
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

A TRAINING PROCEDURE

The factor tensors are initialized with entries randomly drawn from a normal distribution:
N (0, 1/

p
n). We employ full-batch gradient descent to optimize the regularized loss with learn-

ing rate of 0.5 and momentum of 0.5. For the small scale experiments in Section 6, the HyperCube
regularizer coefficient is set to ✏ = 0.1. For the larger scale experiments in Section 7, we use
✏ = 0.05 for HyperCube and ✏ = 0.01 for HyperCube-SE. See Appendix D for a discussion of
hyperparameter sensitivity. Each experiment quickly runs within a few minutes on a single GPU.

✏-scheduler To overcome the limitations in standard regularized optimization, which often pre-
vents full convergence to the ground truth (D), we employ ✏-scheduler: Once the model demon-
strates sufficient convergence (e.g., the average imbalance falls below a threshold of 10�5), the
scheduler sets the regularization coefficient ✏ to 0. This allows the model to fully fit the training
data. The effect of ✏-scheduler on convergence is discussed in Appendix H.3.

The main implementation of HyperCube is shown below. Code repository is available at https:
//anonymous.4open.science/r/DeepTensorFactorization4GroupRep-EB92/

1 import torch

2

3 def HyperCube_product(A,B,C):

4 return torch.einsum(’aij,bjk,cki->abc’, A,B,C) / A.shape[0]

5

6 def HyperCube_regularizer(A,B,C):

7 def helper(M,N):

8 MM = torch.einsum(’aij,bij->ab’, M,M)

9 NN = torch.einsum(’aij,bij->ab’, N,N)

10 return (MM @ NN.T).trace()

11 return (helper(A,B) + helper(B,C) + helper(C,A)) / A.shape[0]

B LIST OF BINARY OPERATIONS

Here is the list of binary operations from Power et al. (2022) that are used in Section 7 (with p = 97).

• (add) a � b = a+ b (mod p) for 0  a, b < p. (Cyclic Group)
• (sub) a � b = a� b (mod p) for 0  a, b < p.
• (div) a � b = a/b (mod p) for 0  a < p, 0 < b < p.
• (cond) a � b = [a/b (mod p) if b is odd, otherwise a� b (mod p)] for 0  a, b < p.
• (quad1) a � b = a

2 + b
2 (mod p) for 0  a, b < p.

• (quad2) a � b = a
2 + ab+ b

2 (mod p) for 0  a, b < p.
• (quad3) a � b = a

2 + ab+ b
2 + a (mod p) for 0  a, b < p.

• (cube1) a � b = a
3 + ab (mod p) for 0  a, b < p.

• (cube2) a � b = a
3 + ab

2 + b (mod p) for 0  a, b < p.
• (ab in S5) a � b = a · b for a, b 2 S5. (Symmetric Group)
• (aba�1 in S5) a � b = a · b · a�1 for a, b 2 S5.
• (aba in S5) a � b = a · b · a for a, b 2 S5.

Figure 8: Elements of the symmetric group S3 illustrated as permutations of 3 items. Green color
indicates odd permutations, and white indicates even permutations. Adapted from https://en.

wikipedia.org/wiki/Symmetric_group.

12

https://anonymous.4open.science/r/DeepTensorFactorization4GroupRep-EB92/
https://anonymous.4open.science/r/DeepTensorFactorization4GroupRep-EB92/
https://en.wikipedia.org/wiki/Symmetric_group
https://en.wikipedia.org/wiki/Symmetric_group

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

C UNDERSTANDING HYPERCUBE REGULARIZER

To gain an intuitive understanding of the HyperCube regularizer, consider a simplified, scalar Hy-
perCube model t = abc with a, b, c 2 R. Minimizing the L2 regularizer a2 + b

2 + c
2 subject to the

data constraint t = 1 yields the usual balanced condition:

a = b = c = 1. (11)

In contrast, the HyperCube regularizer eq (6) becomes:

H(a, b, c) =

✓
@t

@a

◆2

+

✓
@t

@b

◆2

+

✓
@t

@c

◆2

=

✓
t

a

◆2

+

✓
t

b

◆2

+

✓
t

c

◆2

= ã
2 + b̃

2 + c̃
2
, (12)

where, given the constraint t = 1, we defined the substitute variables as ã ⌘ 1/a, b̃ ⌘ 1/b, and
c̃ ⌘ 1/c. Minimizing eq (12) subject to the constraint ãb̃c̃ = 1 yields the balanced condition
ã = b̃ = c̃ = 1, or equivalently,

1

a
=

1

b
=

1

c
= 1. (13)

This is the reciprocal of the L2 regularizer’s balanced condition eq (11), although the solutions are
identical in this scalar case. This example demonstrates that the HyperCube regularizer instills a
“reciprocal” bias compared to the L2 regularizer.

C.0.1 BALANCED CONDITION FOR L2 REGULARIZATION

In contrast, a different balanced condition applies for L2 Regularization:

⇠
L2
I = ⇠

L2
J = ⇠

L2
K = 0, (14)

where ⇠
L2
I = A

†
aAa �BbB

†
b , ⇠L2

J = B
†
bBb �CcC

†
c , and ⇠

L2
K = C

†
cCc �AaA

†
a. Analogous matrix-

version of this balanced condition has been derived in prior works for deep linear networks (Arora
et al., 2019; Saxe et al., 2014), which leads to balanced singular modes across the layers: i.e. the
adjacent layers share the same singular values and singular vector matrices. Crucially, this result
shows how L2 regularization promotes low-rank solutions, since the L2 loss on individual factors
is equivalent to penalizing

P
i |�i|2/L, where �i is the singular value of the end-to-end input-output

map, and L is the number of layers. This is called the Schatten norm minimization.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

D HYPERPARAMETER SENSITIVITY ANALYSIS

We tested HyperCube across a wide range of hyperparameter settings, including learning rate, reg-
ularization coefficient, and weight initialization scale. Figure 9 shows the final test accuracy and
Figure 10 shows the number of training steps to achieve 100% test accuracy across a subset of tasks
from Appendix B under a fixed training budget of 1000 training steps.

HyperCube exhibits robust performance over the range of hyperparameter settings. Notably, in-
creasing the learning rate or regularization coefficient primarily raises the convergence speed with-
out significantly affecting the final test accuracy. The learning dynamics starts to become unstable at
large learning rate (lr = 1.5) or regularization coefficient (✏ = 0.1). The weight initialization scale
has no effect on either the final test accuracy or the convergence speed.

This robustness, particularly to weight initialization scale and regularization strength, is noteworthy.
Deep neural networks exhibit a saddle point with zero Hessian at zero weights (Kawaguchi, 2016)
which becomes a local minimum under L2 regularization. This local minimum can cause the net-
work weights to collapse to zero when initialized with small values or under strong regularization.
(This mechanism also promotes low-rank solutions in L2-regularized deep neural networks.)

In contrast, HyperCube’s quartic regularization loss, also featuring zero Hessian at zero weights,
maintains the saddle point at zero. The absence of local minimum at zero prevents weight collapse,
contributing to significantly robust learning dynamics and promoting the emergence of full-rank
unitary representations in HyperCube.

Figure 9: Test accuracy vs Hyperparameters : (Top) learning rate, (Middle) regularization
strength, and (Bottom) weight initialization scale. Trained under a fixed training budget of 1000
steps. Default hyperparameter setting: lr = 0.5, reg coeff ✏ = 0.05, init scale = 1.0.

Figure 10: Steps to 100% accuracy vs Hyperparameters : Same settings as Fig 9, but showing
the number of training steps to achieve 100% test accuracy.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

E RUN-TIME COMPLEXITY

We empirically evaluate the run-time complexity of HyperCube. As expected, CPU execution time
scales as O(n3). However, due to the efficient parallelization of einsum operations in PyTorch (See
Appendix A), GPU execution time remains nearly constant with increasing n (up to n = 200, the
maximum size that fits in the 16GB memory of a Tesla V100 GPU). This demonstrates the practical
efficiency of HyperCube when leveraging GPU acceleration.

Figure 11: Run-time complexity for computing the HyperCube architecture (eq (4)) and regular-
izer (eq (6)) as functions of n. (Left) Run-time on CPU. (Right) Run-time on GPU (Tesla V100
16GB). Results are averaged over 100 runs.

F ALTERNATIVE TENSOR FACTORIZATIONS

HyperCube distinguishes itself from conventional tensor factorization architectures, which typically
employ lower-order, matrix factors for decomposition: e.g., Tucker and CP decomposition. This
difference is crucial for capturing the rich structure of binary operations.

Tucker Decomposition (Tucker, 1966) employs a core tensor M and three matrix factors:

Tabc =
1

n

X

i,j,k

MijkAaiBbjCck, (15)

While flexible, Tucker decomposition suffers from a critical limitation: In eq (15), the role of matrix
factors is limited to simply mapping individual external indices to individual internal indices (e.g. A
maps a to i). This presents a recursive challenge, since learning the algebraic relationships between
(a, b, c) in T requires learning the relationships between (i, j, k) in M , which is not inherently
simplifying the core learning problem. Consequently, Tucker decomposition severely overfits the
training data and fails to generalize to unseen examples (Figure 12).

Tu
ck

er
 d

ec
om

po
sit

io
n

CP
 d

ec
om

po
sit

io
n

Figure 12: Alternative Tensor Factorization Methods: (Top) CP decomposition and (Bottom)
Tucker decomposition, trained across a range of L2 regularization strengths.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

CP Decomposition CP decomposition utilizes only matrix factors for decomposition:

Tabc =
1

n

X

k

AakBbkCck. (16)

This is equivalent to4 HyperCube with diagonal embeddings (i.e. Aaki = Aak�ki, Bbij = Bbi�ij ,
Ccjk = Ccj�jk), since

X

ijk

AakiBbijCcjk =
X

ijk

AakBbiCcj�ki�ij�jk =
X

k

AakBbkCck. (17)

Therefore, CP decomposition can only fully capture commutative Abelian groups (e.g modular ad-
dition), which admit diagonal representations (i.e., 1⇥1 irreps) in K = C, but it lacks the expressive
power to capture more complex opereations. In experiments (Figure 12), CP decomposition indeed
shows reasonable performance only for the modular addition task, struggling to generalize to other
structures in data.

G BAND-DIAGONAL HYPERCUBE

As mentioned above, HyperCube with diagonal embeddings lacks the capacity to effectively capture
general group structures. However, the regular representation of a group generally decomposes into
a direct sum of smaller irreducible representations, resulting in a sparse, block-diagonal matrix
structure. Such block-diagonal structure can be effectively captured within the parameter space of
band-diagonal matrices.

Therefore, to enhance the scalability of HyperCube, we explore the band-diagonal variant where
the factor matrices are constrained to have a fixed bandwidth around the diagonal. This reduces the
model’s parameter count from O(n3) to O(n2), offering significant computational advantages.

Figure 13 compares the performance of the full HyperCube and the band-diagonal HyperCube with
a bandwidth of 8 on a subset of tasks from Appendix B (n = 97 or 120). Remarkably, the band-
diagonal version exhibits comparable performance to the full HyperCube model, demonstrating its
effectiveness in capturing group structures even with a significantly reduced number of parameters.
This result highlights the potential of band-diagonal HyperCube for scaling to larger problems.

te
st

Figure 13: Full HyperCube vs Band-diagonal HyperCube model. (Top) final test accuracy, and
(Bottom) steps to 100% test accuracy. lr = 0.5, reg coeff ✏ = 0.05, init scale = 1.0.

4CP decomposition can also be viewed as a special case of Tucker decomposition with a fixed core tensor

Mijk = 1 if i = j = k, 0 otherwise.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

H DEFERRED PROOFS

H.1 PROOF OF LEMMA 5.1 ON BALANCED CONDITION OF HYPERCUBE

Here, we derive the balanced condition eq (7). The gradient of the regularized loss L = Lo(T ;D)+
✏H(A,B,C) is

rAaL =
1

n
((rTabcLo)C

†
cB

†
b + 2✏(Aa(BbB

†
b) + (C†

cCc)Aa)), (18)

rBbL =
1

n
((rTabcLo)A

†
aC

†
c + 2✏(Bb(CcC

†
c) + (A†

aAa)Bb)),

rCcL =
1

n
((rTabcLo)B

†
bA

†
a + 2✏(Cc(AaA

†
a) + (B†

bBb)Cc)),

where rAaL ⌘ @L/@Aa, rBbL ⌘ @L/@Bb, rCcL ⌘ @L/@Cc, and rTabcLo ⌘ @Lo/@Tabc.

Define the imbalances as the differences of loss gradients:

⇠I ⌘ n

2✏
(A†

a(rAaL)� (rBbL)B
†
b) = A

†
a(C

†
cCc)Aa �Bb(CcC

†
c)B

†
b

⇠J ⌘ n

2✏
(B†

b(rBbL)� (rCcL)C†
c) = B

†
b(A

†
aAa)Bb � Cc(AaA

†
a)C

†
c

⇠K ⌘ n

2✏
(C†

c (rCcL)� (rAaL)A†
a) = C

†
c (B

†
bBb)Cc �Aa(BbB

†
b)A

†
a

Setting the gradient to zero yields the balanced condition at stationary points, ⇠I = ⇠J = ⇠K = 0,
which proves Lemma 5.1. Note that imbalance terms are defined to cancel out the rTabcLo terms.
Therefore, the balanced condition is independent of the loss function Lo.

H.2 PROOF OF LEMMA 5.4

Proof. The constraint on Frobenius norm can be integrated with the regularizer into an augmented
loss via the Lagrange multiplier �

H+ �(F � constant), (19)

where F ⌘ 1
n Tr

h
A

†
aAa +B

†
bBb + C

†
cCc

i
is the Frobenius norm .

The gradient of eq (19) with respect to Aa is proportional to

rAa(H+ �F) / Aa(BbB
†
b) + (C†

cCc)Aa + �Aa. (20)

In the case of C-unitary factors B and C, all terms in eq (20) become aligned to Aa, i.e.

rAa(H+ �F) / (↵2
B + ↵

2
C + �)Aa. (21)

and thus an appropriate value for the Lagrange multiplier � can be found to vanish the gradient,
which confirms stationarity. This result also applies to gradient with respect to Bb and Cc by the
symmetry of parameterization.

H.3 PERSISTENCE OF GROUP REPRESENTATION

The following lemma demonstrates a key property of our model’s convergence behavior: once a
group representation is learned, the solution remains within this representational form throughout
optimization.
Lemma H.1. Let D represent a group operation table. Once gradient descent of the regularized
loss eq (5) converges to a group representation (including scalar multiples), i.e.

Aa = ↵Aa%(a), Bb = ↵Bb%(b), Cc = ↵Cc%(c)
†
, (22)

the solution remains within this representation form.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Proof. For the squared loss

Lo(T ;D) =
X

(a,b,c)2⌦train

(Tabc �Dabc)
2
, (23)

the gradient with respect to Aa eq (18) becomes

rAaL =
1

n
(�abcMabcC

†
cB

†
b + ✏(Aa(BbB

†
b) + (C†

cCc)Aa)) (24)

where � ⌘ T �D is the constraint error, and M is the mask indicating observed entries in the train
set.

Substituting the group representation form eq (22) into eq (24), we get:

1

n
✏(Aa(BbB

†
b) + (C†

cCc)Aa) = 2✏↵Aa↵
2
%(a), (25)

for the last two terms, where ↵
2 =

P
b ↵

2
Bb

/n =
P

c ↵
2
Cc
/n.

Since the product tensor is

Tabc =
1

n
Tr[AaBbCc] =

1

n
↵Aa↵Bb↵Cc Tr[%(a)%(b)%(c)

†] = ↵Aa↵Bb↵CcDabc,

and Dabc = �a�b,c = �a,c�b�1 (� is the Kronecker delta function), the first term in eq (24) becomes

1

n

X

b,c

�abcMabcC
†
cB

†
b =

1

n

X

b,c

�a�b,cMabc(↵Aa↵Bb↵Cc � 1)↵Bb↵Cc%(c � b�1)

=
1

n

X

b

Mab(a�b)(↵Aa↵Bb↵Ca�b � 1)↵Bb↵Ca�b%(a). (26)

Note that both eq (26) and eq (25) are proportional to %(a). Consequently, we have rAaL / %(a).
Similar results for other factors can also be derived: rBbL / %(b), and rCcL / %(c)†. This
implies that gradient descent preserves the form of the group representation (eq (22)), only updating
the coefficients ↵Aa ,↵Bb ,↵Cc .

Effect of ✏-Scheduler Lemma H.1 holds true even when ✏ gets modified by ✏-scheduler, which
reduces ✏ to 0. In this case, the coefficients converge to ↵Aa = ↵Bb = ↵Cc = 1, resulting in the
exact group representation form eq (9).

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

I GROUP CONVOLUTION AND FOURIER TRANSFORM

I.1 FOURIER TRANSFORM ON GROUPS

The Fourier transform of a function f : G ! R at a representation % : G ! GL(d%,R) of G is

f̂(%) =
X

g2G

f(g)%(g). (27)

For each representation % of G, f̂(%) is a d% ⇥ d% matrix, where d% is the degree of %.

I.2 DUAL GROUP

Let Ĝ be a complete set indexing the irreducible representations of G up to isomorphism, called
the dual group, thus for each ⇠ we have an irreducible representation %⇠ : G ! U(V⇠), and every
irreducible representation is isomorphic to exactly one %⇠.

I.3 INVERSE FOURIER TRANSFORM

The inverse Fourier transform at an element g of G is given by

f(g) =
1

|G|
X

⇠2Ĝ

d%⇠ Tr
h
%⇠(g

�1)f̂(%⇠)
i
. (28)

where the summation goes over the complete set of irreps in Ĝ.

I.4 GROUP CONVOLUTION

The convolution of two functions over a finite group f, g : G ! R is defined as

(f ⇤ h)(c) ⌘
X

b2G

f
�
c � b�1

�
h(b) (29)

I.5 FOURIER TRANSFORM OF GROUP CONVOLUTION

Fourier transform of a convolution at any representation % of G is given by the matrix multiplication
[f ⇤ h(%) = f̂(%)ĥ(%). (30)

In other words, in Fourier representation, the group convolution is simply implemented by the matrix
multiplication.

Proof.
[f ⇤ h(%) ⌘

X

c

%(c)
X

b

f(c � b�1)h(b) (31)

=
X

c

%(c)
X

a,b

f(a)h(b)�(a,c�b�1) (32)

=
X

a,b

f(a)h(b)
X

c

%(c)�(a�b,c) (33)

=
X

a,b

f(a)h(b)%(a � b) (34)

=
X

a

f(a)%(a)
X

b

h(b)%(b) (35)

= f̂(%)ĥ(%). (36)

where � is the Kronecker delta function, and the equivalence between a = c � b�1 and a � b = c is
used between the second and the third equality.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

J GROUP CONVOLUTION AND FOURIER TRANSFORM IN HYPERCUBE

HyperCube shares a close connection with group convolution and Fourier transform. On finite
groups, the Fourier transform generalizes classical Fourier analysis to functions defined on the
group: f : G ! R. Instead of decomposing by frequency, it uses the group’s irreducible repre-
sentations {%⇠}, where ⇠ indexes the irreps (See Appendix I.2). A function’s Fourier component at
⇠ is defined as:

f̂⇠ ⌘
X

g2G

f(g)%⇠(g). (37)

Fourier Transform in HyperCube The Fourier transform perspective offers a new way to under-
stand how HyperCube with a group representation eq (9) processes general input vectors. Consider
a vector f representing a function, i.e., fg = f(g). Contracting f with a model factor A (or B)
yields:

f̂ ⌘ fgAg =
X

g2G

f(g)%(g), (38)

which calculates the Fourier transform of f using the regular representation %. As % contains all
irreps of the group, f̂ holds the complete set of Fourier components. Conversely, contracting f̂ with
%
† (i.e. factor C) performs the inverse Fourier transform:

1

n
Tr[f̂Cg] =

1

n

X

g02G

fg0 Tr[%(g0)%(g)†] = fg, (39)

where eq (2) is used. This reveals that the factor tensors generalize the discrete Fourier transform
(DFT) matrix, allowing the model to map signals between the group space and its Fourier (fre-
quency) space representations.

Through the lens of Fourier transform, we can understand how the model eq (10) processes general
input vectors (f and h): it calculates their Fourier transforms (f̂ , ĥ), multiplies them in the Fourier
domain (f̂ ĥ), and applies the inverse Fourier transform. Remarkably, this process is equivalent to
performing group convolution (f ⇤ h). This is because the linearized group operation (Section 4.1)
naturally entails group convolution (see Appendix J.1,J.2).

This connection reveals a profound discovery: HyperCube’s ability to learn symbolic operations is
fundamentally the same as learning the core structure of group convolutions. This means HyperCube
can automatically discover the essential architecture needed for equivariant networks, without the
need to hand-design them. This finding highlights the broad potential of HyperCube’s inductive
bias, extending its applicability beyond the realm of symbolic operations.

J.1 REINTERPRETING HYPERCUBE’S COMPUTATION

HyperCube equipped with group representation eq (10) processes general input vectors f and h as

fahbTabc =
1

n

X

a

X

b

f(a)h(b) Tr
⇥
%(a)%(b)%(c)†

⇤

=
1

n
Tr

"
X

a

%(a)f(a)

!
X

b

%(b)h(b)

!
%(c)†

#

=
1

n
Tr[(f̂ ĥ)%(c)†] =

1

n
Tr[[f ⇤ h %(c)†]

= (f ⇤ h)c. (40)

Therefore, the model calculates the Fourier transform of the inputs (f̂ and ĥ), multiplies them in
the Fourier domain (f̂ ĥ), and applies the inverse Fourier transform, which is equivalent to the group
convolution, as shown in Appendix I.5.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

J.2 GROUP CONVOLUTION BY D

Here we show that the linearized group operation D̃ in Section 4.1 is equivalent to the group convo-
lution in Appendix I.5.

Consider contracting the data tensor D with two functions f, h 2 G, as

fahbDabc =
X

ab

f(a)h(b)�(a,c�b�1) =
X

b

f(c � b�1)h(b) ⌘ (f ⇤ h)(c), (41)

which computes the group convolution between f and h, similar to eq (40). Here, we used Dabc =
�(a�b,c) = �(a,c�b�1).

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

K SUPPLEMENTARY FIGURES FOR SECTION 6

Pr
od

uc
t T

en
so

r S
lic

es
Unregularized regularized

Fa
ct

or
 A

 S
lic

es

Figure 14: Visualization of the end-to-end model tensor T and the factor A over the training
iteration steps on the symmetric group S3 task in Sec 6. Only the first three slices of the tensors
are shown. (Top) End-to-end model tensor T : In the un-regularized case, the model tensor quickly
converges to fit the observed data tensor entries in the training dataset (marked by stars and circles),
but not in the test dataset. The H-regularized model converges to a generalizing solution around
t = 200. It accurately recovers D when the regularization diminishes around t = 400 (✏ ! 0).
(Bottom) Factor tensor A. The unregularized model shows minimal changes from random initial
values, while H-regularized model shows significant internal restructuring. Shown in the block-
diagonalizing coordinate. See Fig 15 (Bottom). (color scheme: red=1, white=0, blue=-1.)

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Ra
w

A
0 =

 B
0 =

 C
0 =

 I
Bl
oc

k-
D
ia
go

na
l

Figure 15: Learned factors of the H regularized model trained on the S3 group. (Top) Raw factor
weights shown in their native coordinate representation. (Middle) Unitary basis change as described
in Sec 4.4 with MI = I , MK = A0, MJ = B

†
0, such that Ã0 = B̃0 = C̃0 = I . Note that

the factors share same weights (up to transpose in factor C̃). (Bottom) Factors represented in a
block-diagonalizing basis coordinate, revealing the decomposition into direct sum of irreducible
representations (irreps). (color scheme: red=1, white=0, blue=-1.)

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Figure 16: Multiplication table of matrix slices of factor A from the mid panel of Fig 15. Note that
this table share the same structure as the Cayley table of the symmetric group S3 in Fig 2A. (color
scheme: red=1, white=0, blue=-1.)

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

re
gu

la
ri

ze
d

 L
2

 re
gu

la
ri

ze
d

U
nr

eg
ul

ar
iz

ed

Figure 17: Optimization trajectories on the modular addition (cyclic group C6) dataset, with 60%
of the Cayley table used as train dataset (see Fig 18). (Top) Unregularized, (Middle) L2-regularized,
and (Bottom) H-regularized training. The L2-regularized model only achieves ⇠60% test accuracy.

U
nr

eg
ul

ar
iz

ed
L2

 re
gu

la
ri

ze
d

re
gu

la
ri

ze
d

Figure 18: Visualization of end-to-end model tensor T trained on the modular addition (cyclic group
C6) under different regularization strategies (see Fig 17). The observed training data are marked by
asterisks (1s) and circles (0s). Only the H-regularized model perfectly recovers the data tensor D.
(color scheme: red=1, white=0, blue=-1.)

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Figure 19: Visualization of factors trained on small Cayley tables from Figure 2. (Top) c = a + b

mod 6, satisfying Ag = Bg = C
†
g = %(g). (Middle) c = a� b mod 6, satisfying A

†
g = Bg = Cg =

%(g). (Bottom) c = a
2 + b

2 mod 6, which exhibits the same representation as modular addition
for elements with unique inverses (e.g., g = 0, 3). For others, it learns duplicate representations
reflecting the periodicity of squaring modulo 6: e.g., A2 = A4 and A1 = A5, since 22 = 42 and
12 = 52. (color scheme: red=1, white=0, blue=-1.)

26

	Introduction
	Groups and Representations
	Background
	Modeling Framework
	blackLinearized Framework: Binary Operations as Bilinear Maps
	HyperCube Parameterization
	HyperCube Regularizer
	Internal Symmetry of Model

	Analyzing HyperCube's Inductive Bias
	Analysis on Small-Scale Experiments
	Learning Dynamics on Symmetric Group S3
	HyperCube Learns Unitary Group Representations
	Discovering Unitary Representations Beyond True Groups

	Results on Diverse BOC Tasks
	HyperCube Prioritizes Groups over Non-Group Operations
	HyperCube's Implicit Complexity Metric
	Comparison to Transformer

	Conclusion
	Training Procedure
	List of Binary Operations
	Understanding HyperCube Regularizer
	Balanced Condition for L2 Regularization

	Hyperparameter Sensitivity Analysis
	Run-time Complexity
	Alternative Tensor Factorizations
	Band-diagonal HyperCube
	Deferred Proofs
	Proof of Lemma 5.1 on Balanced Condition of HyperCube
	Proof of Lemma 5.4
	Persistence of Group Representation

	Group Convolution and Fourier Transform
	Fourier transform on groups
	Dual group
	Inverse Fourier transform
	Group Convolution
	Fourier Transform of Group Convolution

	Group Convolution and Fourier Transform in HyperCube
	Reinterpreting HyperCube's computation
	Group Convolution by D

	Supplementary Figures for Section 6

