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This document serves as supplementary material for the paper entitled “Online Estimation of Similarity Matrices with
Incomplete Data”. It contains theoretical proofs of the theorem and lemma presented in the main paper, related work, and
discussion, along with numerical results. Specifically,

• Section A provides the proofs of Theorem 1, Lemma 1, and the theoretical guarantee in Eq. (10);

• Section B discusses the related work on similarities and differences;

• Section C presents implementation details and numerical results.

A THEOREMS AND PROOFS

This section contains detailed proofs of the theorem and lemma that are presented in the main paper.

A.1 PROOF OF THEOREM 1

Let Mn be the set of n× n symmetric matrices. Due to the Kolmogrov’s criterion [5], the projection of So onto the feasible
region T is unique and characterized by

Ŝ = PT (S
o) ∈ T and ⟨S − Ŝ, So − Ŝ⟩Mn

≤ 0 for all S ∈ T ,

where ⟨, ⟩Mn
is an inner product of matrices defined on Mn with

⟨X,Y ⟩Mn
= trace(X⊤Y ), for any X,Y ∈ Mn.

Considering that the true similarity matrix S∗ ∈ T , we have [13, 14, 15]:

∥S∗ − Ŝ∥2F
≤ ∥S∗ − Ŝ∥2F − 2⟨S∗ − Ŝ, So − Ŝ⟩Mn

≤ ∥S∗ − Ŝ∥2F + ∥So − Ŝ∥2F − 2⟨S∗ − Ŝ, So − Ŝ⟩Mn

= ∥(S∗ − Ŝ)− (So − Ŝ)∥2F
= ∥S∗ − So∥2F .

Thus, ∥S∗ − Ŝ∥2F ≤ ∥S∗ − So∥2F . The equality holds if and only if Ŝ = So, i.e., So ∈ T .
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A.2 PROOF OF LEMMA 1

Consider a matrix Sn+1 ∈ R(n+1)×(n+1) partitioned as

Sn+1 =

[
Sn v
v⊤ c

]
,

where Sn ∈ Rn×n, v ∈ Rn, c ∈ R. Due to det |Sn| ≠ 0, the matrix D = c− v⊤S−1
n v is the Schur complement of Sn in

Sn+1. Suppose Sn ≻ 0 (positive definite), and consider the minimization problem

min
u

u⊤Snu+ 2γ⊤v⊤u+ γ⊤cγ

with variable u ∈ Rn and γ ∈ R. The optimal solution is u∗ = −S−1
n vγ with optimal value [3, Eq. A.14]

inf
u

[
u
γ

]⊤ [
Sn v
v⊤ c

] [
u
γ

]
= inf

u

[
u
γ

]⊤
Sn+1

[
u
γ

]
= γ⊤Dγ.

Then we obtain the equivalence of positive definiteness between D and Sn+1:

D ≥ 0 ⇔ ∀γ ∈ R, γ⊤Dγ ≥ 0

⇔ ∀γ ∈ R, inf
u

[
u
γ

]⊤
Sn+1

[
u
γ

]
≥ 0

⇔ ∀u ∈ Rn, γ ∈ R,
[

u
γ

]⊤
Sn+1

[
u
γ

]
≥ 0

⇔ Sn+1 ⪰ 0

which shows Sn+1 is positive semi-definite (PSD) if and only if D ≥ 0, i.e., v⊤S−1
n v ≤ c [3].

A.3 THEORETICAL GUARANTEE

• For our OffMC model in Section 3.1, we have proved ∥S∗
n − Ŝn∥2F ≤ ∥S∗

n − So
n∥2F in Section A.1.

• For our OnMC-S model in Section 3.2.1, denote So
n+1 =

[
Ŝn vo
v⊤o c

]
, Ŝn+1 =

[
Ŝn v̂
v̂⊤ c

]
and S∗

n+1 =

[
S∗
n v∗

v∗⊤ c∗

]
, then

∥S∗
n+1 − Ŝn+1∥2F = ∥S∗

n − Ŝn∥2F + 2∥v∗ − v̂∥2 + (c∗ − c)2

≤ ∥S∗
n+1 − So

n+1∥2F = ∥S∗
n − Ŝn∥2F + 2∥v∗ − vo∥2 + (c∗ − c)2.

Thus, we obtain ∥v∗ − v̂∥2 ≤ ∥v∗ − vo∥2, which is a theoretical guarantee for the One-step Online Similarity Matrix
Correction. By sequentially applying the one-step correction, the performance of OnMC-S method is guaranteed globally by

∥S∗
n+t − Ŝn+t∥2F ≤ ∥S∗

n+t − So
n+t∥2F , ∀ t = 0, 1, . . . ,m.

• For our OnMC-B model in Section 3.2.2, we divide So
n+m =

[
Soff Spar

S⊤
par Son

]
into four block matrices. Firstly, Soff and

Son are corrected to Ŝoff and Ŝon, respectively. We have ∥S∗
off − Ŝoff∥2F ≤ ∥S∗

off −Soff∥2F and ∥S∗
on − Ŝon∥2F ≤ ∥S∗

on −Son∥2F .
Then, by concurrently applying the one-step correction, we correct Spar to Ŝpar with ∥S∗

par − Ŝpar∥2F ≤ ∥S∗
par − Spar∥2F .

Finally, we have the performance guarantee on Ŝn+m with ∥S∗
n+m − Ŝn+m∥2F ≤ ∥S∗

n+m − Sn+m∥2F in Eq. (10).

• For our OnMC-L model in Section 3.2.3, we divide So
n+m into four types of block matrices of small sizes, i.e., {S(i)

off }
Noff
i=1,

{S(i)
off_par}

Noff
i=1, {S(j)

on }Non
j=1, and {S(j)

on_par}Non
j=1. For all i ∈ {1, . . . , Noff} and j ∈ {1, . . . , Non}, we have ∥S∗(i)

off − Ŝ
(i)
off ∥2F ≤

∥S∗(i)
off −S

(i)
off ∥2F , ∥S∗(i)

off_par−Ŝ
(i)
off_par∥2F ≤ ∥S∗(i)

off_par−S
(i)
off_par∥2F , ∥S∗(j)

on −Ŝ
(j)
on ∥2F ≤ ∥S∗(j)

on −S
(j)
on ∥2F , and ∥S∗(j)

on_par−Ŝ
(j)
on_par∥2F ≤

∥S∗(j)
on_par − S

(j)
on_par∥2F . Thus, we also have the guarantee on the final performance ∥S∗

n+m − Ŝn+m∥2F ≤ ∥S∗
n+m − So

n+m∥2F .



B RELATED WORK

Due to the limited space in the main paper, we discuss the related work in this section.

• Offline Model: i) For inner product, there is no constraints of similarity values, i.e., Sij ∈ (−∞,+∞), thus our offline
model is relaxed to find the nearest positive semi-definite matrix, which is a well-studied problem in the optimization
community [9, 10] and the unique solution is given by the following property [4].

Property 1. Let the symmetric matrix S ∈ Rn×n have the spectral decomposition S = UΣU⊤ (U is orthogonal,
Σ = diag(σi)). The unique positive semi-definite matrix nearest to S in the Frobenius norm is given by

Ŝ = U Σ̂U⊤, Σ̂ = diag(max{σi, 0})

ii) For other similarities, the Dykstra’s projection [6] we chosen is a popular alternating projection approach, which is
commonly used to solve the convex optimization problem on the intersection of convex sets [2, 8], and also applied in two
matrix calibration methods, including Direct Matrix Calibration (DMC) [13] and Cyclic Matrix Calibration (CMC) [14].

• Online Model: To deal with incomplete online data, we propose new models for different online scenarios, including
sequential, batch, and large-scale data, which are our main contributions and rely on the convex optimization [3, 11].

• Similarities with Matrix Calibration Methods: The matrix calibration methods developed in [13] and [14] made closely
related contributions, which also focused on the similarity matrix estimation with incomplete observations. Both methods
used an offline pattern and aimed to calibrate an initial matrix to the nearest matrix that satisfies PSD properties.

• Differences with Matrix Calibration Methods: Although the optimization objectives of these methods are mathematically
unified, our main contribution lies in online models, while matrix calibration methods only care about offline models. In
terms of data scenarios and optimization procedures, our work is fundamentally different. The OnMC-S method aims at
sequential data, and at each step, it only needs to correct one similarity vector instead of the entire matrix. Moreover, the
OnMC-B method performs a well-designed and flexible scheme on batch data, which is easily executed in high-parallel
efficiency through divide-and-conquer. Comparatively, the existing matrix calibration methods modify the whole matrix
globally and blur the known information with a higher computation cost and lower performance, which are not competent
for incomplete online data. For fairness of comparison, we provide the results of matrix calibration methods in Section C.4.

C EXPERIMENTAL RESULTS

C.1 IMPLEMENTATION DETAILS

In an online scenario studied in Section 4, all data is normalized to [−1,+1] before random missing. Suppose we have
an offline dataset X = [x1, x2, . . . , xn] ∈ Rd×n with complete information. Then m incomplete data points in the online
dataset Y o = [yo1, y

o
2, . . . , y

o
m] ∈ Rd×m come into observation sequentially. Same as the notation in Section 2.1, denote

• It ⊂ {1, 2, · · · , d} as the index set recording the positions of fully observed features in the online data point yot ;

• Ict = {1, 2, · · · , d} \ It as the complement set of It recording the position of unknown/missing features in yot ;

• yot (It) ∈ R|It|
(
yot (I

c
t ) ∈ R|Ic

t |
)

as a vector of selected values in yot on It (Ict );

• X(It) ∈ R|It|×n
(
X(Ict ) ∈ R|Ic

t |×n
)

as a matrix of selected values in X on It (Ict ).

Besides, So represents the estimated similarity matrix on incomplete data as mentioned in Section 2.1.

To deal with incomplete online data, various representative Missing Value Imputation (MVI) methods and Matrix Calibration
approaches are considered, of which the implementation details are specifically listed in Table C.1.

C.2 TRAINING PROCEDURE

In general, there are two different procedures to train the imputation methods on incomplete online data.

1. Online Update: the imputation models are trained purely on offline data. The imputed data ŷt is calculated by

f : [X, yot ] → ŷt.



Table C.1: The implementation details of missing value imputation (MVI) methods and matrix calibration approaches.

Method Category Technical Description Key Equation
ZERO Statistical MVI Imputes all the missing values by zero. yo

t (I
c
t ) = 0.

MEAN Statistical MVI Imputes the missing values by the observed mean of the corre-
sponding feature in all offline data.

yo
t (I

c
t ) = mean(X(Ict ))

kNN [12] Statistical MVI Imputes the missing values by the weighted mean value of cor-
responding k-nearest neighbors Xk in the offline dataset. The
default value of k is set to 10.

yo
t (I

c
t ) = mean(Xk(I

c
t ))

LR [16] Regression MVI Imputes the missing values by the multivariate linear regression
between observed features and missing features.

Fit a LR f : X(It) → yo
t (It)

Predict yo
t (I

c
t ) using f(X(Ict ))

RF [17] Regression MVI Imputes the missing values by the random forest (MissForest)
between observed features and missing features. The default
value of TreeNum in a well-known RF package is set to 500.

Fit a RF f : X(It) → yo
t (It)

Predict yo
t (I

c
t ) using f(X(Ict ))

GROUSE [1] Matrix Completion Imputes the online data by an online incremental algorithm
based on low rank matrix completion.

minU,V

∑
i,j(Z − UV )2ij

s.t. Z = [X,Y o]
KFMC [7] Matrix Completion Imputes the online data by high rank matrix completion and

online optimization (default setting: KFMC-on-RBF).
minZ,U,V

1
2
∥ϕ(Z)− UV ∥2

s.t. Z = [X,Y o]
DMC [13] Matrix Calibration Calibrates the similarity matrix by searching the nearest matrix

with positive semi-definiteness based on the Dykstra’s alternat-
ing projection method.

minS ∥S − So∥2F
s.t. S ⪰ 0

CMC [14] Matrix Calibration Calibrates the similarity matrix by searching the nearest matrix
with positive semi-definiteness using cyclic projection method.

minS ∥S − So∥2F
s.t. S ⪰ 0

2. Sequential Update: the imputation models are updated as online data comes into observation. Specifically, each
imputed online data will move into the complete offline dataset and the training procedure is defined as

f : [X, ŷ1, · · · , ŷt−1, y
o
t ] → ŷt.

In the main paper, we choose the Online Update pattern as our training procedure. As shown in Fig. C.1, the sequential
update pattern may lead to the increase of RMSE, especially for the LR method, because the imputed online data is regarded
as new complete data, which may increase the error of the next imputation. For the fairness of data imputation, we adopt the
online update pattern and only use X as the training set to train the mapping function f .
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Figure C.1: Comparison of the Relative-Mean-Square Error (RMSE) under online or sequential update pattern for cosine similarity on
MNIST dataset with fixed offline size n = 1000 and missing ratio r = 20%.

C.3 HYPER-PARAMETER ANALYSIS

The hyper-parameter analysis experiments are conducted using an online update pattern for cosine similarity on MNIST
dataset with size (n,m) = (1000, 1000) in Fig. C.2, where three imputation baselines are studied, including kNN, RF
and KFMC methods. It can be observed that the performance of imputation methods is generally unstable and poor under
different hyper-parameters, of which the default settings used in the main paper have been listed in Table C.1.

Besides, the hyper-parameter γ of the Gaussian kernel in Section 5 is set to σ−2, where σ is the mean of Euclidean distance.
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Figure C.2: Hyper-parameter analysis of imputation methods for cosine similarity on MNIST dataset with (n,m) = (1000, 1000).

C.4 NUMERICAL RESULTS

All the numerical results are the average performance of RMSEs on cosine similarity matrices for 10 random seeds, where
the RMSEs with the standard deviation on the MNIST dataset are listed in Table C.2.

• Compared with imputation methods, the OnMC methods exhibit excellent performance with a guarantee of RMSE < 1.

• Compared with matrix calibration methods, the OnMC methods also show evident improvement on RMSE due to their
well-designed online scheme, which mainly relies on vector optimization, blocking technique, and parallel correction.

Table C.2: Numerical results of the Relative-mean-square Error (RMSE) on the MNIST with fixed dataset sizes (n,m) =
(1000, 1000). The best two scores in each column are highlighted in Bold. All results are the average for 10 random seeds.

(n,m) = (1000, 1000) Missing Ratio r

Model Method 20% 30% 40% 50% 60% 70% 80%

Online

ZERO 54.01±2.195 68.76±1.413 76.68±2.099 76.74±2.575 69.21±1.540 54.57±1.310 35.00±0.524

MEAN 6.278±0.139 8.123±0.182 8.915±0.228 9.127±0.181 8.046±0.121 6.475±0.083 4.189±0.065

kNN-5 1.385±0.082 1.696±0.113 1.873±0.073 1.834±0.085 1.634±0.063 1.298±0.035 0.841±0.023

kNN-10 1.847±0.093 2.300±0.121 2.583±0.070 2.568±0.110 2.296±0.071 1.831±0.040 1.184±0.019

kNN-20 2.393±0.108 3.007±0.169 3.406±0.113 3.390±0.156 3.041±0.102 2.435±0.061 1.572±0.028

kNN-50 3.284±0.151 4.167±0.228 4.750±0.163 4.747±0.231 4.266±0.148 3.407±0.092 2.183±0.047

LR 3.627±0.555 3.789±0.564 3.637±0.407 2.816±0.374 2.080±0.241 1.206±0.116 0.512±0.034

RF-10 1.015±0.037 1.343±0.051 1.629±0.033 1.763±0.046 1.738±0.029 1.553±0.015 1.134±0.014

RF-50 1.102±0.038 1.484±0.061 1.809±0.031 1.963±0.049 1.942±0.032 1.736±0.016 1.282±0.018

RF-100 1.117±0.040 1.503±0.061 1.832±0.032 1.990±0.051 1.970±0.030 1.763±0.019 1.298±0.017

RF-500 1.125±0.041 1.516±0.061 1.849±0.033 2.007±0.050 1.990±0.031 1.782±0.018 1.314±0.015

GROUSE 1.953±0.060 2.399±0.049 2.741±0.088 2.731±0.068 2.368±0.072 1.820±0.062 1.111±0.048

KFMC-on-Poly 0.577±0.009 0.789±0.031 2.641±0.164 13.25±0.608 35.21±0.624 43.25±0.831 32.40±0.766

KFMC-on-RBF 1.281±0.054 1.637±0.070 1.907±0.057 1.990±0.049 1.920±0.058 1.683±0.033 1.237±0.027

Offline

KFMC-off-Poly 1.273±0.049 1.699±0.071 2.079±0.026 2.247±0.064 2.239±0.049 1.999±0.017 3.393±0.106

KFMC-off-RBF 1.478±0.059 1.939±0.074 2.326±0.035 2.496±0.079 2.454±0.047 2.188±0.028 1.599±0.011

DMC 0.893±0.004 0.850±0.003 0.798±0.005 0.744±0.006 0.679±0.005 0.595±0.005 0.480±0.005

CMC 0.903±0.004 0.855±0.003 0.797±0.005 0.737±0.007 0.666±0.005 0.576±0.005 0.458±0.005

Ours
OnMC-S 0.869±0.004 0.815±0.003 0.750±0.005 0.683±0.007 0.605±0.005 0.504±0.005 0.370±0.005

OnMC-B 0.877±0.004 0.823±0.003 0.759±0.005 0.692±0.007 0.614±0.005 0.512±0.005 0.378±0.005
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