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ABSTRACT

Learning arguably involves the discovery and memorization of abstract rules. The
aim of this paper is to study associative memory mechanisms. Our model is based
on high-dimensional matrices consisting of outer products of embeddings, which
relates to the inner layers of transformer language models. We derive precise
scaling laws with respect to sample size and parameter size, and discuss the sta-
tistical efficiency of different estimators, including optimization-based algorithms.
We provide extensive numerical experiments to validate and interpret theoretical
results, including fine-grained visualizations of the stored memory associations.

1 INTRODUCTION

As the scale of large language models (LLMs) keeps increasing, scaling laws have become a crucial
tool to empirically assess and predict the behavior of these models when varying the number of
parameters and training data (Kaplan et al., 2020; Hoffmann et al., 2022). Despite their practical
impact, the underlying phenomena leading to such scaling laws remain poorly understood. A better
understanding of such phenomena could guide researchers towards improved models, algorithms,
and datasets which may lead to improved scaling laws.

Our study focuses on a simple model that aims to be representative of LLMs in two ways. First, we
focus on heavy-tailed data distributions over discrete tokens, a natural assumption for text data (Pi-
antadosi, 2014). Second, we consider associative memory models that store input-output pairs
through outer-products of finite-dimensional embeddings, and can be seen as a proxy of the in-
termediate layers of transformers. Indeed, some transformer layers have been found to behave as
key-value memories (Geva et al., 2021; Meng et al., 2022), and more generally outer-product as-
sociative memory matrices arise naturally from training dynamics on intermediate weights (Bietti
et al., 2023). Beyond simple associative recall, the combination of multiple such associative rules at
different layers may lead to certain circuits with rich “reasoning” behaviors based on context (Elhage
et al., 2021; Bietti et al., 2023; Michaud et al., 2023). For example, an intermediate layer input token
may encode for the topic “linux”, leading to an output token that will trigger a specific behavior in
the transformer’s following layers when processing the token “terminal”.

Our contributions are as follows:

• We provide precise statistical rates for outer-product memories with random embeddings, and
compare different memory storage schemes in the context of Zipf-distributed data.

• We compare theoretical schemes to the weights learned by various optimization algorithms used
in practice, and illustrate the role of different design choices with numerical experiments.

Related work. Associative memory models have a long history in the literature on neural com-
putation (Steinbuch, 1961; Willshaw et al., 1969; Longuet-Higgins et al., 1970; Kohonen, 1972;
Amari, 1972; Little, 1974; Hopfield, 1982; Smolensky, 1990; Schlag et al., 2021; Valle-Lisboa et al.,
2023), though the statistical insights we provide for continuous-values random embeddings and
heavy-tailed tokens distributions are new, to the best of our knowledge. Memorization behaviors
have drawn a lot of attention recently, and are believed to be an important notion to understand the
learning happening in deep neural network (e.g., Sukhbaatar et al., 2019; Feldman, 2020; Feldman
& Zhang, 2020; Geva et al., 2021; Wu et al., 2022). Building on memorization and heavy-tailed
discrete data, our model bears similarities to the ones of Hutter (2021), Michaud et al. (2023) or
Debowski (2023), although we focus on practical models with finite capacity. The discrete nature of
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Figure 1: Scaling laws with respect to model capacity d (left), respectively the number of data seen T
(right), for various numbers of dataset size T , respectively various model capacity d. This plots validates
empirically the theory developed in the paper that proves scaling laws in E(fq) � d−α+1 + T−1+1/α

(dashed lines) under our setting with α = 2 (1), (2), (5), and the association scheme (12) with ρ = 0 and
P = d/8. The experiments averaged over 100 runs, standard deviations are shown with solid color.

tokens contrasts with other recent works on scaling laws that have focused on continuous Gaussian
inputs (e.g., Bahri et al., 2021; Maloney et al., 2022; Sorscher et al., 2022).

2 MODEL FOR ASSOCIATIVE MEMORY

The data. In the following, we consider a joint distribution p ∈ ∆[N ]×[M ] on inputs x ∈ [N ] and
outputs y ∈ [M ]. The inputs and outputs are respectively assumed to solely take N and M discrete
values respectively. For example, N could be the number of potential sequences of fixed word
length in the English language, while M would be all the potential words to complete the sequence.
Abstractly, x and y will be referred to as tokens. To simplify the study, we assume for now that y
is a deterministic function of x, i.e., there is no noise in the labels. In consistency with language
modeling, we equally assume that p(x) follows a Zipf law. Formally, there exists an parameter
α > 0, a normalizing constant Cα, a permutation σ ∈ Sn and a function f∗ : [N ] → [M ] such that

∀x, y ∈ [N ]× [M ], p(σ(x)) = Cαx
−α, p(y|x) = 1y=f∗(x). (1)

The distribution p is not known, but has generated T known independent samples (xt, yt)t∈[T ] ∼ p.
For readability sake, we will assume without restriction that σ is the identity (so that p is decreasing).

The model, and the loss. The input tokens are embedded into a space Rd of dimension d through
an embedding map e : [N ] → Rd. This space is used for computation purposes. In particular, we
focus on the linear transformation parameterized by a matrixW ∈ Rd×d mapping x toWe(x). This
latter vector is mapped back to the output space through an unembedding map u : [M ] → Rd and
the decoding rule

fW (x) = argmax
y∈[M ]

u⊤y Wex, W ∈ Rd×d, (2)

where ex and uy are abbreviations for e(x) and u(y). The model (2) can be seen as analogous to an
attention layer where keys ex are tested against queries uy through a matrixW before going through
a softmax layer, which, when the attention is peaky, identifies to an argmax. It also resembles next-
token prediction from an intermediate representation Wex, which may itself be the output of an
attention block that attends to a token x. The matrices W will be expressed as associative memories.
Memory of an observed pair (x, y) is represented as an outer product uye⊤x . Remembering those
with respect to a probability q ∈ ∆[N ]×[M ] leads to the matrix

Wq =
∑

(x,y)∈[N ]×[M ]

q(x, y)uye
⊤
x , q ∈ ∆[N ]×[M ], (3)

This representation (3) is justified as the predictions (2) are insensitive to modifications ofM outside
the span of (uye⊤x )x,y . In our deterministic setting (1) where one only observes pairs (x, f∗(x)), we
shall consider the simpler model where1

Wq =
∑

x∈[N ]

q(x)uf∗(x)e
⊤
x , q ∈ ∆[N ]. (4)

1It should be noted that the proof techniques behind Theorem 1 do not break when considering q = q(x, y):
both models would lead to similar results, with the case q = q(x, y) being simpler to comprehend.
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Table 1: Summary of key elements in the study. We are given discrete tokens x, y with deterministic
relation y = f∗(x). We embed tokens in Rd, d acts as a “model capacity” parameter. We store association
x → y in the matrix W through a scheme q and recall them through the decoding fq . We will first study
the scaling law of the generalization error E as a function of the number of data T , and the model capacity
d for different schemes q. We will later study the scheme q found by optimization-based algorithms.

Tokens Embeddings Model Scaling
yit = f∗(xit) ex, uy ∈ Rd W =

∑
x q(x)uf∗(x)e

⊤
x E(q) = E[1fq(x) ̸=f∗(x)]

t ∈ {1, 2, . . . , T} ex ∼ N (0, I) fq(x) = argmaxy uyWex E(q) = F (d, T ; q)

Table 2: Some insightful provable scaling laws with respect to the model capacity d, and the number of
data T , for two schemes that store associations as (4) and random embeddings.

Model Error scaling Comment
q(x) = p(x) d−(α−1)/2α + T−1+1/α Found with large batches in one step
q(x) = 1x≤d d−α+1 + T−1+1/α Optimal scaling with random embeddings

To simplify notations, we will write fq for fWq
(2). The model fq is seen as superposing memories

since all associations are mixed together in a single matrix. The quality of a mapping f is quantified
through the generalization error

E(f) = E(X,Y )∼p[1f(X) ̸=Y ], f : [N ] → [M ]. (5)

Which questions are we interested in? Several questions naturally arise from our model. The
first ones are related to scaling laws: how does the error depend on T , the number of data? How
does it scale with d that encodes for model capacity? The second ones relate to the model itself: how
does the error behave for different q? What about optimization-based algorithms?

Arguably, the model (2) lays out a simple model to study memorization, which could easily be ex-
tended to model more intricate memorization and training behaviors inside a transformer language
model. Indeed, memories of the form (4) were found to accurately model the behavior of weight
matrices in multi-layer transformers trained by gradient methods on certain tasks (Bietti et al., 2023).
Hence, we expect our study to be generalizable to more complex mechanisms in transformers, re-
sulting in rich token interactions to predict the next token in a sequence.

3 SCALING LAWS WITH RANDOM EMBEDDINGS

Why do we make errors? With a simple deterministic model, one may wonder how can we not
learn perfectly the mapping f∗. There are two sources of error. One is due to not having enough
data to see all the potential association (x, f∗(x)), and has already been studied by Hutter (2021).
The other one is due to the limited memory capacity of our model, which we illustrate in Figure 2.

Proposition 1 (Finite data, infinite memory). Consider a infinite memory model f̂ , which at time T
predicts correctly all x that were seen in the past training, i.e., x ∈ {Xt}t∈[T ], where the (Xt, Yt)
were drawn independently at random from a distribution p ∈ ∆[N ]×[M ]. Under the data model the
generalization error reads, with respect to the random dataset DT = (Xt, Yt)t∈[T ],

EDT
[E(f̂)] � T−1+1/α. (6)

Here, the notation a � b means that there exist two constants c1 and c2 such that c1b ≤ a ≤ c2b.

3.1 TIGHT ERROR CHARACTERIZATION

The case where one has infinite data but finite memory is intrinsically a deterministic problem. How-
ever, characterizing interferences between embeddings and the corresponding generalization error
is combinatorial in nature, and is hard to study without specific assumptions on the embeddings e
and u. A natural choice is to consider them to be random, as is the case at initialization.
Theorem 1 (Infinite data, finite memory). Let M ≥ 4 and d > 8 log(M). For any memory weight
scheme q : [N ] → R, when the embeddings ex are independent random variables ex ∼ N (0, I),
and the unembeddings are taken uniformly at random on the sphere,

Ee,u[E(fq)] ≤ inf
γ

2d−γ + p
({
x ∈ [N ]

∣∣∣ dq(x)2 ≤ 16cγ

(
Q∞ +

8cγ‖q‖22
d

)})
, (7)
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Figure 2: Error due to finite memory capacity: the stacking of associative memories in a matrix W may
exhibit a pattern W =

∑
x uf∗(x)e

⊤
x where three inputs mapped to three different outputs interact in such

a way that u⊤
2 We1 = e⊤2 e1 + u⊤

2 u3e
⊤
3 e1 ≥ 1 + u⊤

1 u3e
⊤
3 e1 = u⊤

1 We1, so that fW (x = 1) = 2 6=
1 = f∗(x = 1). In other terms, memory interference may lead to wrong prediction, illustrating the finite
capacity of the model fW (2) to store all data associations.

where Q∞ := maxy
∑

x;f∗(x)=y q(x)
2, cγ = log(M) + γ log(d), and p(X ) =

∑
x∈X p(x) denotes

the probability of x to belong to X ⊂ [N ]. In terms of lower bound,

Ee,u[E(fq)] ≥
1

20
p({x ∈ [N ] | 3(d+ 1)q(x)2 ≤ Q∞}). (8)

Theorem 1 illustrates how the error made by a scheme q at the input x relates to the ratio between the
signal dq(x), provided by the associative memory uf∗(x)e

⊤
x , and the noise Q∞, which corresponds

to the signal provided by the most competitive class for y ∈ [M ]. This is true up to a higher
term in ‖q‖2/d, which corresponds to a class y = f∗(x) competing against itself when the random
embeddings ex′ for x′ such that f∗(x′) = y point in the opposite direction of ex. When d is large and
p is regular, cγ‖q‖22/dwill be dominated byQ∞ and the cut-off of q(x)2/Q∞ at 32cγ/dwill behave
similarly to a cut-off at 1/d up to logarithmic terms. Moreover, when q is chosen independently of
p(y|x),2 one can expect Q∞ ≈ p∗‖q‖2 where p∗ = maxy∈[M ] p(y). As a consequence, up to
constants and logarithmic term, we get

E[E(fq)] ≈ p({x ∈ [N ] | dq(x)2 ≤ p∗‖q‖2}). (9)

3.2 MEMORY SCHEMES

Let us now discuss several natural choices for q and compare their corresponding performance. The
first naive choice consists in storing all the data seen at time T in memory. It reads

q̂0(x) = 1x∈{Xt}t∈[T ]
, q0(x) = 1. (10)

Here, q̂0 corresponds to the learned weighted scheme based on the T data, while q denotes an
idealized limit when one has infinite data. In the idealized setting Q∞(q0) = Np∗ where p∗ :=
maxy∈[M ] p(y). From Theorem 1, we deduce that E(fWq0

) will follow two regimes: an overflow
regime where 3(d+1) ≤ Np∗ and in essence the memory Wq0 is too full to recover any signal in it,
and Ee,uE(fWq0

) > 1/20 (8); a infinite memory regime where d ≥ N and all associations exu⊤f∗(x)

can be stored orthogonally to one another, and the error Ee,uE(fWq0
) quantifies the tiny probability

that some random inputs embeddings appear to be too correlated.

Equipped with the knowledge that our associative memory model (2) has finite capacity, one may
weight memories according to their frequencies, leading to the scheme, for ρ ≥ 0

q̂ρ(x) =
( 1

T

∑
t∈[T ]

1x=Xt

)ρ

, qρ(x) = p(x)ρ. (11)

A better option consists in explicitly limiting the storage of our model with a simple thresholding
algorithm

q̂ρ,[P ](x) = p̂(x)ρ1x∈topP ((xt)t∈[T ]), qρ,[P ](x) = p(x)ρ1x∈[P ], (12)

where topP ((xt)) denotes the set made of the P most frequent inputs in the data (xt).

2To be more precise, one should actually choose q(x) to be class dependent so to cram in memory as many x
as possible for each different class y = f∗(x), ensuring that y 7→

∑
x;f∗(x)=y q(x)

2 is constant with respect to
y. For simplicity, we will not discuss this behavior that does not change the big picture beyond our exposition.
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Figure 3: Generalization error (5) as a function of d and T for the model (4) averaged over 100 runs. The
data follows a Zipf law with α = 0.5, N = 100, M = 5 and f∗(x) = xmod.M . Left: error for q0
(10), either d is too small and there will be memory overflow leading to large error (red area), either it is
big enough and with enough data, the error will be null (blue area). Middle: error for q1 (11), for small
d and big T , it avoid memory overflow allowing a smaller error then q0; however for big d it does not
allocated enough memory to rare association, leading to a bigger error. Those results can be interpreted
mechanistically by looking at the corresponding memory matrices (see Figure 10). Right: Generalization
error when T = +∞, N = 100 and α = 2: the scheme q0 leads to a zero-one type of plot where if
d < N the error is high, and if d > N the error decreases fast to zero (in blue); the scheme q1 leads to an
error decreasing in d−(α−1)/2α = d−1/4 as predicted by theory (in orange); the scheme q0,P (12) with
P = d/8, decreases in d−(α−1) = d−1 until reaching the tipping point when d/8 > N (in green).

Proposition 2 (Without thresholding). Let p be an α-Zipf distribution (1). For ρ > 0, the perfor-
mance of fρ := fqρ (11) is, up to poly-logarithm factors and constants that depends on both ρ and
α,

Ee,uE(fρ)
(log)
�

(
d

φ(N)

)−(α−1)/2ρα

, where φ(N) =

 1 if 2ρα > 1
log(N) if 2ρα = 1
N1−2ρα if 2ρα < 1

. (13)

In particular, when ρ = 1, Ee,uE(f0) scales in d−(α−1)/2α. In the limit where ρ = 0, Ee,uE(f0) can
be understood as (d/N)−∞ which will go to zero if and only if d is bigger than N .

Proposition 3 (With thresholding). Assume that p(x) follows a α-Zipf law (1) with N = +∞. For
ρ ≥ 0, setting P ' d1/(2αρ+1), the error made by the memory scheme (12) scales as

Ee,uE(fρ)
(log)
� d−(α−1)/(2ρα+1). (14)

In particular, when ρ = 0 and P ' d, one gets a scaling in d−α+1, which is actually optimal. The
fact that this maximum is reached for P ' d is reminiscent of Hopfield networks (Hopfield, 1982)
which can only store d/ log(d) patterns with a d by d matrix. Similarly, our model stores at most d
associations, which, when in presence of a Zipf law, leads to an error scaling in d−(α−1).
Theorem 2 (Minimax performance). Assume that p(x) follows a α-Zipf law (1) with N = +∞.
For any weighting scheme q, and p∗ ∈ (0, 1), there exists a conditional distribution p(y|x) with
p∗ = maxy p(y) such that the error made for the distribution p is lower bounded by

Ee,uE(fq) ≥ cα(d+ 1)−α+1 where cα =
Cαp

α−1
∗

20(α+ 1) · 3α−1
.

Moreover, this performance is reached (up to logarithms factor) by the thresholding algorithm (12)
with P ' d/ log(d) and ρ = 0.

Finally, we prove that the scaling laws proved for d when T = +∞ and for T when d = +∞
appears jointly when both d and T are finite.
Proposition 4 (Finite data and finite memory). For the previous bound with respect to d, Proposi-
tion 2 and Proposition 3, considering finite data simply adds a term T−1+1/α (up to constants and
logarithmic terms), matching the optimal bound of Proposition 1. In particular, (12) with ρ = 0 and
P ' d/ log(d) reaches the optimal scaling in

Ee,u,(xt,yt)t∈[T ]
E(fq̂) � T−1+1/α + d−α+1. (15)

The optimal scaling (15) recovers the law of Hutter (2021) with respect to T , and the one of Michaud
et al. (2023) with respect to d. This is intuitive, since Hutter (2021) assumes memorizing exactly
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Figure 4: Comparison between the error found by optimizing W (2) with SGD on the cross-entropy loss,
and its approximation with q(x) (4) and the approximate update rule (20). We consider N = 100, M = 5,
f∗(x) = xmod.M , α = 2, and batch size equals one. Left: One run with d = N = 100 with γ = 10.
Middle: Average over 100 runs with d = N = 100 with γ = 1. Right: Average when d = N/10 = 10
with γ = 1, which implies that our approximation is not valid anymore. The same results can be obtained
for bigger batch sizes as shown in Figure 13.
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Figure 5: Theoretical approximation of the association scheme found with stochastic gradient descent
with batch size equals one and fixed learning rates. Left: Plot of fn(0) as a function of n where f is
the effect of one gradient update on q(x) (20). Right: Plot of the resulting qγ(x) when nx ∝ p(x) ∝
(x+ 3)−α with α = 2 and nN = 1. In dashed, we represent qρ (11) for ρ = 0.05, ρ = 0.35 and ρ = 1.
Those curves map well qγ for γ = 10, γ = 10−1 and γ = 10−3 respectively.

all previously seen data, while each memory could be seen as specifying a “quantum of knowledge”
as modeled in Michaud et al. (2023), with d−α+1 corresponding to the risk (5) of only storing the
most frequent d tokens. However, associative memories can be understood at different level of
granularity, and while one may argue that a transformer acts as a big associative memory machine
and derives LLMs scaling laws approximations as corollaries, we prefer to understand a transformer
as a combination of hidden associative memories as suggested by Sukhbaatar et al. (2019); Geva
et al. (2021); Wu et al. (2022); Bietti et al. (2023) among others.

4 OPTIMIZATION-BASED MEMORIZATION

This section studies memory schemes privileged by optimization-based algorithms, digging into
the training dynamics behind memorization. In terms of relevance, we argue that our model (2) is a
proxy for the inner layers of a transformer that memorize patterns before matching them against new
data at inference time. As such, we want to understand how different key elements in the training of
a transformer influence storage in our memory model.

Gradient updates. We consider the cross entropy loss as a surrogate objective to minimize, and
study the form of gradient updates on batches of data. Formally, the matrix W ∈ Rd×d in (2) is
optimized to minimize the loss

L(W ) = E(X,Y )∼p[ℓ(x, y;W )], ℓ(x, y;W ) = −u⊤y Wex + log(
∑

z∈[M ]

exp(u⊤z Wex)). (16)

The gradient of this loss with respect to W takes the following form, as detailed in Appendix A.10:

∇W ℓ(x, y;W ) = −(1− pW (y|x))(uy − ε)e⊤x , with ε =
∑

z∈[M ]

pW (z|x, z 6= y)uz. (17)

where pW (y|x) ∝ exp(u⊤y Wex) are model predictions for the current W . For a batch of n data
B = [x1, · · · , xn], a gradient update with step size γt updates Wt as

Wt+1 =Wt − γt
∑
x∈B

∇W ℓ(x, f∗(x);Wt). (18)
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Figure 6: Gradient descent dynamics from perspective of the matrix (u⊤
y Wtex)y,x ∈ RM×N with

N = 10, M = 5, α = 1.5, f∗(x) = xmod. 5, and d = 5 < N . A lighter color in the square (y, x)
means a higher value of u⊤

y Wex. The optimal W corresponds to two diagonal strips of yellow boxes (see
Figure 15). The matrix Wt is updated with stochastic gradient descent with batch size equal to one. From
time to time, stochastic gradient descent will hit an association that is not properly stored in memory yet
(the red boxes). It will consequently update the weight matrix Wt → Wt+1 (side by side pairs) to store
it (18). Left pair: update with a big learning rate γ = 10, whose risk is to erase previous memories (the
light colored boxes), similarly to q0 (10). Right pair: update with a small learning rate γ = 10−1, which
will not store rare memory, similarly to qρ (11) with large ρ.

Approximation of the updates. When pW (z|x) does not change much for all z 6= f∗(x), since
uz were sampled at random in Sd, we expect ε (17) to concentrate around zero with ‖ε‖2 ≈ 1/M ,
hence to be negligible in front of uf∗(x). As a consequence,

∇W ℓ(x, f∗(x);W ) ≈ −(1− pW (f∗(x)|x))uye⊤x . (19)

This is notably the case for W = 0, random W , or if W only stores pairs (x, f∗(x)) with d � N .
With the update model above (19), T steps of SGD with batch size one lead to an association scheme
of the form (4) with (see Appendix A.11)

qγ(x) ≈ fTp(x)(0) = f ◦ f ◦ · · · ◦ f︸ ︷︷ ︸
Tp(x) times

(0), where f : x 7→ x+
γ

1 +M−1 exp(x)
. (20)

This equation tells us what form to expect for q for optimization schemes with different hyperparam-
eters. This approximation is shown in Figure 5, and is validated empirically in Figure 4.

Step size effect. When d > N , the updates approximation (20) and the resulting qγ show how
a large learning rate γ is beneficial for our problem, in particular when using SGD with batch size
one. Interestingly, the same behavior holds in the presence of limited capacity, i.e., d < N , although
interferences between embeddings (Figure 2) break our approximation (19). In those settings, we
resort to numerical simulation to study how optimization manages to rearrange memories. Figure 6
showcases two types of behaviors depending on the size of γ. (i) When the learning rate γ is large,
associations will be stored easily in memory, but will tend to overwrite previous storage. (ii) When
the learning rate γ is small, associations need to be seen often to build up in the matrix W (4) which
will take more time, but will not erase memory. This provides another intuition explanation for why
a bigger step size leads to better results on the left of Figure 7. The previous considerations also
explain the usefulness of scheduling in our simple model, which we illustrate on Figure 11: using a
large learning rate enables us to store associations while there is still memory space, while reducing
it later in training avoids overwriting previous storage unless an association is highly frequent.

Batch size effect. Table 2 recalls how storing associations with q = 1 under the model (4) is better
than storing them with q = p. As such, it suggests that, when processing a finite number of data
T , smaller batch size is preferable. Intuitively, processing an input x in a batch will reweight it by
its frequency p(x), while processing it by itself will update W similarly to setting qγ(x) = 1 if x
has not been already seen. Indeed, in the large batch limit where |B| → +∞, one batch update
corresponds to a population gradient update, which when pW � 1 assimilates to ∇WL(W ) ≈
−
∑

x p(x)uf∗(x)e
⊤
x . This contrasts with many small batch updates that rather lead to an association

scheme akin to (4) with q = 1. In support of this line of reasoning, Figure 7 (middle) illustrates the
benefits of splitting the descent with many steps, with a small batch size and large step size.

4.1 PRACTICAL CONSIDERATIONS

In order to optimize our simple model the fastest, we have seen the usefulness of large step size and
small batch size. However, for large transformers such design choices are impractical. First, large
step sizes may lead to instability in realistic models (Gilmer et al., 2021). Second, in order to reduce
training time and improve hardware efficiency, one should process large batches (Smith et al., 2018).

7
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Figure 7: Effect of step size, batch size, layer-norm and Adam (with β1 = β2 = 0, which corresponds
to SignGD). All the experiments are conducted with N = 100, M = 5, α = 2, f∗(x) = xmodM ,
averaged over ten runs. We initialized parameters and rescale learning rates to ensure maximal feature
updates, as explained in Appendix B.1. To avoid confounders, we scale γ on the middle plot for the
variance of the gradient updates to be independent of the batch size.

Adam. We have seen before how the update of SGD with large batch can be approximated with

γ−1
t (Wt+1−Wt−1) =

∑
x∈B

(1−pW (f∗(x)|x))uf∗(x)e
⊤
x ≈

∑
x∈N

|B|(1−pW (f∗(x)|x))p(x)uf∗(x)e
⊤
x .

Those naive updates would lead to a model that resembles (4) with q = pρ for ρ ≈ 1 (11). In con-
cordance with previous research on the matter (Zhang et al., 2020; Kunstner et al., 2023), we found
Adam to be helpful in our setup as well, see Figure 7 (right). In first order approximation, Adam
is approximated as signSGD (Balles & Hennig, 2018). Arguably, this introduces a normalization
effect to the gradient, helping to reach the saturation phase of n 7→ fn (20) shown on Figure 5,
homogenizing the resulting matrix W to behave similarly to q1 = 1, therefore optimizing memory
capacity. Experiments to underpin this intuition are reported in Figures 15 and 16 in Appendix B.

Layer normalization. Minimizing the cross-entropy loss implies setting pW (y|x) = 1, which will
lead to W diverging to infinity and unstable loss gradients. In order to ensure numerical stability, it
is natural to rescale the vector Wex ∈ Rd, especially since what matters for the final prediction fW
is only its direction. This is precisely what layer-norm does, introducing the logit score

gLNy (x) = 〈uy,
Wex

‖Wex‖
〉, instead of gy(x) = u⊤y Wex.

This leads to an added projection on the gradients in (17), as detailed in Appendix A.12, denoting
W̄ =W/‖Wex‖,

∇W ℓLN(x, y;W ) = ∇W ℓ(x, y; W̄ ) =
1

‖Wex‖
(
I − (W̄ex)(W̄ex)

⊤)∇W̄ ℓ(x, y; W̄ ). (21)

We recognize a projection that kills the signal that already aligns with Wex. We conjecture that
this introduces a clipping effect on the corresponding q(x), optimizing for memory storage, and
explaining the good performance observed in the right of Figure 7.

4.2 THE BENEFITS OF LEARNING THE EMBEDDINGS

Taking a step back, Theorem 1 implies that our model with d2 parameters, the matrix W ∈ Rd×d

(4), only memorize about d/ log(d) associations (ex, uy) ∈ (Rd)2 of size 2d. Intriguingly, Lemma 1
below states that an exponential number of quasi-orthogonal elements can be put in Rd, an event that
actually holds with high probability when embeddings are random, showcasing intrinsic limitations
of our “linear” model (2).
Definition 1 (Quasi-orthogonality). The family (uz)z∈[P ] with uz ∈ Rd is η-quasi orthogonal if

∀ {z, z′} ⊂ [P ], |〈uz, uz′〉| ≤ η, and ‖uz‖ = 1. (22)

Lemma 1. For any d ∈ N and P ≥ 3, there exists an embedding u : [P ] → Rd such that the family
(uz)z∈[P ] is η = 2

√
d−1 log(P )-quasi orthogonal.

As a consequence of Lemma 1, the following model

f1(x) = argmax
y

u⊤y
∑

x′∈[P ]

uf∗(x′)σ(e
⊤
x′ex − η), (23)

8
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Figure 8: Experiments with learned embeddings when α = 2, N = 100 and M = 5 with y = f∗(x) =
xmod.M and d = 2. Left: level lines of the function R2 → [5];u 7→ argmaxy∈[5] u

⊤
y u with uy the

learned unembedding. Middle: scatter plot of the learned input embeddings ex ∈ R2 for x ∈ [N ] colored
accordingly to f∗(x) for ex. It illustrates how the input embeddings match with the output ones, similarly
to (24) and Proposition 5. Right: learned input embeddings obtained with M = 10, and allowing again a
zero generalization error. Reaching a zero error with d = 2 greatly contrasts with the condition d ≥ N
needed to get to a zero generalization error when the embeddings are random.

where σ(x) = x+ is the ReLU function, can fit P = exp(η2d/4) elements in memory, leading
to a scaling in E(f1) � exp(−(α − 1)η2d/4) when p(x) follows a α-Zipf law.3 Similarly, one
could consider higher moments of e⊤x′ex which has been the basis for modern Hopfield networks
(Krotov & Hopfield, 2016; Ramsauer et al., 2021). However, implementing the model (23) requires
to keep track of each of the P vectors ex ∈ Rd, leading to Pd parameters, in order to only store P
associations of size d, needing compute that scales with Pd at inference time, rather than just d2,

We also note that when embeddings are learned, it is actually possible to store as many memories as
desired, which can be seen from the fact that

W = I, ∀ y ∈ [M ]uy ∈ Sd, ex = uf∗(x) ⇒ f∗(x) = argmax
y

u⊤y Wex, (24)

In particular, Figure 8 illustrates the solution found when d = 2 by optimization-based algorithms
in order to get a zero generalization error on the task of Figure 3 where M = 5. Optimizing token
embeddings is probably an important element to increase memorization capacity in transformers,
although enforcing ex = uf∗(x) is unrealistic when embeddings are shared over different heads, and
the input/output relationships to be learned differ across heads.

5 CONCLUSION

This work considers a simple model to study memorization in transformers. Here, memorization
is seen as a valuable behavior, the network memorizing useful patterns and association rules. We
derive precise scaling laws with respect to both the number of data, and the model size, which plays
the role of a model capacity. We quantify the effect of different memorization schemes, illustrating
the benefits of uniformly weighted outer products. We leverage these theoretical results to study
how different optimization algorithms commonly used for transformers may lead to more efficient
memorization. In particular, we showcase the efficacy of small batches and large learning rates, and,
under the design constraints resulting from efficient hardware utilization and training stability, the
usefulness of Adam and layer normalization.

While our study focuses on simple memorization schemes, it opens up many possible new direc-
tions. This includes extending our study to richer models that are closer to transformers, where
embeddings, attention and feed-forward layers are trained. This could allow models of scaling laws
that capture interactions between tokens, as well as hierarchical behaviors that require multiple lay-
ers. We would equally like to leverage our framework for assessing memorization and generalization
through clear metrics, and eventually automatically adapt the learning rates as a function of the “free”
memory capacity left in a layer.

Acknowledgements. The authors would like to thank Léon Bottou as well as Hervé Jégou for
many fruitful discussions on memorization mechanisms in transformer language models.

3This result follows directly from two facts. When input embeddings are chosen at random, the probability
that they are not η-quasi orthogonal is bounded by P 2 exp(−dη2/2). When input embeddings are η-quasi
orthogonal, f1(x) = f∗(x) for any x ∈ [P ].
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A PROOFS

A.1 FINITE DATA - PROOF OF PROPOSITION 1

Let us consider the infinite memory model, where an LLM can store in memory all previously seen
associations (x, y). At each time t, a random positive integer x is drawn from some fixed probability
distribution. At time T , the LLM would have seen x1, . . . , xT and the associated f∗(xt), where
each xt is a random positive integer drawn independently from p. As such, the LLM would have
learned a map f̂ , that only miscorrects the inputs x which are different from all the xt for t ∈ [T ].
The generalization error reads, with respect to the random dataset DT = (Xt, Yt)t∈[T ],

EDT
[f̂ ] = PX,DT

(X /∈ {Xt}t∈[T ]) =
∑

x∈[N ]

p(x)PDt(x /∈ {Xt}t∈[T ]) =
∑

x∈[N ]

p(x)(1− p(x))T .

Using that (1 − a)T = exp(T log(1 − a)) and 2 log(2)a ≤ log(1 + a) ≤ a for any a ≥ −1/2, we
get

∑
x∈[N ]

1p(x)≤1/2 · p(x) exp(−2 log(2)p(x)T ) ≤
N∑

x=2

p(x) exp(−2 log(2)p(x)T )

≤ EDT
[f̂ ] ≤

∑
x∈[N ]

p(x) exp(−p(x)T ).

Relating this series to the corresponding integral, we have∫
x∈[1,N ]

p(x) exp(−2 log(2)p(x)T ) dx− 1/T

≤
∫
x∈[2,p−1(1/T )]

p(x− 1) exp(−2 log(2)p(x− 1)T ) dx

+

∫
x∈[p−1(1/T ),N ]

p(x) exp(−2 log(2)p(x)T ) dx

≤
N∑

x=2

p(x) exp(−2 log(2)p(x)T ) ≤ EDT
[f̂ ] ≤

∑
x∈[N ]

p(x) exp(−p(x)T )

≤
∫
x∈[1,N ]

p(x) exp(−2 log(2)p(x)T ) dx+ 1/T

Letting N goes to infinity, we get the scaling

EDT
[f̂ ] �

∫ ∞

1

p(x)e−Tp(x) dx± 1/T. (25)

Assuming that p(x) = Cf(x) for some constant C, and a smooth strongly decreasing function
f : R+ → R+ such that limx→0 f(x) = +∞, one may consider the change of variable u = f(x),
i.e., x = f−1(u). If so,

dx = d(f−1)′(u) =
du

f ′ ◦ f−1(u)
.

Hence it holds that

EDT
[f̂ ] �

∫ ∞

1

−u
f ′ ◦ f−1(u)

e−uT du. (26)

This relates to the Laplace transform of the function inside the integrand. In particular, one can work
out that when p(x) ∝ Cαx

−α, f−1(u) = u−1/β from which one can deduce that∫ ∞

1

x−α exp(−Tx−α) dx =
α

Γ(α−1
α )

T−α−1
α ,

which recovers a result of Hutter (2021).
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A.2 MEMORY CAPACITY - PROOF OF LEMMA 1

The proof of Lemma 1 concerning quasi orthogonal embeddings can be done through a reasoning
on random embeddings. Let (Xi) be P independent identically distributed random variables. We
are interested in the event where the normalized (Xi) are η-quasi orthogonal.

P(∩{i,j}⊂[P ]{|〈Xi, Xj〉| ≤ η‖Xi‖‖Xj‖}) = 1− P(∪{i,j}⊂[P ]{|〈Xi, Xj〉| ≥ η‖Xi‖‖Xj‖})

≥ 1− P (P − 1)

2
P(|〈X1, X2〉| ≥ η‖X1‖‖X2‖).

If this event can happen, it means that there exists such η-quasi orthogonal samples. As a conse-
quence, we are looking to maximize η such that

P(|〈X1, X2〉| ≥ η‖X1‖‖X2‖) <
2

P (P − 1)
. (27)

Let us consider (Xi) to be distributed accordingly to a rotation-invariant probability. By symmetry,
we have, with f1 denoting the first vector of the canonical basis in Rd,

P(|〈X1, X2〉| ≥ η‖X1‖‖X2‖) = P(|〈X, f1〉| ≥ η‖X‖) = P(|〈 X

‖X‖
, f1〉| ≥ η) (28)

By symmetry, the vector X/‖X‖ is uniform on the sphere. Using that P(|〈X, f1〉| > η) =
2P(〈X, f1〉 > η) and

P(|〈X, f1〉| ≥ η) =
2

Vol(Sd−1)

∫
x∈Sd−1

1x1≥η dx

=
2

Vol(Sd−1)

∫ 2

x1=η

Vol(
√
1− x21 · Sd−2) dx1

=
2Vol(Sd−2)

Vol(Sd−1)

∫ 1

t=η

(1− t2)
d−1
2 dt =

2Γ(d2 + 1)
√
πΓ(d2 + 1

2 )

∫ 1

t=η

(1− t2)
d−1
2 dt.

To upper bound this probability, we proceed with

P(|〈X, f1〉| ≥ η) =
2Γ(d2 + 1

2 )√
πΓ(d2 + 1

2 )

∫ 1

t=η

(1− t2)
d−1
2 dt ≤

2(d2 + 1)1/2
√
π

∫ 1

t=η

t

η
(1− t2)

d−1
2 dt

=
2(d2 + 1)1/2

√
π

1

η(d+ 1)
(1− η2)

d+1
2 ≤

√
2

√
π
√
η2d

exp(−η
2d

2
).

The last inequality follows from the fact that

(d+ 2)

(d+ 1)2
=
d+ 1 + 1

d+ 1

1

d+ 1
=

1 + 1
d+1

1 + 1
d

1

d
≤ d−1,

and that for any x ∈ (−1, 1), the concavity of the logarithm mean that log(1 + x) ≤ x hence that
(1 + x)n = exp(n log(1 + x)) ≤ exp(nx).

This leads to the following series of implications

∃ (Xi) η-quasi orthogonal ⇐ 1√
π

(η2d
2

)−1/2
exp(−η

2d

2
) ≥ 2

P 2

⇔
(η2d

2

)1/2
exp(

η2d

2
) ≥ P 2

2
√
π

⇐ η2d

2
≥ 1 and exp(

η2d

2
) >

P 2

2
√
π

⇐ η2d

2
≥ 2 log(P )− log(2

√
π) ≥ 1

⇐ η2d

4
≥ log(P ) ≥

1 + log(2
√
π)

2
.

Finally, we have proven the existence of a η-quasi orthogonal family for

η ≥
√
4 log(P )d−1, as long as P ≥ 3. (29)
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A.3 GENERIC ERROR DECOMPOSITION

The error made by fW relates to the ordering between the signals uf∗(x)We⊤x and the noises
maxy ̸=f∗(x) uyW

⊤ex.

Let fq be defined as in the main text. We have the following sequence of equivalence, assuming
uniqueness of the argument of the maximum for simplicity,

fq(x0) 6= f∗(x0) ⇔ argmax
y∈[M ]

∑
x∈[N ]

q(x)e⊤x ex0u
⊤
f∗(x)

uy 6= f∗(x0)

⇔ max
y∈[M ]

∑
x∈[N ]

q(x)e⊤x ex0u
⊤
f∗(x)

uy >
∑

x∈[N ]

q(x)e⊤x ex0u
⊤
f∗(x)

uf∗(x0)

⇔ max
y∈[M ]

∑
x∈[N ]

q(x)e⊤x ex0u
⊤
f∗(x)

(uy − uf∗(x0)) > 0.

As a consequence,

E(fq) =
∑

x0∈[N ]

p(x0)1fq(x0) ̸=f∗(x0)

=
∑

xo∈[N ]

p(x0)1maxy
∑

x∈[N] q(x)e
⊤
x ex0u

⊤
f∗(x)

(uy−uf∗(x0))>0. (30)

In other terms, we have proven the following characterization, which holds for any q, even if derived
from a finite number of data,

E(fq) = p({x ∈ [N ] | max
y

∑
x′∈[N ]

q(x′)e⊤x′ex〈uf∗(x′), uy − uf∗(x)〉 > 0}). (30)

A.4 RANDOM EMBEDDINGS - PROOF OF THEOREM 1

Let us introduce randomness in the model. If each ex ∼ N (0, I) is actually an independent random
Gaussian vector in Rd, we continue our derivation with

Ee[E(fq)] =
∑

xo∈[N ]

p(x0)Eex0
[P(ex)x ̸=x0

(fq(x0) 6= f∗(x0) | ex0
)]

=
∑

xo∈[N ]

p(x0)Eex0
[P(ex)x ̸=x0

(max
y

∑
x∈[N ]

q(x)e⊤x ex0
u⊤f∗(x)(uy − uf∗(x0)) > 0 | ex0

)]

=
∑

xo∈[N ]

p(x0)Eex0
[P(ex)x ̸=x0

(max
y

Zy > 0 | ex0
)].

Here, we have introduced the random variables Zy for y 6= f∗(x0), inheriting their randomness from
(e|ex0

), and defined by

Zy =
∑

x∈[N ]

q(x)e⊤x ex0
u⊤f∗(x)(uy − uf∗(x0)). (31)

Those are projections of Gaussian variables, hence are Gaussian. Using the fact that E[ex] = 0, their
mean is

µy := E[Zy] = q(x0)‖ex0‖2u⊤f∗(x0)
(uy − uf∗(x0)). (32)

Those variables are correlated. Using the characterization of the mean, we deduce that their covari-
ance reads

Σy1,y2
:= E[(Zy1

− E[Zy1
])(Zy2

− E[Zy2
])]

=
∑

x,x′ ̸=x0

q(x)q(x′)E[e⊤x ex0
e⊤x′ex0

]u⊤f∗(x)(uy1
− uf∗(x0))u

⊤
f∗(x′)(uy2

− uf∗(x0))

= (uy1
− uf∗(x0))(

∑
x ̸=x0

q(x)2e⊤x0
E[exe⊤x ]ex0

uf∗(x)u
⊤
f∗(x)

)(uy2
− uf∗(x0)).

= (uy1
− uf∗(x0))(

∑
x ̸=x0

q(x)2‖ex0
‖2uf∗(x)u

⊤
f∗(x)

)(uy2
− uf∗(x0)).

15



Published as a conference paper at ICLR 2024

Finally, we obtain the following covariance

Σy,y′ = ‖ex0
‖2(uy − uf∗(x0))

⊤(
∑
x ̸=x0

q(x)2uf∗(x)u
⊤
f∗(x)

)(uy′ − uf∗(x0)). (33)

We are left with the computation of the probability that the maximum of the n correlated, non-
centered, exchangeable, Gaussian variables (Zy) is bigger than zero.

Generic upper bound. Since we do not care about the scaling with respect to M , we proceed
with

max
y∈[M ]

P(Zy ≤ 0) ≤ P(maxZy ≤ 0) ≤
∑

y∈[M ]

P(Zy ≤ 0) ≤M max
y∈[M ]

P(Zy ≤ 0), (34)

which leads to

P(ex)x ̸=x0
(max

y

∑
x∈[N ]

q(x)e⊤x ex0u
⊤
f∗(x)

(uy − uf∗(x0)) > 0|e(x0))

≤
∑

y ̸=f∗(x0)

exp(−1µy<0

µ2
y

2Σy,y
)

=
∑

y ̸=f∗(x0)

exp(−1⟨uf∗(x0),uy−uf∗(x0)⟩<0
‖ex0

‖2

2
·

q(x0)
2〈uf∗(x0), uy − uf∗(x0)〉2∑

x ̸=x0
q(x)2〈uf∗(x), uy − uf∗(x0)〉2

).

Finally, recognizing a χ2-variable with d degrees of freedom, for any a > 0,

E[exp(−a‖ex0‖2)] = (1 + 2a)−d/2 = exp(−d
2
log(1 + 2a)).

This leads to the final bound, with χu,x = miny∈[M ] 1⟨uf∗(x),uy−uf∗(x)⟩≤0.

Ee[E(fq)] ≤
∑

x∈[N ]

p(x)min{1,
∑

y ̸=f∗(x)

(
1+

q(x)2〈uf∗(x), uy − uf∗(x)〉2∑
x′ ̸=x q(x

′)2〈uf∗(x′), uy − uf∗(x)〉2
)− d

2 ·χu,x}. (35)

This holds for any unembedding u and associative weight scheme q. In the following, we will
assume that the unembedding u are such that χu,x = 1, which is notably the case when the uy are
normalized (i.e., uy ∈ Sd−1).

Matching lower bound. Going back to (34), one can get a matching lower bound.

Ee[E(fq)] ≥
∑

x∈[N ]

p(x)Eex [ max
y ̸=f∗(x)

P(Zy ≤ 0|ex)]

≥
∑

x∈[N ]

p(x) max
y ̸=f∗(x)

Eex [P(Zy ≤ 0|ex)]

=
1

2

∑
x∈[N ]

p(x)(1− max
y ̸=f∗(x)

Eex [erf(
µy√
2Σy,y

)]).

To conclude, we need an inequality of anti-concentration for Gaussian variables. In essence, we
should distinguish two type of inputs x ∈ [N ]:

• the ones where µy/Σy,y will be large enough to store the association uf∗(x)e
⊤
x , which will

lead to an error decreasing exponentially fast;
• the ones where the same ratio is too small and that we should count in the lower bound.
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Following this split, one can go for the simple “survival” lower bound

Ee[E(fq)] ≥ sup
t>0

1− erf(t)

2

∑
x0∈[N ]

p(x0) max
y ̸=f∗(x0)

Eex0
[1µ2

y≤2Σy,yt2 ]

= sup
t>0

1− erf(t)

2

∑
x0∈[N ]

p(x0) max
y ̸=f∗(x0)

· · ·

Pex0
(‖ex0

‖2q(x0)2〈uf∗(x0), uy − uf∗(x0)〉
2 ≤ 2t2

∑
x ̸=x0

q(x)2〈uf∗(x), uy − uf∗(x0)〉
2).

≥ sup
t,s>0

1− erf(t)

2

∑
x0∈[N ]

p(x0)Pex0
(‖ex0

‖2 ≤ s) max
y ̸=f∗(x0)

· · ·

1sq(x0)2⟨uf∗(x0),uy−uf∗(x0)⟩2≤2t2
∑

x ̸=x0
q(x)2⟨uf∗(x),uy−uf∗(x0)⟩2 .

Without optimizing for constants, taking t = 1/
√
2 and s = d, we get the simple “survival bound”

that there exists a constant c such that

Ee[E(fq)] ≥ c
∑

x∈[N ]

p(x)1dq(x)2⟨uf∗(x),uy−uf∗(x)⟩2≤
∑

x′ ̸=x q(x′)2⟨uf∗(x′),uy−uf∗(x)⟩2 . (36)

The constant can be computed explicitly as

c =
1− erf(1/

√
2)

2
· P(‖ex0

‖2 ≤ d) > 0.158 · 1/2 = 0.079,

where we have used that ‖ex0‖2 is a χ2-variable with mean d hence smaller median, which implies
that P(‖ex0‖2 < d) > 1/2.

Quasi-orthogonal output embeddings. Let us consider u : [M ] → Rd such that (uy)y∈[M ] is
η-quasi orthogonal.

Upper bound. Going back to (35), we can work out a lower bound with

q(x0)
2〈uf∗(x0), uy − uf∗(x0)〉2∑

x ̸=x0
q(x)2〈uf∗(x), uy − uf∗(x0)〉2

≥ q(x0)
2(1− η)2∑

x ̸=x0
q(x)2(1f∗(x)=y(1 + η)2 + 1f∗(x)=f∗(x0)(1− η)2 + 1f∗(x)/∈{y,f∗(x0)}4η

2)

≥ q(x0)
2(1− η)2

4
∑

x ̸=x0
q(x)2(1f∗(x)=y + 1f∗(x)=f∗(x0) + 1f∗(x)/∈{y,f∗(x0)}η

2)

=
1

4

q(x0)
2(1− η)2∑

x q(x)
2((1− η2)1f∗(x)∈{y,f∗(x0)} + η2)− q(x0)2

=
1

4

q(x0)
2(1− η)2

η2‖q‖2 + (1− η2)
∑

x;f∗(x)∈{y,f∗(x0)} q(x)
2 − q(x0)2

=
1

4

q(x0)
2(1− η)2

η2‖q‖2 + (1− η2)(Qy +Qf∗(x))− q(x0)2
.

Here, we have used that for the numerator

〈uf∗(x0), uy − uf∗(x0)〉
2 = (〈uf∗(x0), uy〉 − 1)2 ≥ (1− η)2,

and the same for the term in the denominator (since their ratio cancels out), as well as

〈uy, uy − uf∗(x0)〉
2 ≤ (1 + η)2, 〈uf∗(x), uy − uf∗(x0)〉

2 ≤ (2η)2.

Moreover, we have introduced
Qy =

∑
x′;f(x′)=y

q(x′)2. (37)
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Using the fact that (1+ x)d = exp(d log(1+ x)) ≤ exp(dx), an upper bound directly follows from
those derivations,

Ee[E(fq)] ≤
∑

x0∈[N ]

p(x0)min{1,M exp
(
−d(1− η)2

2

q(x0)
2

4η2‖q‖22 + 2Q∞

)
}, (38)

where
Q∞ = max

y∈[M ]
Qy = max

y∈[M ]

∑
x;f∗(x)=y

q(x)2. (39)

Matching lower bound. Similarly, one can work out a lower bound with
q(x0)

2〈uf∗(x0), uy − uf∗(x0)〉2∑
x ̸=x0

q(x)2〈uf∗(x), uy − uf∗(x0)〉2
≤ q(x0)

2(1 + η)2∑
x ̸=x0

q(x)2(1f∗(x)=y(1− η)2 + 1f∗(x)=f∗(x0)(1 + η)2

≤ q(x0)
2

1−η
1+ηQy +Qf∗(x) − q(x0)2

.

Combining this with (36), we get the lower bound, with c = .079,

Ee[E(fq)] ≥ c
∑

x∈[N ]

p(x)1(d+1)q(x)2≤ 1−η
1+η Q∞

. (40)

Remark that in the previous lower bound, we have dropped the previous factor η2‖q‖2 that appears
in the upper bound. We expect this term to actually be present in a tighter error characterization.
In essence, we expect the embeddings to fill the full space Sd−1 so that most of the difference
〈uf∗(x), uy − uf∗(x0)〉2 typically behave as η2. However, quantifying this precisely is beyond the
scope of this paper.

Random output embeddings. In the case where the output embeddings are random, we can dis-
tinguish two cases. The cases where the embeddings are η-quasi orthogonal, where one can retake
the previous derivations, and the case where they are not, which will have a small probability if η is
large enough.

Consider u to be random embeddings taking uniformly on the unit sphere. Let us introduce the event
Eη = {u is η-quasi orthogonal}.

We have seen in the proof of Lemma 1 that

1− P(Eη) ≤
M2

2
√
π

√
2

η2d
exp(−η

2d

2
). (41)

For any random variable Z that is bounded by one, we have the bounds
P(E)E[Z|E] ≤ E[Z] = (1− P(E))E[Z|¬E] + P(E)E[Z|E] ≤ (1− P(E)) + E[Z|E]. (42)

The upper bound of Theorem 1 directly follows from plugging (38) and (41) into this last equation

Ee,u[E(fq)] ≤
M2

2
√
π

√
2

η2d
exp(−η

2d

2
) +

∑
x∈[N ]

p(x0)
∑

y ̸=f∗(x0)

(
1 +

(1− η)2

4

q(x0)
2

‖q‖22

)− d
2 . (43)

Since this is true for any η, one can consider the infimum in the upper bound.

In term of lower bound, retaking (40),

Ee,u[E(fq)] ≥ sup
η≥0

c(1− M2

2
√
π

√
2

η2d
exp(−η

2d

2
))

∑
x∈[N ]

p(x)1(d+1)q(x)2≤2 1−η
1+η Q∞

. (44)

In particular, when d > 8 log(M) one can consider η < 1/2 such that η2d > 4 log(M), which leads
to (η − 1)/(η + 1) > 1/3, and, if M ≥ 4

1− M2

2
√
π

√
2

η2d
exp(−η

2d

2
) ≥ 1− 1

2
√
π

1√
2 log(M)

> 2/3.

All together we have proven that, as long as M ≥ 4 and d ≥ 8 log(M) with c1 > .079 · 2/3 > .052
and c2 > 1/3,

Ee,u[E(fq)] ≥ c1
∑

x∈[N ]

p(x)1(d+1)q(x)2≤c2Q∞ . (45)
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Writing upper bounds as survival bounds. Until now, we have written the upper bounds as
the sum of exponential (38) and the lower bounds as a sum of missed associations (45), which we
called “survival” bound. In order to best read how tight our characterization is, one can rewrite the
upper bounds as survival bounds. In particular, as we did in the lower bound, we will dissociate x
corresponding to a small exponential and the other ones. Using the fact that the p(x) sum to one, we
get, when the output embeddings are η-quasi orthogonal,

Ee[E(fq)] ≤
∑

x0∈[N ]

p(x0)min{1,M exp
(
−d(1− η)2

2

q(x0)
2

4η2‖q‖22 + 2Q∞

)
}

≤
∑

x0∈[N ]

p(x0) inf
t>0

M exp
(
− t(1− η)2

4

)
+ 1dq(x0)2≤t(2η2∥q∥2

2+Q∞)

≤ inf
t>0

exp
(
− t(1− η)2

4
+ log(M)

)
+

∑
x∈[N ]

p(x)1dq(x)2≤t(2η2∥q∥2
2+Q∞).

To simplify the bound, consider the constraints
η2 ≤ Q∞/‖q‖22, and η < 1/2, (46)

we get, using t = 16(log(M) + γ log(d)) for γ > 0, we get

Ee[E(fq)] ≤ inf
t>0

exp
(
− t(1− η)2

4
+ log(M)

)
+

∑
x∈[N ]

p(x)1dq(x)2≤t(2η2∥q∥2
2+Q∞)

≤ inf
t>0

exp
(−t+ 16 log(M)

16

)
+

∑
x∈[N ]

p(x)1dq(x)2≤3tQ∞

≤ exp(−γ log(d)) +
∑

x∈[N ]

p(x)1dq(x)2≤48(log(M)+γ log(d))Q∞ .

Finally, when the output embedding are η-quasi orthogonal with η satisfying (46), we get

Ee[E(fq)] ≤ inf
γ>0

d−γ +
∑

x∈[N ]

p(x)1dq(x)2≤48(log(M)+γ log(d))Q∞ . (47)

When the unembeddings are chosen at random, when d > 8 log(M), one can choose η < 1/2, and
(43) is cast as, chosen dη2 = 4 log(M) + 2γ log(d),

Ee,u[E(fq)] ≤ inf
η,γ

M2

2
√
π

√
2

η2d
exp(−η

2d

2
)

+ d−γ +
∑

x∈[N ]

p(x)1dq(x)2≤16(log(M)+γ log(d))(2η2∥q∥2
2+Q∞)

≤ inf
γ

d−γ

2
√
π
√
2 log(M) + γ log(d)

+ d−γ +
∑

x∈[N ]

p(x)1
dq(x)2≤16(log(M)+γ log(d))(

8 log(M)+4γ log(d)
d ∥q∥2

2+Q∞)

≤ inf
γ

2d−γ +
∑

x∈[N ]

p(x)1
dq(x)2≤16(log(M)+γ log(d))(

8 log(M)+4γ log(d)
d ∥q∥2

2+Q∞)
.

Finally, we have shown that when the embeddings are taken at random

Ee,u[E(fq)] ≤ inf
γ

2d−γ +
∑

x∈[N ]

p(x)1
dq(x)2≥16(log(M)+γ log(d))(

8 log(M)+4γ log(d)
d ∥q∥2

2+Q∞)
. (48)

A.5 PROOF OF PROPOSITION 2

When p(x) ' x−α, q(x) = p(x)ρ ' x−ρα, hence,

p({x ∈ [N ] | dq(x)2 ≤ p∗‖q‖2}) ' p({x ∈ [N ] |x ≤ (d‖q‖−2)1/2ρα}) ' (d‖q‖−2)−(α−1)/2ρα).

We are left with the computation of φ(N) := ‖q‖2 '
∫ N

1
q(x)2 dx '

∫ N

1
x−2ρα dx. When 2ρα >

1, this integral reads 1−N−2αρ+1 which is bounded by one.
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A.6 PROOF OF PROPOSITION 3

When p(x) ' x−α, q(x) = 1x∈[P ]p(x)
ρ ' 1x∈[P ]x

−ρα, we get

p({x ∈ [N ] | dq(x)2 ≤ p∗‖q‖2}) = p({x ∈ [P ] | dq(x)2 ≤ p∗‖q‖2}) + p({x > P})

'
( d

φ(P )

)−(α−1)/2ρα
+ P−α+1.

The optimal threshold P is set by equalizing the two terms, which we compute as( d

φ(P )

)−(α−1)/2ρα
= P−α+1

⇔ −α+ 1

2ρα
log(d)− −α+ 1

2ρα
log(P ) = (−α+ 1) log(P )

⇔ log(d)− log(P ) = 2ρα log(P )

⇔ P = d1/(2ρα+1).

This choice of P leads to a scaling in, with fρ,[P ] = fqρ,[P ]
,

Ee,u[E(fρ,[P ])
(log)
� p({x ∈ [N ] | dq(x)2 ≤ p∗‖q‖2}) ' P−(α−1) = d−(α−1)/(2ρα+1).

A.7 PROOF OF THEOREM 2

The lower bound directly follows from (8) together withQ∞ = p∗‖q‖2 and the fact that q is invariant
to rescaling, so the best we can do is fit as much memories P as we can until reaching 3(d+1) = p∗P
leading to a scaling in

∫∞
P
p(x) dx = CαP

−α+1/(α+ 1).

A.8 PROOF OF PROPOSITION 4

In order to get scaling with both finite data and finite memory simultaneously, we used a simple
strategy:

• With high probability 1− cT−1+1/α for some constant c, q̂ is similar to q.
• When q̂ is similar to q, the scaling with d derived from Theorem 1 is left unchanged by

substituting q by q̂.

Rather than using a uniform concentration inequality on the full q̂, we will proceed individually
on each q̂(x). Denoting by DT the random dataset of T data, for any sequence of set (Ex)x∈[N ]

–typically we will choose Ex = {q̂(x) > q(x)/2},

Eu,e,DT
[E(fq̂)] =

∑
p(x)Pu,e,DT

(f(x) 6= f∗(x))

≤
∑

p(x)Pu,e,T (q̂ /∈ Ex) +
∑

p(x)Pu,e,T (f(x) 6= f∗(x) | q̂ ∈ Ex).

The second term has been worked out before, using that Q∞ ≤ ‖q‖22

Pu,e,T (f(x) 6= f∗(x) | q̂ ∈ Ex) ≤ inf
γ

2d−γ + PT (dq̂(x)
2 ≤ 16cγ(Q̂∞ +

8cγ‖q̂‖22
d

) | q̂ ∈ Ex).

≤ inf
γ

2d−γ + PT (dq̂(x)
2 ≤ c′γ‖q̂‖22 | q̂ ∈ Ex),

where c′γ = 16cγ(1 +
8cγ
d ).

Without thresholding. Let us first start with the scheme (11), with ρ > 0

q̂(x) = (
1

T

∑
t∈[T ]

1x=Xt)
ρ, q(x) = p(x)ρ.

Using a simplification of Chernoff bound for Bernoulli variables (see e.g., Hoeffding, 1963), we get
the probability bound (the randomness being due to the data),

PT (q̂(x) <
q(x)

21/ρ
) = PT (p̂(x) <

p(x)

2
) ≤ exp(−Tp(x)/8).
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As a consequence, reusing the proof of Proposition 1, when p follows a Zipf law (1),

E[E(fq̂)] =
∑

p(x)P(f(x) 6= f∗(x))

≤
∑

p(x) exp(−Tp(x)/8) +
∑

p(x)P(f(x) 6= f∗(x) | q̂(x) > q(x)/21/ρ)

≲ T−1+1/α +
∑

p(x)P(f(x) 6= f∗(x) | q̂(x) > q(x)/21/ρ).

We are left with the computation of the second term, denote cρ = 2−1/ρ, we have

Eu,ePT (f(x) 6= f∗(x) | q̂(x) > cρq(x)) ≤ inf
γ

2d−γ + PT (dq̂(x)
2 ≤ c′γ‖q̂‖22 | q̂ ≥ q(x)/2).

By definition of q̂, together with Jensen’s inequality when ρ ≤ 1/2

1

N
=

1

N

∑
x∈[N ]

(q(x)2)1/2ρ ≥ (
1

N
‖q‖22)1/2ρ,

hence ‖q‖2 ≤ N1−2ρ. When ρ > 1/2, the worst value of ‖q‖ is when all the mass is concentrated
on one q(x′), in which case ‖q‖2 ≤ 1. With the corresponding ψ(N), we get

Eu,ePT (f(x) 6= f∗(x) | q̂(x) > cρq(x)) ≤ inf
γ

2d−γ + 1dc2ρq(x)
2≤c′γφ(N).

Finally, reusing the proof of Proposition 2, and hiding logarithmic factors,

E[E(fq̂)] =
∑

p(x)P(f(x) 6= f∗(x))

≲ T−1+1/α + inf
γ

2d−γ + p({x | dc2ρq(x)2 ≤ c′γψ(N)}).

≲ T−1+1/α + (
d

ψ(N)
)−(α−1)/2ρα.

The case ρ = 0, can be easily treated by considering an error if and only if the number of seen
elements |{xt | t ∈ [T ]}| is smaller than d.

With thresholding. Let us now consider the thresholding scheme (12), with P ∈ N and ρ ≥ 0

q̂(x) = p̂(x)ρ1x∈topP ((xt)t∈[T ]), q(x) = p(x)ρ1x∈[P ].

We basically proceed with the same technique but with the event Ex the probability that x belongs
to the top P of the empirical frequencies. When dealing with a binomial distribution, one can
enumerate all possible outcomes for the empirical frequencies. For a template a ∈ ∆[N ], we said
that a sequence (xt) is of type a if its empirical frequency is equal to a,

T (a) = {(xt) ∈ [N ]T | ∀x ∈ [N ],
∑
t∈[T ]

1xt=x = Ta(x)}.

Some enumeration arguments that can be found in Cover & Thomas (1991, Chapter 11) leads to

PDT
((xt) ∈ T (a)) = |T (a)| exp(−T (H(a) +DKL(a‖p))) ≤ exp(−T ·DKL(a‖p))).

Hence, the probability that x does not belong to the top P of the empirical frequencies of (xt) is
bounded by

PDT
(x /∈ topP (xt) ∈ T (a)) ≤

∑
a∈A

exp(−T ·DKL(a‖p))),

where A is the set of all templates a where x is not in the top P of (a(x′))x′∈[N ]. With T samples
over N elements there are at most (N + 1)T different type templates, hence∑

a∈A
exp(ca · T ) ≤ (T + 1)N sup

a∈A
exp(ca · T ) = sup

a∈A
exp(ca · T +N log(T + 1)).

As a consequence,

PDT
(x /∈ topP (xt) ∈ T (a)) ≤ sup

a∈A
exp(−T ·DKL(a‖p)) +N log(T + 1))
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Now, it is actually to possible to remove the N log(T + 1) in the exponential and extends this type
of result to generic Polish spaces (see, e.g. Dinwoodie, 1992).

PDT
(x /∈ topP (xt) ∈ T (a)) ≤ sup

a∈A
exp(−T ·DKL(a‖p)))

We are left with the computation of the “information projection distance” between p and the set of
distribution where x does not belong to the top P . In order to get x out of the top P of p one should
switch p(x) with p(P ), which leads to (without caring for exact constants)

DKL(p
′‖p) ' p(x) log(p(x)/p(P )) + p(P ) log(p(P )/p(x)) = (p(x)− p(P )) log(p(x)/p(P ))

When considering x < P/2 and p following a Zipf law we get

DKL(p
′‖p) ≳ (p(x)− p(2x)) log(p(P/2)/p(P )) ≥ cαx

−α(1− 2−α)α log(2) = c′αp(x)

where c′α = cα(1− 2−α)α log(2). As a consequence, for any P ∈ N,

EDT
[E(fq̂)] ≤ c0P

−α+1 +
∑

x∈[P/2]

p(x)P(f(x) 6= f∗(x)).

≤ c0P
−α+1 +

∑
x∈[P/2]

p(x)(exp(−Tc′αp(x)) + P(f(x) 6= f∗(x) |x ∈ topP ((xt)))

≤ c0P
−α+1 + exp(−2αTc′αP

−α) +
∑

x∈[P/2]

p(x)P(f(x) 6= f∗(x) |x ∈ topP ((xt)).

When ρ = 0, setting P = min(c1d, T
−1/α/ log(T )) with c1 chosen so that all x stored in memory

lead to f∗(x) = f(x) gives to the right scaling with both T and d: up to logarithmic factors,

E[E(fq̂)] ≲ d−α+1 + T−1+1/α + exp(−c3 log(T )α).

Because α > 1, the last term decreases faster than any polynomial power of T , hence ends up being
negligible in front of T−1+1/α.

For the case ρ ∈ (0, 1] one can dissociate two events: the event where x belongs to the top P/2
empirical frequencies; the event where p̂(x) > p(x)/2; and conclude with similar derivations as
precedently

E[E(fq̂)] ≤ c0P
−α+1 + exp(−2αTc′αP

−α) + c4T
−1+1/α

+
∑

x∈[P/2]

p(x)P(f(x) 6= f∗(x) |x ∈ topP ((xt)), p̂(x) > p(x)/2).

Retaking previous arguments leads to the same scalings as the ones of Proposition 3 with respect to
d and a scaling in T−1+1/α with respect to T . This ends the proof of the mixed scaling with both
finite data and finite memory capacity.

A.9 LEARNING THE INPUTS EMBEDDINGS

In instances where the embeddings are learned within the linear model (2), one may optimize them
by merging all input token embeddings that are associated with the same output, which is what we
actually observed in practice in Figure 8. Proposition 5 captures the resulting theoretical perfor-
mance.

Proposition 5 (Improvement for learned inputs embeddings). Let the input embeddings be set to
ex = uf∗(x). Assume without restrictions that p(y) is decreasing with y. Consider the unembeddings
where (uy)y∈[P ] are η-quasi orthogonal, and uy = 0 if y is not among theP -th most frequent classes.
Let q0 ∈ RN , and set q ∈ RM as q(y) =

∑
x;f∗(x)=y q0(x), then

E(fWq0
) ≤ p({x |1f∗(x)/∈[P ]q(f∗(x)) < 2η‖q‖∞ + 2η2‖q‖1}). (49)

In particular, it is possible to consider a thresholding associative scheme q∗ such that, if y follows a
Zipf law p(y) = Cβy

−β , E(fWq∗
) = O((d/ log(d))−β+1).
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Proposition 5 shows that when learning the input embeddings one can expect to replace the scaling
in d−α+1 that depends on the law of x, by a scaling that depends on the law of y. It illustrates the
usefulness to learn embeddings when the law of x is well factored by the law of y. This is typically
the case when x are news articles associated with a few topics y.

Proof. When e can be optimized, it is natural to set ex to be a constant for all x that are associated
with the same output. Let q0 ∈ ∆[N ] be an associative scheme,

1fWq0
(x0) ̸=f∗(x0) = 1maxy ̸=f∗(x0)

∑
x∈[N] q0(x)e

⊤
x0

exu⊤
x (uy−uf∗(x0))>0.

In order to lower the probability, one wants to minimize the left expression, which leads to the will
to maximize e⊤x0

exu
⊤
f∗(x)

uf∗(x0). This can be done by setting

∀x, x′ ∈ [N ], e⊤x ex′ = u⊤f∗(x)uf∗(x′). (50)

Such an isometry can be built by setting ex = uf∗(x), leading to the new characterization

1fWq0
(x0) ̸=f∗(x0) = 1maxy≠y0

∑
z∈[M] q0(z)u

⊤
y0

uzu⊤
z (uy−uy0 )>0,

where y0 = f∗(x0) and
q(y) :=

∑
x;f∗(x)=y

q0(x). (51)

When u are η-quasi orthogonal for its first P values and set to zero otherwise, we have∑
z∈[M ]

q(z)u⊤y0
uzu

⊤
z (uy − uy0) = q(y0)(u

⊤
y0
uy − 1) + q(y)(u⊤y0

uy − (u⊤y0
uy)

2)

+
∑

z∈[M ] ̸={y,y0}

q(z)u⊤y0
uz(u

⊤
z uy − u⊤z uy0)

≤ −q(y0) + |q(y0)|η + |q(y)|η +
∑

z∈[M ] ̸={y,y0}

|q(z)|η(η + η)

≤ −q(y0) + 2η sup
z ̸=y0

|q(z)|+ 2η2
∑

z∈[M ]

|q(z)|

= −q(y0) + 2η‖q‖∞ + 2η2‖q‖1.

As a consequence, we get

E(fWq0
) ≤

∑
x∈[N ]

p(x)1q(f∗(x))≤2η∥q∥∞+2η2∥q∥1
.

Using that, for any A : [M ] → Rd,
∑

x p(x)A(f∗(x)) =
∑

x

∑
y p(x, y)A(y) =

∑
y p(y)A(y),

E(fWq0
) ≤

∑
y∈[M ]

p(y)1q(y)≤2η∥q∥∞+2η2∥q∥1
. (52)

Note that when the embeddings u are chosen uniformly at random on the sphere, and d > 4 log(M),
a similar bound will hold up to an extra higher-order term as seen in the proof of Theorem 1.

When u is defined to be zero on [M ] \ [P ], and only η-quasi orthogonal for (uy)y∈[P ], the same
characterization holds with

E(fWq0
) ≤

∑
y∈[M ]\[P ]

p(y) +
∑
y∈[P ]

p(y)1q(y)≤2η∥q∥∞+2η2∥q∥1
. (53)

Finally,if η2 is set to 1/4P , and q∗ = 1y∈[P ], we get the upper bound

E(fWq0
) ≤ p({x |f∗(x) > P}).

The best P that one can consider is that such d/4P = η2d = 4 log(P ). Setting P = d/16 log(d),
and bounding

∑
y>P y

−β ≤
∫∞
P
t−β dt ends the proof.
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A.9.1 DISCUSSION ON COMPENSATION MECHANISMS

When optimizing the embeddings, one may turn the negative interference mechanisms illustrated in
Figure 2 into positive ones.

Assume that ex = uf∗(x), our model (4) become, denoting uf∗(x) = u0 for simplicity,

f(x) = argmax
y∈[M ]

u⊤y Wu0; W =
∑

y′∈[M ]

q(y′)uy′u⊤y′ . (54)

Similarly as before an error is made when

max
y∈[M ]

∑
y′∈[M ]

q(y′)(uy − u0)
⊤uy′u⊤y′u0 > 0. (55)

When the output embeddings are learned, one can optimize them to induce compensation mecha-
nisms. For example, when M = 3, and y1 is competing when y0 = f∗(x) as the argmax of (54) due
to a large storage of q(y1) compared to q(y0), one could benefit of q(y2) to ensure that

q(y0)(u
⊤
1 u0 − 1) + q(y1)(1− u⊤1 u0)u

⊤
1 u0 + q(y2)(u1 − u0)

⊤u2u
⊤
2 u0

< 0 < q(y0)(u
⊤
1 u0 − 1) + q(y1)(1− u⊤1 u0)u

⊤
1 u0.

In this situation, the score u⊤0 Wex of y0 would be higher then u⊤y1
Wex ensuring that we do not

make an error when predicting f(x) (54).

We refer the interested reader to Elhage et al. (2022) for related investigation.

A.10 LOSS GRADIENT

The cross-entropy loss is written as

ℓ((x, y,W ) = − log(
exp(u⊤y Wex)∑

z∈[M ] exp(u
⊤
z Wex)

) = −u⊤y Wex + log(
∑

z∈[M ]

exp(u⊤z Wex)).

Hence stochastic gradient descent will update the matrix W by adding terms of the form

∂W ℓ((x, y),W ) = −uye⊤x +

∑
z∈[M ] exp(u

⊤
z Wex)uze

⊤
x∑

y∈[M ] exp(u
⊤
y Wex)

= −uye⊤x +
∑

z∈[M ]

pW (z|x)uze⊤x

= −(1− pW (y|x))uye⊤x +
∑
z ̸=y

pW (z|x)uze⊤x

= −(1− pW (y|x))(uye⊤x −
∑
z ̸=y

pW (z|x)
1− pW (y|x)

uze
⊤
x ).

Note that pW (z|x)/(1− pW (y|x)) corresponds the the probability of the z conditioned with respect
to x under the event that z is not y, formally

pW (z|x)
1− pW (y|x)

= p(z|x, z 6= y).

Finally,

∂W ℓ((x, y),W ) = −(1− pW (y|x))(uye⊤x −
∑
z ̸=y

pW (z|x, z 6= y)uze
⊤
x )

= −(1− pW (y|x))(uye⊤x − Ez∼pW
[uz|x, z 6= y]e⊤x ).

While, it is clear that the model (4) does not describe the solution found by cross entropy, one might
hope that the term E[uz]e⊤x will somewhat cancel themselves out and be an order of magnitude
smaller than the leading term uye

⊤
x .
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A.11 APPROXIMATE UPDATES

The formula (20) is justified by the fact that a matrix Wt = Wqt will lead to an update (18) at time
t according to the rule (19), assuming exp(uzWex) ≈ 1 for any z 6= f∗(x),

qt+1(x)− qt(x) = 1xt=xγ · (1− pWqt
(f∗(x)|x)) ≈

1xt=xγ

1 + (M − 1)−1 exp(qt(x))
,

together with the fact that x will be seen Tp(x) times on average in T samples.

Similarly, very large batch size b = |B| and T/b update steps, each xwill appear in each batch about
bp(x) times, which leads to the rough approximation

qγ,b(x) = fT/b(0) = f ◦ f ◦ · · · ◦ f︸ ︷︷ ︸
T/b times

(0), where f : x 7→ x+
γbp(x)

1 +M−1 exp(x)
. (56)

In practice, we can approximate the effect of a batch by counting how many times x was in this
batch and setting bp(x) to be the exact count, which will lead to tighter approximation. This is this
approximation that we plot on Figure 13.

A.12 GRADIENT FOR LAYER NORM

Let x ∈ [N ], y ∈ [M ] and W ∈ Rd×d. When processing the input x, layer norm adds a normaliza-
tion layer

f :W 7→ W̄ =
W

‖Wex‖
.

Using the chain rule, with D denoting the Jacobian operator,

∇W ℓ(x, y; f(W )) = (DW f(W ))⊤∇f(W )ℓ(x, y; f(W )) = (DW f(W ))⊤∇W̄ ℓ(x, y; W̄ ).

We are left with the computation of the Jacobian. We proceed with chain rule

f(W ) = f1(f2(f3(W ))) ·W, f1 : t ∈ R 7→ t−1, f2 : e ∈ Rd 7→ ‖e‖, f3 :W ∈ Rd×d 7→Wex.

DW f(W )⊤ = ∇W (f1 ◦ f2 ◦ f3)(W )W⊤ + f1(f2(f3(W ))) · I

=
−∇W (f2 ◦ f3)(W )

f2(f3(W ))2
W⊤ +

1

‖Wex‖
· I =

−f3(W )(DW f3(W ))

‖f3(W )‖‖Wex‖2
W⊤ +

1

‖Wex‖
· I

=
−Wexe

⊤
x

‖Wex‖3
W⊤ +

1

‖Wex‖
· I =

1

‖Wex‖
(I − W̄exe

⊤
x W̄

⊤).

This proves the formula written in the main text.

B EXPERIMENTAL DETAILS

B.1 MAXIMAL PARAMETERS UPDATES

In order to carefully choose step-sizes that scale well with width d in optimization algorithms, we fol-
low Yang et al. (2021) and consider learning rates consistent with maximal feature learning updates.
Here we consider the following initializations:

• W is initialized as a Gaussian random matrix with N (0, 1d ) entries.
• Input embeddings ex and output embeddings uy are initialized as either random on the unit-

sphere in d dimensions, or with Gaussian N (0, 1d ) entries. In both cases, every embedding
has norm ≈ 1.

Updates to W . The updates to the matrix W look as follows:

• SGD with step-size ηW :

W ′ =W + ηW δW, δW =
∑
j

αjuyj
e⊤xj

,
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with αj = Θd(1), and a dimension-independent number of elements in the sum. Choos-
ing ηW = Θ(1) then ensures that for any input embedding ex, we have ‖W ′ex‖ = Θ(1)
as desired.

• Adam (idealized here as signSGD) with step-size η:

W ′ =W + ηW sign(δW ), sign(δW )ij =
δWij

|δWij |
.

The coordinates of sign(δW ) are now Θ(1) instead of Θ(1/d), thus the step-size needs to
be taken as ηW = Θ(1/d) in order to satisfy ‖W ′ex‖ = Θ(1) (see (Yang et al., 2021; Yang
& Littwin, 2023) for more details)

Updates to embeddings. The updates to embeddings look as follows:

• SGD updates:

u′y = uy + ηuδuy, δuy =
∑
j

αjWexj
,

e′x = ex + ηeδex, δex =
∑
j

α′
jW

⊤uyj
,

with αj = Θ(1) and a dimension-independent number of js. Since the algorithm en-
sures ‖Wexj‖ = Θ(1) and ‖W⊤uyj‖ = Θ(1) throughout training, choosing ηu, ηe =
Θ(1) ensures that these conditions continue to hold after each update.

• Adam/signSGD updates:

u′y = uy + ηu sign(δuy), (sign(δuy))i =
(δuy)i
|(δuy)i|

,

e′x = ex + ηe sign(δex), (sign(δex))i =
(δex)i
|(δex)i|

.

Since the updates have coordinates of order Θ(1), in order to ensure that embeddings re-
main of norm Θ(1) after each update, we thus need ηu, ηe = Θ(1/

√
d).

B.2 ADDITIONAL FIGURES

Our theory predicted optimal scaling laws in d−1+α. However, there are some catches behind the
proof:

• The lower bound is true when d � N = 100, otherwise the error can actually reach zero
when d becomes larger than a tipping number dt which compares to N . This fact was
illustrated on Figure 3. Increasing N augments the tipping point dt, rectifying the learning
curve as illustrated on Figure 9.

• This was proven for models where q(x, y) = q(x), and where q(x) is not optimized with
respect to f∗(x). As such, it is not clear if those lower bounds hold for optimization-based
algorithms, although we argue that we do not expect different mechanisms to take place in
the proofs. We illustrate this empirically in the left of Figure 12.

Similarly, the unreasonable effect of learning the embeddings would be highly disappointing if those
were hard to optimize in practice. The right of Figure 12 illustrates how with a few steps, one can
achieve a zero generalization error when learning the embeddings.

In order to better understand gradient updates, Figure 14 shows the dynamic of the association
memory W updated with SGD and a large step size. To validate the approximation (20), Figure 4
plots the generalization error associated with SGD and its theoretical approximation, while Figure 5
illustrates the idealized association scheme qγ associated with a step size γ, batch size one and a
Zipf law on x ∈ [N ].

In order to understand the effect of Adam, we compare it with plain SGD and SGD with rescaled
variance on population data. That is, we consider gradient descent with ∇WL(W ) (16). The rescale
variance SGD, consists in dividing the gradient by the variance of ∇W ℓ(X, f∗(X);W ) (17) when
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Figure 9: Same figure as the right one of Figure 3 yet with a bigger N , here N = 1000. The dashed
curves represent E = .35 · d−1/4 (orange) and E = 3.5 · d−1 (green). They validate the scaling predicted
by theory where we used N = +∞ to get tight polynomial scalings of E (5) with respect to d.

Figure 10: Representation of the weight matrix (u⊤
y Wex)y,x ∈ RM×N for N = 10, M = 5, f∗(x) =

xmod.M . The data x follows a Zipf-law with α = 1 and T = 103. The matrix W is obtained according
to (4) together with the scheme (11). Left: ρ = 0 (10), d = 10, there is not enough memory capacity, and
the model does not succeed to store memories, leading to a large generalization error. Middle left: ρ = 0
(10), d = 50, there is enough memory capacity, we learn the right association y = xmod.M . Middle
right: ρ = 1 (11), d = 10, the weighting q allows to store the most important memories beside having a
small memory capacity. Right: ρ = 1 (11), d = 50, the weighting q is too strong which does not allow to
store memory associated with rare association (bottom of the matrix).

X ∼ p (1). For simplicity, we consider Adam with β1 = β2 = 0, in which case, it equates sign
SGD, i.e., SGD when considering the sign of each entries of ∇WL(W ) in the updates Wt →Wt+1.
Figures 15 and 16 underpins our intuition that the usefulness of Adam lies in its ability to rescale
gradient updates, an effect that could equally be obtained by tuning the learning rate.
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Figure 11: Learning curve of the generalization error E (5) with respect to the number of data processed
by stochastic gradient descent in the setting of Figure 6. Left: comparison on a single run. A big step
size allows to store more memory at the risk of overwriting past association, which explains the higher
variance of the blue curve but its overall better performance. A small step size will avoid loss spikes due to
memory overwriting, but will take more time to store rare associations, leading to worse performance. By
decreasing the learning rates along training, e.g., with the “StepLR” scheduler (Paszke et al., 2019), one
can get the best of both world, i.e., store memories fast at the beginning of training when storage capacity
is underused, while being more cautious at the end of training when there is no more “free” memory space.
Right: Similar plot with N = 30 averaged over one hundred runs.
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Figure 12: Scalings with respect to d for optimization-based algorithms, in the setting of Figure 3. Left:
optimization-based algorithms beat the best algorithm designed by hands with q(x, y) = q(x). Note how
the curve seems to have the same optimal exponent E � d−α+1 (the left part of the figure show similar
slopes for all curves) yet with smaller constant in front, leading to earlier typing point before reaching
zero generalization error due to full storage of all the associations. Middle: Comparison of learning the
sole matrix W (blue), or learning the embeddings e and u (orange), together with the possibility to use
non-linear model uy ReLU(ex) with e and u learned (green). All curves are obtained after 103 updates
with batch size 103. Right: Comparison with the same setting as Figure 7. Learning the embeddings or
going non-linear allows to impressively optimize memory storage, leading to better exponent with respect
to d and earlier tipping point for a fixed number of updates.
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Figure 13: Same as Figure 4 yet with batch size equals one thousands |B| = 103.
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Figure 14: Gradient descent dynamics similar to Figure 6 with d = 10 and a fixed step size γ =
10. From time to time, we represent here t ∈ {0, 4, 5, 6, 8, 9, 11, 30, 32, 37, 49, 62, 75, 90}, stochastic
gradient descent will hit an association that is not properly stored in memory yet (the red boxes). It will
consequently update the weight matrix Wt → Wt+1 (side by side pairs) to store it. When d is big enough,
here d = 10, W will end by storing correctly all associations, leading to perfect generalization for future
examples.

29



Published as a conference paper at ICLR 2024

Figure 15: Comparison between SGD, signSGD and SGD with normalized variance on population gra-
dient seen from the association matrix Wt at different times in the setting of Figure 14. The different
rows correspond to the matrices Wt at time t ∈ {1, 2, 3, 7, 100}. Left: Plain SGD. Middle: Adam with
β1 = β2 = 0, i.e., SignSGD. Right: SGD with normalized variance.

0 50 100

Epoch

10−3

10−1

E
rr

o
r

SGD

sign SGD

norm SGD

0 50 100

Epoch

10−2

G
ra

d
ie

n
t

v
a
ri

a
n

ce

Figure 16: Left: Generalization error in the setting of Figure 15. Observe how SGD with rescaled
variance (in green), an effect that can be done with SGD after adapting the learning rate, actually performs
better than sign SGD (i.e., Adam with β1 = β2 = 0). Right: Variance of SGD along the training. As the
training goes, SGD is losing momentum due to smaller gradient variances, hence smaller updates.
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