search
The main model-space search function exported by the package is:

explore_model_space(X, Y,
start_kernels, p_rules, utility_function, rounds, buffer, dynamic_buffer,
verbose, restarts, model_list_fitter, optimiser)

where only X and Y are required since the rest have default values. The following is the
model-space search algorithm it implements:

• Every GP regression of Y by X performs a set number (restarts) of random initial-
parameter-values restarts in order to increase confidence in having converged to global
minima/maxima, and its model score is given by the provided utility_function

• The search begins by fitting the provided start_kernels, acting as a 0th round, then
a set number (rounds) of standard rounds is executed, iteratively generating and
fitting candidate kernels

• In each round, a specific number (buffer) of the best-scoring kernels which have not
yet been round-inputs is selected for further processing (not just from the previous
round, making buffer the beam width in the context of beam search)

• Every input-kernel is “expanded”, meaning that the provided production rules (p_rules,
see Section B.3 for examples) are applied to it, generating new expressions which are
then filtered for newly-created and previously-encountered duplicates; the remaining
ones are fit

• Through the model_list_fitter and optimiser arguments the user has the options
of customising, respectively, how to parallelise the fitting of a list of kernels, and which
of the fit optimisers available in GPy to use

• If dynamic_buffer is true, then the number of input kernels is higher in earlier rounds
(when expressions are simpler) and lower in later ones (in the context of beam search
this is just progressively narrowing the beam). This is useful to avoid premature
focus on particular expressions when the data shape is particularly complex, giving

12



GPy-ABCD: A Configurable Automatic Bayesian Covariance Discovery Implementation

a broader spectrum of simple models a chance; in simpler cases this instead reduces
overall computation time since less time is spent on fitting needlessly complex models

• Intermediate results are printed during exploration if verbose is true (but for the
moment the search cannot be interrupted and has to complete the predetermined
number of rounds before returning)

• The returned values are:
– sorted_models: all fit models ordered by decreasing fit score
– tested_models: a list of lists of fit models, one per round
– tested_k_exprs: the list of all fit kernel expressions
– expanded: the list of all fit models which have been expanded in a round
– not_expanded: the complement of expanded with respect to sorted_models

GPy-ABCD provides some ready-made lists of starting kernels and production rules,
but, more importantly, it also provides the tools to write custom ones; the default ones are:

Start kernels all base kernels except for SE (since as a 1st round seed it is much too
adaptable, obscuring more specific initial ones) plus 2nd and 3rd order polynomials, a
vertically shifted PER and both change-type kernels with LIN as an argument (since
they are sufficiently simple cases of each for the purpose of capturing the change
pattern early if present). That is: WN , C, LIN , PER, LIN ×LIN , LIN ×LIN ×
LIN , PER+ C, CP (LIN,LIN), and CW (LIN,LIN)

Production rules using E to indicate any kernel expression and B to indicate a base
kernel, basic rules to span the base model space (E → E +B, E → E ×B, B → B),
simple-case change operators to span the whole model space (E → CP (E,LIN),
E → CP (LIN,E), E → CW (E,LIN) and E → CW (LIN,E)), simple expression
reductions (E+E2 → E and E×E2 → E), and a few heuristic shortcuts to commonly
reached forms (E → E × (B + C), E → B)

The original ABCD is different in starting kernels, production rules and overall algorithm:

• It has no 0th round, and its 1st round is seeded by the result of applying the production
rules to the simple WN kernel

• The production rules used are the same as GPy-ABCD’s except for the absence of the
ones discouraging SE in favour of higher-order curves and replacing the change-kernel
ones with pairs of both simpler and more complex versions: E → CP (E,C), E →
CW (E,C), E → CP (C,E), E → CW (C,E), E → CP (E,E) and E → CW (E,E)

• The overall algorithm is not a beam search but a simple greedy search using exclusively
the single best model from the previous round to seed the next one, therefore possibly
excluding a better model from, say, two rounds before

B.3.1 Model Selection Method Issue

The choice of utility function with which to score fit models is not free from complications;
comparing implementations, the original ABCD uses Bayesian Information Criterion (BIC),
while GPy-ABCD allows the user to provide their own arbitrary function and contains a
few basic ones (BIC, Akaike Information Criterion (AIC), Akaike Information Criterion
corrected for small sample size (AICc) and a Laplace Approximation of Leave-One-Out
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Cross-Validation error (LA-LOO) (Vehtari et al., 2016)) but currently also defaults to BIC.
Putting aside LA-LOO, which does not meet the requirement of using model complexity
to balance closeness of fit, there are however some statistical issues with using the above
information criteria, the most important one worth mentioning here being that they all as-
sume that the parametric distribution family under consideration contains the true model
(Konishi and Kitagawa, 2007), the opposite of which is precisely the usefulness of an ABCD-
like model search. A second issue is that these criteria assume the data is independently
drawn from said true distribution, while GPs as a method operate precisely on the as-
sumption of ordered correlation. In practice these criteria do a reasonable job of ordering
models by goodness-of-fit, but more statistically sound alternatives (the implementation of
which is not straightforward) are worth exploring: Bayesian Predictive Information Cri-
terion (BPIC) (Ando, 2007) and Generalised Information Criterion (GIC) (Konishi and
Kitagawa, 2007) explicitly addresses the “true distribution” issue, but other criteria worth
examining are Widely Applicable Information Criterion (WAIC) or Widely (Applicable)
Bayesian Information Criterion (WBIC) (Watanabe, 2013), and perhaps combinations of
model complexity penalties with Leave-One-Out error approximations (more likely by em-
pirical justification rather than statistical argument).

B.4 Model Description

GPy-ABCD’s model description procedures cover only the simplest part of the original
ABCD implementation’s, since the latter produces pages of graphs and parameter analyses
individually for each product in the sum-of-products form. This extended type of out-
put does not match GPy-ABCD’s purpose, but its post-search nature means it could be
developed as a separate module taking in a kernel expression and its GPy counterpart.

B.5 Differences Summary

Most differences stem from the core fact that GPy-ABCD is meant to be an open back-end
service rather than a full system unto itself; because of this it is modular and developer-
friendly, allowing the configurability and extensibility required to perform model searches of
arbitrary complexity and constraints. With respect to the scope of analysis and output type,
the original ABCD produces documents of tens of pages which include multiple plots, tables
and details on how each identified component affects the full model, while GPy-ABCD is
only intended to produce the model itself and a short paragraph describing it. As for the
method, unlike the original ABCD’s, GPy-ABCD’s kernel space search algorithm allows
configurable starting conditions and the expansion-candidates selection is able to indirectly
backtrack to previous rounds’ results; this means that the explored kernel space can be
different from the original system’s in starting conditions, evolution steps and weights on
the directions of expansion.

Appendix C. Evaluation Details

The following sections match the evaluation hypotheses in Section 4
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C.1 Synthetic Data
The evaluation procedure with synthetic datasets is straightforward: produce noisy data
from functions exhibiting features the system is meant to be able to capture and verify that
the top search results contain the base kernel version of the used formula. For example: the
“obvious” kernel for noisy data produced from y = 2x cos(x−5

2 )2 should identify the inter-
action of linearity and of vertically-shifted periodicity, i.e. it should be LIN × (PER+C).
Tests were performed for various combinations of up to 3 base kernels both with and with-
out permanent or temporary kernel changes, and the system successfully and consistently
identified each combination with one source of difficulty and one exception:

• PER is able to achieve pathologically competitive scores when fitting complex non-
periodic data by converging to periods considerably shorter than any significant data
curvature, producing fits which are obviously wrong to a human (a behaviour shared
by GPy’s own non-purely-periodic kernel version)

• CW kernels with non-stationary outer parts (e.g. CW (LIN, · · · ); see Section B.2)
are almost never identified; this makes sense since the vertical shift induced by the
window portion is highly unlikely to match the one required by the non-stationary
outer kernel (e.g. a straight line having to stop and then start again exactly at the
required height after the window)

Usability-wise the former point is less of an issue for a human user (who can choose any
of the top-scoring models based on their own criteria) than it is for a broader framework
automating the use of GPy-ABCD; in this case reasonable options are adding a simple
closeness-of-fit score filter on the top-scoring models, or one which checks for explicitly
periodic features to compare to the identified periods (e.g. a Fourier transform). Addressing
the second point is not straightforward since this behaviour is technically correct. Since two
nested CP kernels can fit these scenarios at the cost of more parameters, two possibilities
come to mind: either this combination could be encouraged by additional production rules,
or a new version of CW with an additional vertical shift could be implemented (i.e. a C
added to the post-window side of the non-stationary kernel); in both cases the identified
parameters of said kernel would however not be reliable (e.g. the roots of a polynomial
which is vertically shifted on the right side of the window).

C.2 Original ABCD Data
Regarding the 2nd evaluation point, “similar” system behaviour necessarily has to be reduced
to similarity in final fit KE given the large design differences (see Section B.5). Some datasets
with corresponding original-ABCD analyses are publicly available, and, taking the above
into account, they can be used to evaluate GPy-ABCD’s output in the above respect, but
unfortunately not in explored kernel space details or in computational efficiency of single
fits (not necessarily useful in any case given the different technology stack). Because the
design differences are a core part of what is being evaluated, although it would be possible
to make GPy-ABCD run an algorithm which is very close to the original (identical except
for having to prioritise models from previous rounds if better than those strictly in the
last one), GPy-ABCD was run on default search parameters with only minor tweaks to
compensate for the systems’ different intended use cases: GPy-ABCD default settings are

15

https://www.automaticstatistician.com/examples/


Fletcher, Bundy and Nuamah

for an initially-broad and then narrowing few-round search on reasonably small datasets
(100 points or so) whose complexity is not exceptional (the typical data from FRANK’s
queries is small in size and “shallow” in terms of expression “depth”). For each of the
available analyses, the original ABCD’s (single-expansion, naive-greedy) model search was
run for 10 rounds and with 10 random parameter restarts for each fit model (Lloyd, James
Robert et al., 2014). Based on this, GPy-ABCD’s search parameters were set to the same
number of restarts and an equivalent number of expansions (though not necessarily of
maximum “depth”): 5 rounds with a (non-dynamic) buffer of 2. Given the known dataset
complexity and to allow fully comparable expressions between systems, the final tweak from
GPy-ABCD’s default parameters was to re-enable the SE kernel (normally excluded since
it tends to dominate early rounds while being the least interpretable). Comparing results,
no noticeable differences in closeness of fit were present, and GPy-ABCD’s expressions were
generally simpler than the original’s. This is expected since 5 2-buffer beam-search rounds
are unlikely to be as deep as 10 naive-greedy ones, but a point of note is the frequent use
of change-kernels in the original ABCD’s, while GPy-ABCD seems to avoid them. At this
point it is not clear why this should be the case: assuming equally effective change-kernel
fits in both systems (the synthetic data evaluation does not suggest inadequacies on this
front), and given the equal number of added parameters (change locations), the complexity
penalty in model score (BIC in both systems) should have the same effect in steering the
model-space search focus. It is not inconceivable that the base sigmoidal function difference
( x
1+|x| for GPy-ABCD and tanh for the original) could play a part in this, though the

precise mechanics are not obvious; differences in fit effectiveness between the two underlying
frameworks (Python & GPy vs Matlab & GPML) are an unquantified factor.

C.3 Effectiveness in Original Purpose
Feature-wise GPy-ABCD is capable of fulfilling everything it was intended for within
FRANK, i.e. handling inputs and outputs of requests to fit data of extremely varied shapes,
including producing text descriptions, which allows the addition of functional-form-based
queries to FRANK’s arsenal. However, as the paper so far will have made clear, this type
of modelling is not without its downsides, particularly when in the context of QA, the
principal issue being the high computational expensiveness of the full model-space search
(since even a single GP regression with the required multiple random parameter restarts
takes some time). GPy-ABCD’s configurability-oriented design is in part due to this issue,
allowing FRANK to run it in full only for datasets of a few hundred points, beyond which it
could be run on increasingly more constraining parametrisation profiles (e.g. fewer rounds,
production rules or base kernels); alternatively, FRANK could just feed it smaller uniform
samples of the datasets to return approximate solutions quickly, and then leave the user
the choice of whether to proceed to more expensive models. This level of consideration
and weighting of alternatives for the set of available modelling methods (which can overlap
over different query types) would be resolved precisely by considerations such as the above,
always taking care to inform the user of the reasons and possibly applied restrictions (and
giving the option to enforce a choice regardless); that is to say that FRANK having to work
around this computational expensiveness by offering the user more choices is an acceptable
outcome, and one which plays well with other competing modelling components.
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