A TRAINING PROCEDURE

The factor tensors are initialized with entries randomly drawn from a normal distribution:
N(0,1/4/n). We employ full-batch gradient descent to optimize the regularized loss with learn-
ing rate of 0.5 and momentum of 0.5. For the small scale experiments in Section [6] the HyperCube
regularizer coefficient is set to ¢ = (.1. For the larger scale experiments in Section [/} we use
¢ = 0.05 for HyperCube and ¢ = 0.01 for HyperCube-SE. See Appendix [D for a discussion of
hyperparameter sensitivity. Each experiment quickly runs within a few minutes on a single GPU.

e-scheduler To overcome the limitations in standard regularized optimization, which often pre-
vents full convergence to the ground truth (D), we employ e-scheduler: Once the model demon-
strates sufficient convergence (e.g., the average imbalance falls below a threshold of 10~), the
scheduler sets the regularization coefficient € to 0. This allows the model to fully fit the training
data. The effect of e-scheduler on convergence is discussed in Appendix [H.3]

The main implementation of HyperCube is shown below. Code repository is available at https:
//anonymous.4open.science/r/DeepTensorFactorization4GroupRep—-EB92/

import torch

3 def HyperCube_product (A,B,C) :

return torch.einsum(’aij,bjk,cki->abc’, A,B,C) / A.shape[0]

def HyperCube_regularizer (A,B,C):
def helper (M,N):
MM = torch.einsum(’aij,bij->ab’, M,M)
NN = torch.einsum(’aij,bij->ab’, N,N)
return (MM @ NN.T).trace()
return (helper(A,B) + helper(B,C) + helper(C,A)) / A.shapel0]

B LiIST OF BINARY OPERATIONS

Here is the list of binary operations from|Power et al. (2022)) that are used in Sectionm (withp = 97).

* (add) a o b = a + b (mod p) for 0 < a,b < p. (Cyclic Group)
e (sub)aob=a—0b(modp)for0<a,b<p.

e (div)aob=a/b(modp)for0<a<p0<b<p.

* (cond) a o b = [a/b (mod p) if b is odd, otherwise a — b (mod p)] for 0 < a,b < p.
* (quadl) aob = a? 4 b? (mod p) for 0 < a,b < p.

e (quad2) aob = a® + ab+ b (mod p) for 0 < a,b < p.

* (quad3) aob = a® + ab + b? + a (mod p) for 0 < a,b < p.
* (cubel) aob = a> + ab (mod p) for 0 < a,b < p.

* (cube2) a0 b = a3 + ab? + b (mod p) for 0 < a,b < p.

* (abin S5) aob=a-bfora,b € S5. (Symmetric Group)

e (aba~tinSs)aob=a-b-a" ! fora,b € Ss.

e (abain Ss)aob=a-b-afora,b € Ss.

0 1

W R

Figure 8: Elements of the symmetric group Ss illustrated as permutations of 3 items. Green color
indicates odd permutations, and white indicates even permutations. Adapted from https://en.
wikipedia.org/wiki/Symmetric_group.

12

https://anonymous.4open.science/r/DeepTensorFactorization4GroupRep-EB92/
https://anonymous.4open.science/r/DeepTensorFactorization4GroupRep-EB92/
https://en.wikipedia.org/wiki/Symmetric_group
https://en.wikipedia.org/wiki/Symmetric_group

C UNDERSTANDING HYPERCUBE REGULARIZER

To gain an intuitive understanding of the HyperCube regularizer, consider a simplified, scalar Hy-
perCube model ¢ = abc with a, b, ¢ € R. Minimizing the Ly regularizer a® + b? + ¢? subject to the
data constraint t = 1 yields the usual balanced condition:

a=b=c=1. (11)

In contrast, the HyperCube regularizer eq (6) becomes:

wena= () + (&) +(8)
)

= a2+ b + &, (12)

where, given the constraint ¢ = 1, we defined the substitute variables as @ = 1/a, b = 1/b, and
= 1/c. Minimizing eq subject to the constraint ab¢ = 1 yields the balanced condition
a = b= ¢ =1, or equivalently,

= =C=1 (13)

This is the reciprocal of the L, regularizer’s balanced condition eq (11), although the solutions are
identical in this scalar case. This example demonstrates that the HyperCube regularizer instills a
“reciprocal” bias compared to the Lo regularizer.

C.0.1 BALANCED CONDITION FOR Ly REGULARIZATION
In contrast, a different balanced condition applies for L, Regularization:
L L L
=87 =8 =0, (14)

where £72 = AT A, — BbBZ, Lo = BZB;, —C.Cl,and €52 = CIC, — A, Al Analogous matrix-
version of this balanced condition has been derived in prior works for deep linear networks (Arora
et all 2019} [Saxe et al., 2014), which leads to balanced singular modes across the layers: i.e. the
adjacent layers share the same singular values and singular vector matrices. Crucially, this result
shows how L, regularization promotes low-rank solutions, since the Lo loss on individual factors
is equivalent to penalizing) . |o; |>/L, where o; is the singular value of the end-to-end input-output
map, and L is the number of layers. This is called the Schatten norm minimization.

13

D HYPERPARAMETER SENSITIVITY ANALYSIS

We tested HyperCube across a wide range of hyperparameter settings, including learning rate, reg-
ularization coefficient, and weight initialization scale. Figure [9] shows the final test accuracy and
Figure [T0]shows the number of training steps to achieve 100% test accuracy across a subset of tasks
from Appendix [BJunder a fixed training budget of 1000 training steps.

HyperCube exhibits robust performance over the range of hyperparameter settings. Notably, in-
creasing the learning rate or regularization coefficient primarily raises the convergence speed with-
out significantly affecting the final test accuracy. The learning dynamics starts to become unstable at
large learning rate (Ir = 1.5) or regularization coefficient (¢ = 0.1). The weight initialization scale
has no effect on either the final test accuracy or the convergence speed.

This robustness, particularly to weight initialization scale and regularization strength, is noteworthy.
Deep neural networks exhibit a saddle point with zero Hessian at zero weights (Kawaguchi, 2016)
which becomes a local minimum under Ly regularization. This local minimum can cause the net-
work weights to collapse to zero when initialized with small values or under strong regularization.
(This mechanism also promotes low-rank solutions in Lo-regularized deep neural networks.)

In contrast, HyperCube’s quartic regularization loss, also featuring zero Hessian at zero weights,
maintains the saddle point at zero. The absence of local minimum at zero prevents weight collapse,
contributing to significantly robust learning dynamics and promoting the emergence of full-rank
unitary representations in HyperCube.

(a+b) (a/bif bis odd else a—b) (a® +ab +b?) (a® +ab) (abin Ss5) (aba~* in Ss)
@ 100
®
C o
o
C 50 Ir
c 0.05
£ 2 015
3 05
- 0 —15
02 0406 a 02 0s4__06 08 02 04 06 08 0z 04 06 08 0z 04 06 08 0z 04 06 08
train fraction train fraction train fraction train fraction train fraction train fraction
(a+b) (albif bis odd else a~b) (2? +ab +b?) (2*+ab) (abin S5) (aba~* in S5)
100
:‘a:, 75
o
O 50 reg coeff
o 0.003
@ 25| ool
= 0.03
0{—0.1
0z 04 06 08 0z 04 06 08 02 04 06 02 04 06 s 02 04 06 08 02 04 06 08
train fraction train fraction train fraction train fraction train fraction train fraction
(a+b) (a/b if bis odd else a—b) (27 +ab +b?) (2% +ab) (abin S5) (aba~* in S5)
100]
Q@
© 75
5}
n 50
o init_scale
=S
= 10
0| —10.0
0.2 0.4 0.8 0.2 0.4 0.6 08 02 04 0.6 08 02 0.4 0.6 0.8 0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8

train fraction train fraction train fraction train fraction train fraction train fraction

Figure 9: Test accuracy vs Hyperparameters : (Top) learning rate, (Middle) regularization
strength, and (Bottom) weight initialization scale. Trained under a fixed training budget of 1000
steps. Default hyperparameter setting: Ir = 0.5, reg coeff € = 0.05, init scale = 1.0.

(a+b) (a/bif bis odd else a—b) (a%+ab +b?) (a®+ab) (abin Ss) (aba~! in S5)
(] 3 Ir
o 10 0.05
© 015
05
2 10 =15
€
£
©
9 100
0z 04 06 08 0z 04 06 08 02 04 06 08 02 04 06 08 0z 04 06 08 0z 04 06 08
train fraction train fraction train fraction train fraction train fraction train fraction
(a+b) (a/bif bis odd else a—b) (a%+ab+b?) (a®+ab) (ab in Ss) (aba~* in S5)
10%. reg coeff|
e 0.00:
- 0.01
3 003
O 102 =01
o
e
10"
0.2 0.4 0.6 0.8 0.2 0.4 0.6 08 0.2 0.4 0.6 08 02 04 0.6 0.8 0.2 04 0.6 0.8 0.2 0.4 0.6 0.8
train fraction train fraction train fraction train fraction train fraction train fraction
(@+b) (a/bif bis odd else a—b) (@2 +ab +b?) (@* +ab) (ab in Ss) (@aba~* in Ss)
10° init_scale
@ 01
- 1.0
[+ —100
n 10%
=
£
10!
02 o0s 06 08 0z 08 0z 08 02 08 0z 04 06 08 0z 08

train fraction train fraction train fraction train fraction train fraction train fraction

Figure 10: Steps to 100% accuracy vs Hyperparameters : Same settings as Fig [9] but showing
the number of training steps to achieve 100% test accuracy.

14

E RUN-TIME COMPLEXITY

We empirically evaluate the run-time complexity of HyperCube. As expected, CPU execution time
scales as O(n?). However, due to the efficient parallelization of e i nsum operations in PyTorch (See
Appendix [A), GPU execution time remains nearly constant with increasing n (up to n = 200, the
maximum size that fits in the 16GB memory of a Tesla V100 GPU). This demonstrates the practical
efficiency of HyperCube when leveraging GPU acceleration.

100 Run-time complexity (CPU, sec) 100 Run-time complexity (GPU, sec)
—— architecture —— architecture
—— regularizer ——— regularizer
10° . 1004 ... o(n?)
----- O(n)
1071 107!
1072 10-2
1073

10! 10? 10! 10?
n n

Figure 11: Run-time complexity for computing the HyperCube architecture (eq () and regular-
izer (eq (6)) as functions of n. (Left) Run-time on CPU. (Right) Run-time on GPU (Tesla V100
16GB). Results are averaged over 100 runs.

F ALTERNATIVE TENSOR FACTORIZATIONS

HyperCube distinguishes itself from conventional tensor factorization architectures, which typically
employ lower-order, matrix factors for decomposition: e.g., Tucker and CP decomposition. This
difference is crucial for capturing the rich structure of binary operations.

Tucker Decomposition (Tucker||1966) employs a core tensor M/ and three matrix factors:

1
Tobe = — M,k Aai By Cek, 15
b nz ik b Cek 15)

.3,k

While flexible, Tucker decomposition suffers from a critical limitation: In eq , the role of matrix
factors is limited to simply mapping individual external indices to individual infernal indices (e.g. A
maps a to 7). This presents a recursive challenge, since learning the algebraic relationships between
(a,b,c) in T requires learning the relationships between (4, j, k) in M, which is not inherently
simplifying the core learning problem. Consequently, Tucker decomposition severely overfits the
training data and fails to generalize to unseen examples (Figure[T2).

15 (a+b) (ajbif bis odd else a—b) (a®+ab +b?) (a® +ab) (ab in Ss) (aba~! in S5)
S 100 reg coeff
2 0.0
75] 003
g —o1
S 50
3
T 25
g o P
g 0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8 02 0.4 0.6 08 02 04 0.6 0.8 0.2 0.4 0.6 08 0.2 0.4 0.6 0.8
= train fraction train fraction train fraction train fraction train fraction train fraction
< (a+b) (ajbif bis odd else a—b) (a? +ab +b?) (a® + ab) (abin Ss) (aba~' in Ss)
S 100 ———————————————
g s
Qo
£ 50
S reg coeff
@ 25{ o001
3 003 _/__ _/
a 0{ —0.1
v 0.8 02 08 02 0.8 0.2 08 0.2 0.4 0.6 0.8

08 02

04 06 04 06 04 06 04 06 04 06
train fraction train fraction train fraction train fraction train fraction train fraction

Figure 12: Alternative Tensor Factorization Methods: (Top) CP decomposition and (Bottom)
Tucker decomposition, trained across a range of Lo, regularization strengths.

15

CP Decomposition CP decomposition utilizes only matrix factors for decomposition:

1
Tope = — ZAakakCck~ (16)
"

This is equivalent t(ﬂ HyperCube with diagonal embeddings (i.e. Aqri = Aakris Brij = Bpidij,
Cejr = Cejdjk), since

Z AukiBijCeji = Z AaiBpiCejori0ijdjn = Z Ak BpiCe. (17)

ijk ijk k

Therefore, CP decomposition can only fully capture commutative Abelian groups (e.g modular ad-
dition), which admit diagonal representations (i.e., 1 x 1 irreps) in K = C, but it lacks the expressive
power to capture more complex opereations. In experiments (Figure[T2), CP decomposition indeed
shows reasonable performance only for the modular addition task, struggling to generalize to other
structures in data.

G BAND-DIAGONAL HYPERCUBE

As mentioned above, HyperCube with diagonal embeddings lacks the capacity to effectively capture
general group structures. However, the regular representation of a group generally decomposes into
a direct sum of smaller irreducible representations, resulting in a sparse, block-diagonal matrix
structure. Such block-diagonal structure can be effectively captured within the parameter space of
band-diagonal matrices.

Therefore, to enhance the scalability of HyperCube, we explore the band-diagonal variant where
the factor matrices are constrained to have a fixed bandwidth around the diagonal. This reduces the
model’s parameter count from O(n?) to O(n?), offering significant computational advantages.

Figure [I3]compares the performance of the full HyperCube and the band-diagonal HyperCube with
a bandwidth of 8 on a subset of tasks from Appendix [B] (n = 97 or 120). Remarkably, the band-
diagonal version exhibits comparable performance to the full HyperCube model, demonstrating its
effectiveness in capturing group structures even with a significantly reduced number of parameters.
This result highlights the potential of band-diagonal HyperCube for scaling to larger problems.

(a+b) (a/bif bis odd else a—b) (a% +ab +b?) (a +ab) (abin Ss) (aba~' in Ss5)

100] —
75 _—
-
50, %
25| bandwidth
full

0 8

02 04 06 08 02 04 06 08 02 04 06 08 02 04 06 08 02 04 06 08 02 04 06 08
rrrrr fraction train fraction train fraction train fraction train fraction train fraction

test accuracy

(a+b) (a/bif bis odd else a—b) (a%+ab +b?) (a®+ab) (abin Ss) (aba~' in S5)

b

steps to 100%
7/
Vi
Ve

Figure 13: Full HyperCube vs Band-diagonal HyperCube model. (Top) final test accuracy, and
(Bottom) steps to 100% test accuracy. Ir = 0.5, reg coeff € = 0.05, init scale = 1.0.

*CP decomposition can also be viewed as a special case of Tucker decomposition with a fixed core tensor

M, =1 ifi=j=%k, 0 otherwise.

16

H DEFERRED PROOFS

H.1 PROOF OF LEMMA [5. 110N BALANCED CONDITION OF HYPERCUBE

Here, we derive the balanced condition eq (7). The gradient of the regularized loss £ = £,(T; D) +
eH(A,B,C)is

1

Va,L= —((V1,,.L0) CLB] +2e(Au(ByB) + (C1Co)Au)), (18)
1

Vi, L= —((V1,.Lo) AT CT +2¢(B,(C.CY) + (Al Aa) By)),
1

Ve £ = = (V1. Lo) BIAL +26(Co(AaAL) + (B By)C.)),

n
where Vu, £ = OL/0A,, Vi, L= 0L/0By, Vi, L = OL/0C,, and V1, Lo = OLo/OT upe.

Define the imbalances as the differences of loss gradients:
&1 = 5 (AL(Va.L) = (V,£)B]) = AL(CIC0) Au — By(C.C])B]
&=
£k

n
5 (Bi(V5,L) = (V. £)CT) = Bj (Al Aa) By — Ce(A,AL)C]
n

5. (CUVa.L) — (Va,£)Al) = CLB}By)C. — Au(ByB)) A}

Setting the gradient to zero yields the balanced condition at stationary points, £ = £; = £k = 0,
which proves Lemma 5.1} Note that imbalance terms are defined to cancel out the Vr,, L, terms.
Therefore, the balanced condition is independent of the loss function L,,.

H.2 PROOF OF LEMMA [3.4]

Proof. The constraint on Frobenius norm can be integrated with the regularizer into an augmented
loss via the Lagrange multiplier A

H + A(F — constant), (19)

where F = % Tr [ALAG + Bg By + C!I C’C] is the Frobenius norm .
The gradient of eq with respect to A, is proportional to
Va,(H +AF) o Ag(ByB}) + (CIC.) Aq + MA,. (20)
In the case of C-unitary factors B and C, all terms in eq become aligned to A, i.e.
Va,(H+AF) x (o + ag + A) A, 1)

and thus an appropriate value for the Lagrange multiplier A can be found to vanish the gradient,
which confirms stationarity. This result also applies to gradient with respect to B;, and C. by the
symmetry of parameterization. O

H.3 PERSISTENCE OF GROUP REPRESENTATION

The following lemma demonstrates a key property of our model’s convergence behavior: once a
group representation is learned, the solution remains within this representational form throughout
optimization.

Lemma H.1. Let D represent a group operation table. Once gradient descent of the regularized
loss eq () converges to a group representation (including scalar multiples), i.e.

Aq = aa,0(a), By = ap,o(b), Cc = ac,o(c)’, (22)

the solution remains within this representation form.

17

Proof. For the squared loss
Lo(T;D) = > (Tabe — Dare)?, (23)
(a,b,¢) € Qrain

the gradient with respect to A, eq becomes
1
Y.L = ~(BareMarcCLB) + e(Aa(ByBy) + (CICe) Au)) (24)

where A = T — D is the constraint error, and M is the mask indicating observed entries in the train
set.

Substituting the group representation form eq into eq (24), we get:
1
~e(Au(ByB)) + (CICe) Au) = 2can,0%0(a), (25)

for the last two terms, where o® = 3, o%, /n =" o, /n.

Since the product tensor is
1 1
Tape = — Tr[AaByCe] = ~aa,ap,ac, Trlo(a)o(b)o(e)'] = aa,ap,ac, Dabe,

and Dgpe = 0gob,c = O cop—1 (0 is the Kronecker delta function), the first term in eq becomes

1 1 _
E Z AabcMabcC;rBZ = g Z 5aob,cMabc<aAaaBbaCc - l)aBb aCUQ(C ob 1)
b,c b,c

1
“n Z Map(aon)(@a, @B, c,,, — 1)ap,ac,,,0(a). (26)
b
Note that both eq and eq are proportional to o(a). Consequently, we have V 4, £ o(a).
Similar results for other factors can also be derived: Vg, £ o< o(b), and Vo £ oc o(c)t. This
implies that gradient descent preserves the form of the group representation (eq (22))), only updating
the coefficients a4, , ap, , ac.. O

Effect of e-Scheduler Lemma [H.1|holds true even when e gets modified by e-scheduler, which

reduces € to 0. In this case, the coefficients converge to a4, = ap, = a¢, = 1, resulting in the
exact group representation form eq (9).

18

I GROUP CONVOLUTION AND FOURIER TRANSFORM

I.1 FOURIER TRANSFORM ON GROUPS

The Fourier transform of a function f : G — R at a representation ¢ : G — GL(d,, R) of G is

0)=>_ fg)alg)- 27)

geG
For each representation g of G, f(p) is a d, x d, matrix, where d,, is the degree of o.

1.2 DUAL GROUP

Let G be a complete set indexing the irreducible representations of G' up to isomorphism, called
the dual group, thus for each { we have an irreducible representation g¢ : G — U(Vg), and every
irreducible representation is isomorphic to exactly one g¢.

1.3 INVERSE FOURIER TRANSFORM

The inverse Fourier transform at an element g of G is given by

1(0) = 157 3 dc T [ecto™) ee)] (28)

¢ed
where the summation goes over the complete set of irreps in G.
I.4 Groupr CONVOLUTION

The convolution of two functions over a finite group f, g : G — R is defined as

(f = h)(c Zf (cob™") h(b) (29)

beG

I.5 FOURIER TRANSFORM OF GROUP CONVOLUTION
Fourier transform of a convolution at any representation g of G is given by the matrix multiplication
fxh(e) = f(o)h(o). (30)

In other words, in Fourier representation, the group convolution is simply implemented by the matrix
multiplication.

Proof.
fxh(o) = Zg(c)Zﬂcob*l)h(b) (31)
= Z Z f(a 5(a cob—1) (32)
=> f(a)h(b) >~ 0(0)d(acb.e) (33)
a,b c
=Y f(a)h(b)o(aod) (34)
a,b
=" fla)e(a) Y h(b)o(b) (35)
a b
= f(o)h(o)- (36)
where ¢ is the Kronecker delta function, and the equivalence between a = c o b=landaob=cis
used between the second and the third equality. [

19

J GROUP CONVOLUTION AND FOURIER TRANSFORM IN HYPERCUBE

HyperCube shares a close connection with group convolution and Fourier transform. On finite
groups, the Fourier transform generalizes classical Fourier analysis to functions defined on the
group: f : G — R. Instead of decomposing by frequency, it uses the group’s irreducible repre-
sentations {o¢ }, where ¢ indexes the irreps (See Appendix . A function’s Fourier component at

¢ is defined as:
fe=>" flg)eelg). 37)

geG

Fourier Transform in HyperCube The Fourier transform perspective offers a new way to under-
stand how HyperCube with a group representation eq (9) processes general input vectors. Consider
a vector f representing a function, i.e., f; = f(g). Contracting f with a model factor A (or B)
yields:

f=1As="" fl9)elg), (38)

geG

which calculates the Fourier transform of f using the regular representation . As g contains all

irreps of the group, f holds the complete set of Fourier components. Conversely, contracting f with
ol (i.e. factor C') performs the inverse Fourier transform:

fTr FieA Z fo Trlo(g")o(9)T] = fy, (39)

gGG

where eq (2)) is used. This reveals that the factor tensors generalize the discrete Fourier transform
(DFT) matrix, allowing the model to map signals between the group space and its Fourier (fre-
quency) space representations.

Through the lens of Fourier transform, we can understand how the model eq processes general
input vectors (f and h): it calculates their Fourier transforms (f, k), multiplies them in the Fourier

domain (fh), and applies the inverse Fourier transform. Remarkably, this process is equivalent to
performing group convolution (f * k). This is because the linearized group operation (Section ¥.1)
naturally entails group convolution (see Appendix [J.T[J.2).

This connection reveals a profound discovery: HyperCube’s ability to learn symbolic operations is
fundamentally the same as learning the core structure of group convolutions. This means HyperCube
can automatically discover the essential architecture needed for equivariant networks, without the
need to hand-design them. This finding highlights the broad potential of HyperCube’s inductive
bias, extending its applicability beyond the realm of symbolic operations.

J.1 REINTERPRETING HYPERCUBE’S COMPUTATION

HyperCube equipped with group representation eq processes general input vectors f and h as

fuhuTuse =+ 30 5 F(a)h(6) Tr [o@)o(b)olc)]
a b

> Q(G)f(a)> <Z Q(b)h(b)> Q(C)T]

a b

1
=—"Tr
n

— 1 £

S TH(f)o()f] = - T ofe)]

n

= (f*h).. (40)
Therefore, the model calculates the Fourier transform of the inputs (f and iL), multiplies them in

the Fourier domain (f h), and applies the inverse Fourier transform, which is equivalent to the group
convolution, as shown in Appendix [[.5]

20

J.2 GRrRouUP CONVOLUTION BY D

Here we show that the linearized group operation Din Sectionis equivalent to the group convo-
lution in Appendix

Consider contracting the data tensor D with two functions f, h € G, as
fahbDabc = Zf(a)h(b)é(a,cobfl) = Z f(CO bil)h(b) = (f * h)(C), 41
ab b

which computes the group convolution between f and h, similar to eq (@0). Here, we used Dy =
5(aob,c) = §(a7cob*1)-

21

K SUPPLEMENTARY FIGURES FOR SECTION [6]

Unregularized ‘H regularized
t=0 t=10 t =20 t=0 t =100 t =200 t =300 t =500
: o_ =
g o | | | .l.
T.o B T.o 3 | || || =
: a || | | .l
5 i | |
" || | | |
v
S
7 [T e | o |
\°- L L
2T, .° H- T.a .° - | | |
@ o " ° -
&
I « W <+ N | | |
3 " -
-3
2
o
| | | |
H || ||

t=0 t =100 t =200 t =300 t =500

Ao Ao

i
2!

]
|
|

rd
ﬂ-l.f IL.. -'..-.

Az

2R R
2 T
o

i
GislPy

Figure 14: Visualization of the end-to-end model tensor 7' and the factor A over the training
iteration steps on the symmetric group Ss task in Sec[6] Only the first three slices of the tensors
are shown. (Top) End-to-end model tensor 7": In the un-regularized case, the model tensor quickly
converges to fit the observed data tensor entries in the training dataset (marked by stars and circles),
but not in the test dataset. The H-regularized model converges to a generalizing solution around
t = 200. It accurately recovers D when the regularization diminishes around ¢ = 400 (e — 0).
(Bottom) Factor tensor A. The unregularized model shows minimal changes from random initial
values, while H-regularized model shows significant internal restructuring. Shown in the block-
diagonalizing coordinate. See Fig|'1;5| (Bottom). (color scheme: red=1, white=0, blue=-1.)

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

"

Eg
E}

oo
S

o
-

Raw

o

Cy

.r:-!.=

E

>
&

-
d

=1
&
S

i
i
i

i [

o
s
R
o
3

1.5

>
Iy

Az

.

o~

B3

o]
o

A AL

Block-Diagonal

O
°

Cs3

IIJDL...EIIJF ﬂﬁh]

L

i
.
A
.

u...gu...“mu...
]

r

Figure 15: Learned factors of the H regularized model trained on the S5 group. (Top) Raw factor
weights shown in their native coordinate representation. (Middle) Unitary basis change as described
in Secwith M; =1, Mg = Ay, My = Bg, such that Ay = By = Cy = I. Note that
the factors share same weights (up to transpose in factor C'). (Bottom) Factors represented in a
block-diagonalizing basis coordinate, revealing the decomposition into direct sum of irreducible
representations (irreps). (color scheme: red=1, white=0, blue=-1.)

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

AoAo

" i

=
s
v
b
G

w
r
i
o
s

s
f
g
ra
w

A Mo B ™,

K
s
h

Figure 16: Multiplication table of matrix slices of factor A from the mid panel of Fig
this table share the same structure as the Cayley table of the symmetric group S5 in Fig

scheme: red=1, white=0, blue=-1.)

s
o
k3

£ it

s
"

Note that
. (color

-
o
°

Unregularized

1073

10°

L2 regularized

1073

107!

‘H regularized

Figure 17: Optimization trajectories on the modular addition (cyclic group Cs) dataset, with 60%
of the Cayley table used as train dataset (see Fig[I8). (Top) Unregularized, (Middle) Lo-regularized,
and (Bottom) H-regularized training. The Lo-regularized model only achieves ~60% test accuracy.

Figure 18: Visualization of end-to-end model tensor 7" trained on the modular addition (cyclic group
Cs) under different regularization strategies (see Fig[17). The observed training data are marked by
asterisks (1s) and circles (0s). Only the H-regularized model perfectly recovers the data tensor D.

101 4

1072 4

1071 4

10-2 4

1072 4

Loss Accuracy 100 Imbalance 102 Orthogonality Singular Value
 _———|100 ~ — -
1.50
75 A -2 0
Lo 10 125 /—/
50 1 /,
no-4 no-2 1.00 Fj
251 0.75 7/
L
0 T T 10-° T T 104 T T T T
10 20 10 20 10 20 10 20 10 20
10° 10?
i | 1007 L —
— i
75 1 1072 1 100 /\ ~
—— train 507 10-4 10-2]
—— test 25 4 —— train —— contracted :
regularizer —— test —— slice
T T T 0 T T ~ 107 T T ~ 1074 T T T - T T T
100 200 300 100 200 300 100 200 300 100 200 300 100 200 300
10° 102
100
] : 754 n0-2 A 10° \-7\
—
50 1
10 Lo-2
254
0 -6 ho-4
200 400 600 200 400 600 200 400 600 200 400 600 200 400 600
iteration t

(color scheme: red=1, white=0, blue=-1.)

APV

"

° To T T. R Toa T
N

ik m :

1 o

HF |

- T.o T T., T.s T4 T.s

i E B

15 E .. f
.l 1 L
N |

- T.o T.a T.s

3

£ u | n
? p

=

25

|
...- >
= -
.f
.-'
HJ

=
N
w
S
©
3
@
8

o
IS
o

c=a+bmodb
o
]

Ay

@
g

&
>

-

o
IS
o
o
S

c=a—bmod®6
_
|

.".- ."'- ; .-"-.

I.:. II'F-}

I...

S
I..-
Iﬂl-.

>
2
>
>
>
2
>
#
>
E;

@
w

@
IS
-]
o

.-5.-"-.
-
.
n
-
n
n
-
n
-
-
.
-

-

l... Dlﬂ{“
i
l... lﬁa
l... I...

o
$

o
o

c=a’+b2mod 6

..I

iy

Figure 19: Visualization of factors trained on small Cayley tables from Figure[2} (Top) ¢ = a + b
mod 6, satisfying A; = B, = C’; = 0(g). Middle) ¢ = a — b mod 6, satisfying A;f, =B, =Cy=
o(g). (Bottom) ¢ = a? + b? mod 6, which exhibits the same representation as modular addition
for elements with unique inverses (e.g., ¢ = 0,3). For others, it learns duplicate representations
reflecting the periodicity of squaring modulo 6: e.g., Ay = A, and A; = Aj, since 22 = 42 and
12 = 52. (color scheme: red=1, white=0, blue=-1.)

26

	Introduction
	Groups and Representations
	Background
	Modeling Framework
	blackLinearized Framework: Binary Operations as Bilinear Maps
	HyperCube Parameterization
	HyperCube Regularizer
	Internal Symmetry of Model

	Analyzing HyperCube's Inductive Bias
	Analysis on Small-Scale Experiments
	Learning Dynamics on Symmetric Group S3
	HyperCube Learns Unitary Group Representations
	Discovering Unitary Representations Beyond True Groups

	Results on Diverse BOC Tasks
	HyperCube Prioritizes Groups over Non-Group Operations
	HyperCube's Implicit Complexity Metric
	Comparison to Transformer

	Conclusion
	Training Procedure
	List of Binary Operations
	Understanding HyperCube Regularizer
	Balanced Condition for L2 Regularization

	Hyperparameter Sensitivity Analysis
	Run-time Complexity
	Alternative Tensor Factorizations
	Band-diagonal HyperCube
	Deferred Proofs
	Proof of Lemma 5.1 on Balanced Condition of HyperCube
	Proof of Lemma 5.4
	Persistence of Group Representation

	Group Convolution and Fourier Transform
	Fourier transform on groups
	Dual group
	Inverse Fourier transform
	Group Convolution
	Fourier Transform of Group Convolution

	Group Convolution and Fourier Transform in HyperCube
	Reinterpreting HyperCube's computation
	Group Convolution by D

	Supplementary Figures for Section 6

