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A PROOFS

A.1 FINITE DATA - PROOF OF PROPOSITION 1

Let us consider the infinite memory model, where an LLM can store in memory all previously seen
associations (x, y). At each time t, a random positive integer x is drawn from some fixed probability
distribution. At time T , the LLM would have seen x1, . . . , xT and the associated f∗(xt), where
each xt is a random positive integer drawn independently from p. As such, the LLM would have
learned a map f̂ , that only miscorrects the inputs x which are different from all the xt for t ∈ [T ].
The generalization error reads, with respect to the random dataset DT = (Xt, Yt)t∈[T ],

EDT
[f̂ ] = PX,DT

(X /∈ {Xt}t∈[T ]) =
∑

x∈[N ]

p(x)PDt(x /∈ {Xt}t∈[T ]) =
∑

x∈[N ]

p(x)(1− p(x))T .

Using that (1 − a)T = exp(T log(1 − a)) and 2 log(2)a ≤ log(1 + a) ≤ a for any a ≥ −1/2, we
get

∑
x∈[N ]

1p(x)≤1/2 · p(x) exp(−2 log(2)p(x)T ) ≤
N∑

x=2

p(x) exp(−2 log(2)p(x)T )

≤ EDT
[f̂ ] ≤

∑
x∈[N ]

p(x) exp(−p(x)T ).

Relating this series to the corresponding integral, we have∫
x∈[1,N ]

p(x) exp(−2 log(2)p(x)T ) dx− 1/T

≤
∫
x∈[2,p−1(1/T )]

p(x− 1) exp(−2 log(2)p(x− 1)T ) dx

+

∫
x∈[p−1(1/T ),N ]

p(x) exp(−2 log(2)p(x)T ) dx

≤
N∑

x=2

p(x) exp(−2 log(2)p(x)T ) ≤ EDT
[f̂ ] ≤

∑
x∈[N ]

p(x) exp(−p(x)T )

≤
∫
x∈[1,N ]

p(x) exp(−2 log(2)p(x)T ) dx+ 1/T

Letting N goes to infinity, we get the scaling

EDT
[f̂ ] �

∫ ∞

1

p(x)e−Tp(x) dx± 1/T. (25)

Assuming that p(x) = Cf(x) for some constant C, and a smooth strongly decreasing function
f : R+ → R+ such that limx→0 f(x) = +∞, one may consider the change of variable u = f(x),
i.e., x = f−1(u). If so,

dx = d(f−1)′(u) =
du

f ′ ◦ f−1(u)
.

Hence it holds that

EDT
[f̂ ] �

∫ ∞

1

−u
f ′ ◦ f−1(u)

e−uT du. (26)

This relates to the Laplace transform of the function inside the integrand. In particular, one can work
out that when p(x) ∝ Cαx

−α, f−1(u) = u−1/β from which one can deduce that∫ ∞

1

x−α exp(−Tx−α) dx =
α

Γ(α−1
α )

T−α−1
α ,

which recovers a result of Hutter (2021).
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A.2 MEMORY CAPACITY - PROOF OF LEMMA 1

The proof of Lemma 1 concerning quasi orthogonal embeddings can be done through a reasoning
on random embeddings. Let (Xi) be P independent identically distributed random variables. We
are interested in the event where the normalized (Xi) are η-quasi orthogonal.

P(∩{i,j}⊂[P ]{|〈Xi, Xj〉| ≤ η‖Xi‖‖Xj‖}) = 1− P(∪{i,j}⊂[P ]{|〈Xi, Xj〉| ≥ η‖Xi‖‖Xj‖})

≥ 1− P (P − 1)

2
P(|〈X1, X2〉| ≥ η‖X1‖‖X2‖).

If this event can happen, it means that there exists such η-quasi orthogonal samples. As a conse-
quence, we are looking to maximize η such that

P(|〈X1, X2〉| ≥ η‖X1‖‖X2‖) <
2

P (P − 1)
. (27)

Let us consider (Xi) to be distributed accordingly to a rotation-invariant probability. By symmetry,
we have, with f1 denoting the first vector of the canonical basis in Rd,

P(|〈X1, X2〉| ≥ η‖X1‖‖X2‖) = P(|〈X, f1〉| ≥ η‖X‖) = P(|〈 X

‖X‖
, f1〉| ≥ η) (28)

By symmetry, the vector X/‖X‖ is uniform on the sphere. Using that P(|〈X, f1〉| > η) =
2P(〈X, f1〉 > η) and

P(|〈X, f1〉| ≥ η) =
2

Vol(Sd−1)

∫
x∈Sd−1

1x1≥η dx

=
2

Vol(Sd−1)

∫ 2

x1=η

Vol(
√
1− x21 · Sd−2) dx1

=
2Vol(Sd−2)

Vol(Sd−1)

∫ 1

t=η

(1− t2)
d−1
2 dt =

2Γ(d2 + 1)
√
πΓ(d2 + 1

2 )

∫ 1

t=η

(1− t2)
d−1
2 dt.

To upper bound this probability, we proceed with

P(|〈X, f1〉| ≥ η) =
2Γ(d2 + 1

2 )√
πΓ(d2 + 1

2 )

∫ 1

t=η

(1− t2)
d−1
2 dt ≤

2(d2 + 1)1/2
√
π

∫ 1

t=η

t

η
(1− t2)

d−1
2 dt

=
2(d2 + 1)1/2

√
π

1

η(d+ 1)
(1− η2)

d+1
2 ≤

√
2

√
π
√
η2d

exp(−η
2d

2
).

The last inequality follows from the fact that

(d+ 2)

(d+ 1)2
=
d+ 1 + 1

d+ 1

1

d+ 1
=

1 + 1
d+1

1 + 1
d

1

d
≤ d−1,

and that for any x ∈ (−1, 1), the concavity of the logarithm mean that log(1 + x) ≤ x hence that
(1 + x)n = exp(n log(1 + x)) ≤ exp(nx).

This leads to the following series of implications

∃ (Xi) η-quasi orthogonal ⇐ 1√
π

(η2d
2

)−1/2
exp(−η

2d

2
) ≥ 2

P 2

⇔
(η2d

2

)1/2
exp(

η2d

2
) ≥ P 2

2
√
π

⇐ η2d

2
≥ 1 and exp(

η2d

2
) >

P 2

2
√
π

⇐ η2d

2
≥ 2 log(P )− log(2

√
π) ≥ 1

⇐ η2d

4
≥ log(P ) ≥

1 + log(2
√
π)

2
.

Finally, we have proven the existence of a η-quasi orthogonal family for

η ≥
√
4 log(P )d−1, as long as P ≥ 3. (29)
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A.3 GENERIC ERROR DECOMPOSITION

The error made by fW relates to the ordering between the signals uf∗(x)We⊤x and the noises
maxy ̸=f∗(x) uyW

⊤ex.

Let fq be defined as in the main text. We have the following sequence of equivalence, assuming
uniqueness of the argument of the maximum for simplicity,

fq(x0) 6= f∗(x0) ⇔ argmax
y∈[M ]

∑
x∈[N ]

q(x)e⊤x ex0u
⊤
f∗(x)

uy 6= f∗(x0)

⇔ max
y∈[M ]

∑
x∈[N ]

q(x)e⊤x ex0u
⊤
f∗(x)

uy >
∑

x∈[N ]

q(x)e⊤x ex0u
⊤
f∗(x)

uf∗(x0)

⇔ max
y∈[M ]

∑
x∈[N ]

q(x)e⊤x ex0u
⊤
f∗(x)

(uy − uf∗(x0)) > 0.

As a consequence,

E(fq) =
∑

x0∈[N ]

p(x0)1fq(x0) ̸=f∗(x0)

=
∑

xo∈[N ]

p(x0)1maxy
∑

x∈[N] q(x)e
⊤
x ex0u

⊤
f∗(x)

(uy−uf∗(x0))>0. (30)

In other terms, we have proven the following characterization, which holds for any q, even if derived
from a finite number of data,

E(fq) = p({x ∈ [N ] | max
y

∑
x′∈[N ]

q(x′)e⊤x′ex〈uf∗(x′), uy − uf∗(x)〉 > 0}). (30)

A.4 RANDOM EMBEDDINGS - PROOF OF THEOREM 1

Let us introduce randomness in the model. If each ex ∼ N (0, I) is actually an independent random
Gaussian vector in Rd, we continue our derivation with

Ee[E(fq)] =
∑

xo∈[N ]

p(x0)Eex0
[P(ex)x ̸=x0

(fq(x0) 6= f∗(x0) | ex0
)]

=
∑

xo∈[N ]

p(x0)Eex0
[P(ex)x ̸=x0

(max
y

∑
x∈[N ]

q(x)e⊤x ex0
u⊤f∗(x)(uy − uf∗(x0)) > 0 | ex0

)]

=
∑

xo∈[N ]

p(x0)Eex0
[P(ex)x ̸=x0

(max
y

Zy > 0 | ex0
)].

Here, we have introduced the random variables Zy for y 6= f∗(x0), inheriting their randomness from
(e|ex0

), and defined by

Zy =
∑

x∈[N ]

q(x)e⊤x ex0
u⊤f∗(x)(uy − uf∗(x0)). (31)

Those are projections of Gaussian variables, hence are Gaussian. Using the fact that E[ex] = 0, their
mean is

µy := E[Zy] = q(x0)‖ex0‖2u⊤f∗(x0)
(uy − uf∗(x0)). (32)

Those variables are correlated. Using the characterization of the mean, we deduce that their covari-
ance reads

Σy1,y2
:= E[(Zy1

− E[Zy1
])(Zy2

− E[Zy2
])]

=
∑

x,x′ ̸=x0

q(x)q(x′)E[e⊤x ex0
e⊤x′ex0

]u⊤f∗(x)(uy1
− uf∗(x0))u

⊤
f∗(x′)(uy2

− uf∗(x0))

= (uy1
− uf∗(x0))(

∑
x ̸=x0

q(x)2e⊤x0
E[exe⊤x ]ex0

uf∗(x)u
⊤
f∗(x)

)(uy2
− uf∗(x0)).

= (uy1
− uf∗(x0))(

∑
x ̸=x0

q(x)2‖ex0
‖2uf∗(x)u

⊤
f∗(x)

)(uy2
− uf∗(x0)).
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Finally, we obtain the following covariance

Σy,y′ = ‖ex0
‖2(uy − uf∗(x0))

⊤(
∑
x ̸=x0

q(x)2uf∗(x)u
⊤
f∗(x)

)(uy′ − uf∗(x0)). (33)

We are left with the computation of the probability that the maximum of the n correlated, non-
centered, exchangeable, Gaussian variables (Zy) is bigger than zero.

Generic upper bound. Since we do not care about the scaling with respect to M , we proceed
with

max
y∈[M ]

P(Zy ≤ 0) ≤ P(maxZy ≤ 0) ≤
∑

y∈[M ]

P(Zy ≤ 0) ≤M max
y∈[M ]

P(Zy ≤ 0), (34)

which leads to

P(ex)x ̸=x0
(max

y

∑
x∈[N ]

q(x)e⊤x ex0u
⊤
f∗(x)

(uy − uf∗(x0)) > 0|e(x0))

≤
∑

y ̸=f∗(x0)

exp(−1µy<0

µ2
y

2Σy,y
)

=
∑

y ̸=f∗(x0)

exp(−1⟨uf∗(x0),uy−uf∗(x0)⟩<0
‖ex0

‖2

2
·

q(x0)
2〈uf∗(x0), uy − uf∗(x0)〉2∑

x ̸=x0
q(x)2〈uf∗(x), uy − uf∗(x0)〉2

).

Finally, recognizing a χ2-variable with d degrees of freedom, for any a > 0,

E[exp(−a‖ex0‖2)] = (1 + 2a)−d/2 = exp(−d
2
log(1 + 2a)).

This leads to the final bound, with χu,x = miny∈[M ] 1⟨uf∗(x),uy−uf∗(x)⟩≤0.

Ee[E(fq)] ≤
∑

x∈[N ]

p(x)min{1,
∑

y ̸=f∗(x)

(
1+

q(x)2〈uf∗(x), uy − uf∗(x)〉2∑
x′ ̸=x q(x

′)2〈uf∗(x′), uy − uf∗(x)〉2
)− d

2 ·χu,x}. (35)

This holds for any unembedding u and associative weight scheme q. In the following, we will
assume that the unembedding u are such that χu,x = 1, which is notably the case when the uy are
normalized (i.e., uy ∈ Sd−1).

Matching lower bound. Going back to (34), one can get a matching lower bound.

Ee[E(fq)] ≥
∑

x∈[N ]

p(x)Eex [ max
y ̸=f∗(x)

P(Zy ≤ 0|ex)]

≥
∑

x∈[N ]

p(x) max
y ̸=f∗(x)

Eex [P(Zy ≤ 0|ex)]

=
1

2

∑
x∈[N ]

p(x)(1− max
y ̸=f∗(x)

Eex [erf(
µy√
2Σy,y

)]).

To conclude, we need an inequality of anti-concentration for Gaussian variables. In essence, we
should distinguish two type of inputs x ∈ [N ]:

• the ones where µy/Σy,y will be large enough to store the association uf∗(x)e
⊤
x , which will

lead to an error decreasing exponentially fast;
• the ones where the same ratio is too small and that we should count in the lower bound.

16



Published as a conference paper at ICLR 2024

Following this split, one can go for the simple “survival” lower bound

Ee[E(fq)] ≥ sup
t>0

1− erf(t)

2

∑
x0∈[N ]

p(x0) max
y ̸=f∗(x0)

Eex0
[1µ2

y≤2Σy,yt2 ]

= sup
t>0

1− erf(t)

2

∑
x0∈[N ]

p(x0) max
y ̸=f∗(x0)

· · ·

Pex0
(‖ex0

‖2q(x0)2〈uf∗(x0), uy − uf∗(x0)〉
2 ≤ 2t2

∑
x ̸=x0

q(x)2〈uf∗(x), uy − uf∗(x0)〉
2).

≥ sup
t,s>0

1− erf(t)

2

∑
x0∈[N ]

p(x0)Pex0
(‖ex0

‖2 ≤ s) max
y ̸=f∗(x0)

· · ·

1sq(x0)2⟨uf∗(x0),uy−uf∗(x0)⟩2≤2t2
∑

x ̸=x0
q(x)2⟨uf∗(x),uy−uf∗(x0)⟩2 .

Without optimizing for constants, taking t = 1/
√
2 and s = d, we get the simple “survival bound”

that there exists a constant c such that

Ee[E(fq)] ≥ c
∑

x∈[N ]

p(x)1dq(x)2⟨uf∗(x),uy−uf∗(x)⟩2≤
∑

x′ ̸=x q(x′)2⟨uf∗(x′),uy−uf∗(x)⟩2 . (36)

The constant can be computed explicitly as

c =
1− erf(1/

√
2)

2
· P(‖ex0

‖2 ≤ d) > 0.158 · 1/2 = 0.079,

where we have used that ‖ex0‖2 is a χ2-variable with mean d hence smaller median, which implies
that P(‖ex0‖2 < d) > 1/2.

Quasi-orthogonal output embeddings. Let us consider u : [M ] → Rd such that (uy)y∈[M ] is
η-quasi orthogonal.

Upper bound. Going back to (35), we can work out a lower bound with

q(x0)
2〈uf∗(x0), uy − uf∗(x0)〉2∑

x ̸=x0
q(x)2〈uf∗(x), uy − uf∗(x0)〉2

≥ q(x0)
2(1− η)2∑

x ̸=x0
q(x)2(1f∗(x)=y(1 + η)2 + 1f∗(x)=f∗(x0)(1− η)2 + 1f∗(x)/∈{y,f∗(x0)}4η

2)

≥ q(x0)
2(1− η)2

4
∑

x ̸=x0
q(x)2(1f∗(x)=y + 1f∗(x)=f∗(x0) + 1f∗(x)/∈{y,f∗(x0)}η

2)

=
1

4

q(x0)
2(1− η)2∑

x q(x)
2((1− η2)1f∗(x)∈{y,f∗(x0)} + η2)− q(x0)2

=
1

4

q(x0)
2(1− η)2

η2‖q‖2 + (1− η2)
∑

x;f∗(x)∈{y,f∗(x0)} q(x)
2 − q(x0)2

=
1

4

q(x0)
2(1− η)2

η2‖q‖2 + (1− η2)(Qy +Qf∗(x))− q(x0)2
.

Here, we have used that for the numerator

〈uf∗(x0), uy − uf∗(x0)〉
2 = (〈uf∗(x0), uy〉 − 1)2 ≥ (1− η)2,

and the same for the term in the denominator (since their ratio cancels out), as well as

〈uy, uy − uf∗(x0)〉
2 ≤ (1 + η)2, 〈uf∗(x), uy − uf∗(x0)〉

2 ≤ (2η)2.

Moreover, we have introduced
Qy =

∑
x′;f(x′)=y

q(x′)2. (37)
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Using the fact that (1+ x)d = exp(d log(1+ x)) ≤ exp(dx), an upper bound directly follows from
those derivations,

Ee[E(fq)] ≤
∑

x0∈[N ]

p(x0)min{1,M exp
(
−d(1− η)2

2

q(x0)
2

4η2‖q‖22 + 2Q∞

)
}, (38)

where
Q∞ = max

y∈[M ]
Qy = max

y∈[M ]

∑
x;f∗(x)=y

q(x)2. (39)

Matching lower bound. Similarly, one can work out a lower bound with
q(x0)

2〈uf∗(x0), uy − uf∗(x0)〉2∑
x ̸=x0

q(x)2〈uf∗(x), uy − uf∗(x0)〉2
≤ q(x0)

2(1 + η)2∑
x ̸=x0

q(x)2(1f∗(x)=y(1− η)2 + 1f∗(x)=f∗(x0)(1 + η)2

≤ q(x0)
2

1−η
1+ηQy +Qf∗(x) − q(x0)2

.

Combining this with (36), we get the lower bound, with c = .079,

Ee[E(fq)] ≥ c
∑

x∈[N ]

p(x)1(d+1)q(x)2≤ 1−η
1+η Q∞

. (40)

Remark that in the previous lower bound, we have dropped the previous factor η2‖q‖2 that appears
in the upper bound. We expect this term to actually be present in a tighter error characterization.
In essence, we expect the embeddings to fill the full space Sd−1 so that most of the difference
〈uf∗(x), uy − uf∗(x0)〉2 typically behave as η2. However, quantifying this precisely is beyond the
scope of this paper.

Random output embeddings. In the case where the output embeddings are random, we can dis-
tinguish two cases. The cases where the embeddings are η-quasi orthogonal, where one can retake
the previous derivations, and the case where they are not, which will have a small probability if η is
large enough.

Consider u to be random embeddings taking uniformly on the unit sphere. Let us introduce the event
Eη = {u is η-quasi orthogonal}.

We have seen in the proof of Lemma 1 that

1− P(Eη) ≤
M2

2
√
π

√
2

η2d
exp(−η

2d

2
). (41)

For any random variable Z that is bounded by one, we have the bounds
P(E)E[Z|E] ≤ E[Z] = (1− P(E))E[Z|¬E] + P(E)E[Z|E] ≤ (1− P(E)) + E[Z|E]. (42)

The upper bound of Theorem 1 directly follows from plugging (38) and (41) into this last equation

Ee,u[E(fq)] ≤
M2

2
√
π

√
2

η2d
exp(−η

2d

2
) +

∑
x∈[N ]

p(x0)
∑

y ̸=f∗(x0)

(
1 +

(1− η)2

4

q(x0)
2

‖q‖22

)− d
2 . (43)

Since this is true for any η, one can consider the infimum in the upper bound.

In term of lower bound, retaking (40),

Ee,u[E(fq)] ≥ sup
η≥0

c(1− M2

2
√
π

√
2

η2d
exp(−η

2d

2
))

∑
x∈[N ]

p(x)1(d+1)q(x)2≤2 1−η
1+η Q∞

. (44)

In particular, when d > 8 log(M) one can consider η < 1/2 such that η2d > 4 log(M), which leads
to (η − 1)/(η + 1) > 1/3, and, if M ≥ 4

1− M2

2
√
π

√
2

η2d
exp(−η

2d

2
) ≥ 1− 1

2
√
π

1√
2 log(M)

> 2/3.

All together we have proven that, as long as M ≥ 4 and d ≥ 8 log(M) with c1 > .079 · 2/3 > .052
and c2 > 1/3,

Ee,u[E(fq)] ≥ c1
∑

x∈[N ]

p(x)1(d+1)q(x)2≤c2Q∞ . (45)
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Writing upper bounds as survival bounds. Until now, we have written the upper bounds as
the sum of exponential (38) and the lower bounds as a sum of missed associations (45), which we
called “survival” bound. In order to best read how tight our characterization is, one can rewrite the
upper bounds as survival bounds. In particular, as we did in the lower bound, we will dissociate x
corresponding to a small exponential and the other ones. Using the fact that the p(x) sum to one, we
get, when the output embeddings are η-quasi orthogonal,

Ee[E(fq)] ≤
∑

x0∈[N ]

p(x0)min{1,M exp
(
−d(1− η)2

2

q(x0)
2

4η2‖q‖22 + 2Q∞

)
}

≤
∑

x0∈[N ]

p(x0) inf
t>0

M exp
(
− t(1− η)2

4

)
+ 1dq(x0)2≤t(2η2∥q∥2

2+Q∞)

≤ inf
t>0

exp
(
− t(1− η)2

4
+ log(M)

)
+

∑
x∈[N ]

p(x)1dq(x)2≤t(2η2∥q∥2
2+Q∞).

To simplify the bound, consider the constraints
η2 ≤ Q∞/‖q‖22, and η < 1/2, (46)

we get, using t = 16(log(M) + γ log(d)) for γ > 0, we get

Ee[E(fq)] ≤ inf
t>0

exp
(
− t(1− η)2

4
+ log(M)

)
+

∑
x∈[N ]

p(x)1dq(x)2≤t(2η2∥q∥2
2+Q∞)

≤ inf
t>0

exp
(−t+ 16 log(M)

16

)
+

∑
x∈[N ]

p(x)1dq(x)2≤3tQ∞

≤ exp(−γ log(d)) +
∑

x∈[N ]

p(x)1dq(x)2≤48(log(M)+γ log(d))Q∞ .

Finally, when the output embedding are η-quasi orthogonal with η satisfying (46), we get

Ee[E(fq)] ≤ inf
γ>0

d−γ +
∑

x∈[N ]

p(x)1dq(x)2≤48(log(M)+γ log(d))Q∞ . (47)

When the unembeddings are chosen at random, when d > 8 log(M), one can choose η < 1/2, and
(43) is cast as, chosen dη2 = 4 log(M) + 2γ log(d),

Ee,u[E(fq)] ≤ inf
η,γ

M2

2
√
π

√
2

η2d
exp(−η

2d

2
)

+ d−γ +
∑

x∈[N ]

p(x)1dq(x)2≤16(log(M)+γ log(d))(2η2∥q∥2
2+Q∞)

≤ inf
γ

d−γ

2
√
π
√
2 log(M) + γ log(d)

+ d−γ +
∑

x∈[N ]

p(x)1
dq(x)2≤16(log(M)+γ log(d))(

8 log(M)+4γ log(d)
d ∥q∥2

2+Q∞)

≤ inf
γ

2d−γ +
∑

x∈[N ]

p(x)1
dq(x)2≤16(log(M)+γ log(d))(

8 log(M)+4γ log(d)
d ∥q∥2

2+Q∞)
.

Finally, we have shown that when the embeddings are taken at random

Ee,u[E(fq)] ≤ inf
γ

2d−γ +
∑

x∈[N ]

p(x)1
dq(x)2≥16(log(M)+γ log(d))(

8 log(M)+4γ log(d)
d ∥q∥2

2+Q∞)
. (48)

A.5 PROOF OF PROPOSITION 2

When p(x) ' x−α, q(x) = p(x)ρ ' x−ρα, hence,

p({x ∈ [N ] | dq(x)2 ≤ p∗‖q‖2}) ' p({x ∈ [N ] |x ≤ (d‖q‖−2)1/2ρα}) ' (d‖q‖−2)−(α−1)/2ρα).

We are left with the computation of φ(N) := ‖q‖2 '
∫ N

1
q(x)2 dx '

∫ N

1
x−2ρα dx. When 2ρα >

1, this integral reads 1−N−2αρ+1 which is bounded by one.
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A.6 PROOF OF PROPOSITION 3

When p(x) ' x−α, q(x) = 1x∈[P ]p(x)
ρ ' 1x∈[P ]x

−ρα, we get

p({x ∈ [N ] | dq(x)2 ≤ p∗‖q‖2}) = p({x ∈ [P ] | dq(x)2 ≤ p∗‖q‖2}) + p({x > P})

'
( d

φ(P )

)−(α−1)/2ρα
+ P−α+1.

The optimal threshold P is set by equalizing the two terms, which we compute as( d

φ(P )

)−(α−1)/2ρα
= P−α+1

⇔ −α+ 1

2ρα
log(d)− −α+ 1

2ρα
log(P ) = (−α+ 1) log(P )

⇔ log(d)− log(P ) = 2ρα log(P )

⇔ P = d1/(2ρα+1).

This choice of P leads to a scaling in, with fρ,[P ] = fqρ,[P ]
,

Ee,u[E(fρ,[P ])
(log)
� p({x ∈ [N ] | dq(x)2 ≤ p∗‖q‖2}) ' P−(α−1) = d−(α−1)/(2ρα+1).

A.7 PROOF OF THEOREM 2

The lower bound directly follows from (8) together withQ∞ = p∗‖q‖2 and the fact that q is invariant
to rescaling, so the best we can do is fit as much memories P as we can until reaching 3(d+1) = p∗P
leading to a scaling in

∫∞
P
p(x) dx = CαP

−α+1/(α+ 1).

A.8 PROOF OF PROPOSITION 4

In order to get scaling with both finite data and finite memory simultaneously, we used a simple
strategy:

• With high probability 1− cT−1+1/α for some constant c, q̂ is similar to q.
• When q̂ is similar to q, the scaling with d derived from Theorem 1 is left unchanged by

substituting q by q̂.

Rather than using a uniform concentration inequality on the full q̂, we will proceed individually
on each q̂(x). Denoting by DT the random dataset of T data, for any sequence of set (Ex)x∈[N ]

–typically we will choose Ex = {q̂(x) > q(x)/2},

Eu,e,DT
[E(fq̂)] =

∑
p(x)Pu,e,DT

(f(x) 6= f∗(x))

≤
∑

p(x)Pu,e,T (q̂ /∈ Ex) +
∑

p(x)Pu,e,T (f(x) 6= f∗(x) | q̂ ∈ Ex).

The second term has been worked out before, using that Q∞ ≤ ‖q‖22

Pu,e,T (f(x) 6= f∗(x) | q̂ ∈ Ex) ≤ inf
γ

2d−γ + PT (dq̂(x)
2 ≤ 16cγ(Q̂∞ +

8cγ‖q̂‖22
d

) | q̂ ∈ Ex).

≤ inf
γ

2d−γ + PT (dq̂(x)
2 ≤ c′γ‖q̂‖22 | q̂ ∈ Ex),

where c′γ = 16cγ(1 +
8cγ
d ).

Without thresholding. Let us first start with the scheme (11), with ρ > 0

q̂(x) = (
1

T

∑
t∈[T ]

1x=Xt)
ρ, q(x) = p(x)ρ.

Using a simplification of Chernoff bound for Bernoulli variables (see e.g., Hoeffding, 1963), we get
the probability bound (the randomness being due to the data),

PT (q̂(x) <
q(x)

21/ρ
) = PT (p̂(x) <

p(x)

2
) ≤ exp(−Tp(x)/8).
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As a consequence, reusing the proof of Proposition 1, when p follows a Zipf law (1),

E[E(fq̂)] =
∑

p(x)P(f(x) 6= f∗(x))

≤
∑

p(x) exp(−Tp(x)/8) +
∑

p(x)P(f(x) 6= f∗(x) | q̂(x) > q(x)/21/ρ)

≲ T−1+1/α +
∑

p(x)P(f(x) 6= f∗(x) | q̂(x) > q(x)/21/ρ).

We are left with the computation of the second term, denote cρ = 2−1/ρ, we have

Eu,ePT (f(x) 6= f∗(x) | q̂(x) > cρq(x)) ≤ inf
γ

2d−γ + PT (dq̂(x)
2 ≤ c′γ‖q̂‖22 | q̂ ≥ q(x)/2).

By definition of q̂, together with Jensen’s inequality when ρ ≤ 1/2

1

N
=

1

N

∑
x∈[N ]

(q(x)2)1/2ρ ≥ (
1

N
‖q‖22)1/2ρ,

hence ‖q‖2 ≤ N1−2ρ. When ρ > 1/2, the worst value of ‖q‖ is when all the mass is concentrated
on one q(x′), in which case ‖q‖2 ≤ 1. With the corresponding ψ(N), we get

Eu,ePT (f(x) 6= f∗(x) | q̂(x) > cρq(x)) ≤ inf
γ

2d−γ + 1dc2ρq(x)
2≤c′γφ(N).

Finally, reusing the proof of Proposition 2, and hiding logarithmic factors,

E[E(fq̂)] =
∑

p(x)P(f(x) 6= f∗(x))

≲ T−1+1/α + inf
γ

2d−γ + p({x | dc2ρq(x)2 ≤ c′γψ(N)}).

≲ T−1+1/α + (
d

ψ(N)
)−(α−1)/2ρα.

The case ρ = 0, can be easily treated by considering an error if and only if the number of seen
elements |{xt | t ∈ [T ]}| is smaller than d.

With thresholding. Let us now consider the thresholding scheme (12), with P ∈ N and ρ ≥ 0

q̂(x) = p̂(x)ρ1x∈topP ((xt)t∈[T ]), q(x) = p(x)ρ1x∈[P ].

We basically proceed with the same technique but with the event Ex the probability that x belongs
to the top P of the empirical frequencies. When dealing with a binomial distribution, one can
enumerate all possible outcomes for the empirical frequencies. For a template a ∈ ∆[N ], we said
that a sequence (xt) is of type a if its empirical frequency is equal to a,

T (a) = {(xt) ∈ [N ]T | ∀x ∈ [N ],
∑
t∈[T ]

1xt=x = Ta(x)}.

Some enumeration arguments that can be found in Cover & Thomas (1991, Chapter 11) leads to

PDT
((xt) ∈ T (a)) = |T (a)| exp(−T (H(a) +DKL(a‖p))) ≤ exp(−T ·DKL(a‖p))).

Hence, the probability that x does not belong to the top P of the empirical frequencies of (xt) is
bounded by

PDT
(x /∈ topP (xt) ∈ T (a)) ≤

∑
a∈A

exp(−T ·DKL(a‖p))),

where A is the set of all templates a where x is not in the top P of (a(x′))x′∈[N ]. With T samples
over N elements there are at most (N + 1)T different type templates, hence∑

a∈A
exp(ca · T ) ≤ (T + 1)N sup

a∈A
exp(ca · T ) = sup

a∈A
exp(ca · T +N log(T + 1)).

As a consequence,

PDT
(x /∈ topP (xt) ∈ T (a)) ≤ sup

a∈A
exp(−T ·DKL(a‖p)) +N log(T + 1))
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Now, it is actually to possible to remove the N log(T + 1) in the exponential and extends this type
of result to generic Polish spaces (see, e.g. Dinwoodie, 1992).

PDT
(x /∈ topP (xt) ∈ T (a)) ≤ sup

a∈A
exp(−T ·DKL(a‖p)))

We are left with the computation of the “information projection distance” between p and the set of
distribution where x does not belong to the top P . In order to get x out of the top P of p one should
switch p(x) with p(P ), which leads to (without caring for exact constants)

DKL(p
′‖p) ' p(x) log(p(x)/p(P )) + p(P ) log(p(P )/p(x)) = (p(x)− p(P )) log(p(x)/p(P ))

When considering x < P/2 and p following a Zipf law we get

DKL(p
′‖p) ≳ (p(x)− p(2x)) log(p(P/2)/p(P )) ≥ cαx

−α(1− 2−α)α log(2) = c′αp(x)

where c′α = cα(1− 2−α)α log(2). As a consequence, for any P ∈ N,

EDT
[E(fq̂)] ≤ c0P

−α+1 +
∑

x∈[P/2]

p(x)P(f(x) 6= f∗(x)).

≤ c0P
−α+1 +

∑
x∈[P/2]

p(x)(exp(−Tc′αp(x)) + P(f(x) 6= f∗(x) |x ∈ topP ((xt)))

≤ c0P
−α+1 + exp(−2αTc′αP

−α) +
∑

x∈[P/2]

p(x)P(f(x) 6= f∗(x) |x ∈ topP ((xt)).

When ρ = 0, setting P = min(c1d, T
−1/α/ log(T )) with c1 chosen so that all x stored in memory

lead to f∗(x) = f(x) gives to the right scaling with both T and d: up to logarithmic factors,

E[E(fq̂)] ≲ d−α+1 + T−1+1/α + exp(−c3 log(T )α).

Because α > 1, the last term decreases faster than any polynomial power of T , hence ends up being
negligible in front of T−1+1/α.

For the case ρ ∈ (0, 1] one can dissociate two events: the event where x belongs to the top P/2
empirical frequencies; the event where p̂(x) > p(x)/2; and conclude with similar derivations as
precedently

E[E(fq̂)] ≤ c0P
−α+1 + exp(−2αTc′αP

−α) + c4T
−1+1/α

+
∑

x∈[P/2]

p(x)P(f(x) 6= f∗(x) |x ∈ topP ((xt)), p̂(x) > p(x)/2).

Retaking previous arguments leads to the same scalings as the ones of Proposition 3 with respect to
d and a scaling in T−1+1/α with respect to T . This ends the proof of the mixed scaling with both
finite data and finite memory capacity.

A.9 LEARNING THE INPUTS EMBEDDINGS

In instances where the embeddings are learned within the linear model (2), one may optimize them
by merging all input token embeddings that are associated with the same output, which is what we
actually observed in practice in Figure 8. Proposition 5 captures the resulting theoretical perfor-
mance.

Proposition 5 (Improvement for learned inputs embeddings). Let the input embeddings be set to
ex = uf∗(x). Assume without restrictions that p(y) is decreasing with y. Consider the unembeddings
where (uy)y∈[P ] are η-quasi orthogonal, and uy = 0 if y is not among theP -th most frequent classes.
Let q0 ∈ RN , and set q ∈ RM as q(y) =

∑
x;f∗(x)=y q0(x), then

E(fWq0
) ≤ p({x |1f∗(x)/∈[P ]q(f∗(x)) < 2η‖q‖∞ + 2η2‖q‖1}). (49)

In particular, it is possible to consider a thresholding associative scheme q∗ such that, if y follows a
Zipf law p(y) = Cβy

−β , E(fWq∗
) = O((d/ log(d))−β+1).
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Proposition 5 shows that when learning the input embeddings one can expect to replace the scaling
in d−α+1 that depends on the law of x, by a scaling that depends on the law of y. It illustrates the
usefulness to learn embeddings when the law of x is well factored by the law of y. This is typically
the case when x are news articles associated with a few topics y.

Proof. When e can be optimized, it is natural to set ex to be a constant for all x that are associated
with the same output. Let q0 ∈ ∆[N ] be an associative scheme,

1fWq0
(x0) ̸=f∗(x0) = 1maxy ̸=f∗(x0)

∑
x∈[N] q0(x)e

⊤
x0

exu⊤
x (uy−uf∗(x0))>0.

In order to lower the probability, one wants to minimize the left expression, which leads to the will
to maximize e⊤x0

exu
⊤
f∗(x)

uf∗(x0). This can be done by setting

∀x, x′ ∈ [N ], e⊤x ex′ = u⊤f∗(x)uf∗(x′). (50)

Such an isometry can be built by setting ex = uf∗(x), leading to the new characterization

1fWq0
(x0) ̸=f∗(x0) = 1maxy≠y0

∑
z∈[M] q0(z)u

⊤
y0

uzu⊤
z (uy−uy0 )>0,

where y0 = f∗(x0) and
q(y) :=

∑
x;f∗(x)=y

q0(x). (51)

When u are η-quasi orthogonal for its first P values and set to zero otherwise, we have∑
z∈[M ]

q(z)u⊤y0
uzu

⊤
z (uy − uy0) = q(y0)(u

⊤
y0
uy − 1) + q(y)(u⊤y0

uy − (u⊤y0
uy)

2)

+
∑

z∈[M ] ̸={y,y0}

q(z)u⊤y0
uz(u

⊤
z uy − u⊤z uy0)

≤ −q(y0) + |q(y0)|η + |q(y)|η +
∑

z∈[M ] ̸={y,y0}

|q(z)|η(η + η)

≤ −q(y0) + 2η sup
z ̸=y0

|q(z)|+ 2η2
∑

z∈[M ]

|q(z)|

= −q(y0) + 2η‖q‖∞ + 2η2‖q‖1.

As a consequence, we get

E(fWq0
) ≤

∑
x∈[N ]

p(x)1q(f∗(x))≤2η∥q∥∞+2η2∥q∥1
.

Using that, for any A : [M ] → Rd,
∑

x p(x)A(f∗(x)) =
∑

x

∑
y p(x, y)A(y) =

∑
y p(y)A(y),

E(fWq0
) ≤

∑
y∈[M ]

p(y)1q(y)≤2η∥q∥∞+2η2∥q∥1
. (52)

Note that when the embeddings u are chosen uniformly at random on the sphere, and d > 4 log(M),
a similar bound will hold up to an extra higher-order term as seen in the proof of Theorem 1.

When u is defined to be zero on [M ] \ [P ], and only η-quasi orthogonal for (uy)y∈[P ], the same
characterization holds with

E(fWq0
) ≤

∑
y∈[M ]\[P ]

p(y) +
∑
y∈[P ]

p(y)1q(y)≤2η∥q∥∞+2η2∥q∥1
. (53)

Finally,if η2 is set to 1/4P , and q∗ = 1y∈[P ], we get the upper bound

E(fWq0
) ≤ p({x |f∗(x) > P}).

The best P that one can consider is that such d/4P = η2d = 4 log(P ). Setting P = d/16 log(d),
and bounding

∑
y>P y

−β ≤
∫∞
P
t−β dt ends the proof.
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A.9.1 DISCUSSION ON COMPENSATION MECHANISMS

When optimizing the embeddings, one may turn the negative interference mechanisms illustrated in
Figure 2 into positive ones.

Assume that ex = uf∗(x), our model (4) become, denoting uf∗(x) = u0 for simplicity,

f(x) = argmax
y∈[M ]

u⊤y Wu0; W =
∑

y′∈[M ]

q(y′)uy′u⊤y′ . (54)

Similarly as before an error is made when

max
y∈[M ]

∑
y′∈[M ]

q(y′)(uy − u0)
⊤uy′u⊤y′u0 > 0. (55)

When the output embeddings are learned, one can optimize them to induce compensation mecha-
nisms. For example, when M = 3, and y1 is competing when y0 = f∗(x) as the argmax of (54) due
to a large storage of q(y1) compared to q(y0), one could benefit of q(y2) to ensure that

q(y0)(u
⊤
1 u0 − 1) + q(y1)(1− u⊤1 u0)u

⊤
1 u0 + q(y2)(u1 − u0)

⊤u2u
⊤
2 u0

< 0 < q(y0)(u
⊤
1 u0 − 1) + q(y1)(1− u⊤1 u0)u

⊤
1 u0.

In this situation, the score u⊤0 Wex of y0 would be higher then u⊤y1
Wex ensuring that we do not

make an error when predicting f(x) (54).

We refer the interested reader to Elhage et al. (2022) for related investigation.

A.10 LOSS GRADIENT

The cross-entropy loss is written as

ℓ((x, y,W ) = − log(
exp(u⊤y Wex)∑

z∈[M ] exp(u
⊤
z Wex)

) = −u⊤y Wex + log(
∑

z∈[M ]

exp(u⊤z Wex)).

Hence stochastic gradient descent will update the matrix W by adding terms of the form

∂W ℓ((x, y),W ) = −uye⊤x +

∑
z∈[M ] exp(u

⊤
z Wex)uze

⊤
x∑

y∈[M ] exp(u
⊤
y Wex)

= −uye⊤x +
∑

z∈[M ]

pW (z|x)uze⊤x

= −(1− pW (y|x))uye⊤x +
∑
z ̸=y

pW (z|x)uze⊤x

= −(1− pW (y|x))(uye⊤x −
∑
z ̸=y

pW (z|x)
1− pW (y|x)

uze
⊤
x ).

Note that pW (z|x)/(1− pW (y|x)) corresponds the the probability of the z conditioned with respect
to x under the event that z is not y, formally

pW (z|x)
1− pW (y|x)

= p(z|x, z 6= y).

Finally,

∂W ℓ((x, y),W ) = −(1− pW (y|x))(uye⊤x −
∑
z ̸=y

pW (z|x, z 6= y)uze
⊤
x )

= −(1− pW (y|x))(uye⊤x − Ez∼pW
[uz|x, z 6= y]e⊤x ).

While, it is clear that the model (4) does not describe the solution found by cross entropy, one might
hope that the term E[uz]e⊤x will somewhat cancel themselves out and be an order of magnitude
smaller than the leading term uye

⊤
x .
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A.11 APPROXIMATE UPDATES

The formula (20) is justified by the fact that a matrix Wt = Wqt will lead to an update (18) at time
t according to the rule (19), assuming exp(uzWex) ≈ 1 for any z 6= f∗(x),

qt+1(x)− qt(x) = 1xt=xγ · (1− pWqt
(f∗(x)|x)) ≈

1xt=xγ

1 + (M − 1)−1 exp(qt(x))
,

together with the fact that x will be seen Tp(x) times on average in T samples.

Similarly, very large batch size b = |B| and T/b update steps, each xwill appear in each batch about
bp(x) times, which leads to the rough approximation

qγ,b(x) = fT/b(0) = f ◦ f ◦ · · · ◦ f︸ ︷︷ ︸
T/b times

(0), where f : x 7→ x+
γbp(x)

1 +M−1 exp(x)
. (56)

In practice, we can approximate the effect of a batch by counting how many times x was in this
batch and setting bp(x) to be the exact count, which will lead to tighter approximation. This is this
approximation that we plot on Figure 13.

A.12 GRADIENT FOR LAYER NORM

Let x ∈ [N ], y ∈ [M ] and W ∈ Rd×d. When processing the input x, layer norm adds a normaliza-
tion layer

f :W 7→ W̄ =
W

‖Wex‖
.

Using the chain rule, with D denoting the Jacobian operator,

∇W ℓ(x, y; f(W )) = (DW f(W ))⊤∇f(W )ℓ(x, y; f(W )) = (DW f(W ))⊤∇W̄ ℓ(x, y; W̄ ).

We are left with the computation of the Jacobian. We proceed with chain rule

f(W ) = f1(f2(f3(W ))) ·W, f1 : t ∈ R 7→ t−1, f2 : e ∈ Rd 7→ ‖e‖, f3 :W ∈ Rd×d 7→Wex.

DW f(W )⊤ = ∇W (f1 ◦ f2 ◦ f3)(W )W⊤ + f1(f2(f3(W ))) · I

=
−∇W (f2 ◦ f3)(W )

f2(f3(W ))2
W⊤ +

1

‖Wex‖
· I =

−f3(W )(DW f3(W ))

‖f3(W )‖‖Wex‖2
W⊤ +

1

‖Wex‖
· I

=
−Wexe

⊤
x

‖Wex‖3
W⊤ +

1

‖Wex‖
· I =

1

‖Wex‖
(I − W̄exe

⊤
x W̄

⊤).

This proves the formula written in the main text.

B EXPERIMENTAL DETAILS

B.1 MAXIMAL PARAMETERS UPDATES

In order to carefully choose step-sizes that scale well with width d in optimization algorithms, we fol-
low Yang et al. (2021) and consider learning rates consistent with maximal feature learning updates.
Here we consider the following initializations:

• W is initialized as a Gaussian random matrix with N (0, 1d ) entries.
• Input embeddings ex and output embeddings uy are initialized as either random on the unit-

sphere in d dimensions, or with Gaussian N (0, 1d ) entries. In both cases, every embedding
has norm ≈ 1.

Updates to W . The updates to the matrix W look as follows:

• SGD with step-size ηW :

W ′ =W + ηW δW, δW =
∑
j

αjuyj
e⊤xj

,
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with αj = Θd(1), and a dimension-independent number of elements in the sum. Choos-
ing ηW = Θ(1) then ensures that for any input embedding ex, we have ‖W ′ex‖ = Θ(1)
as desired.

• Adam (idealized here as signSGD) with step-size η:

W ′ =W + ηW sign(δW ), sign(δW )ij =
δWij

|δWij |
.

The coordinates of sign(δW ) are now Θ(1) instead of Θ(1/d), thus the step-size needs to
be taken as ηW = Θ(1/d) in order to satisfy ‖W ′ex‖ = Θ(1) (see (Yang et al., 2021; Yang
& Littwin, 2023) for more details)

Updates to embeddings. The updates to embeddings look as follows:

• SGD updates:

u′y = uy + ηuδuy, δuy =
∑
j

αjWexj
,

e′x = ex + ηeδex, δex =
∑
j

α′
jW

⊤uyj
,

with αj = Θ(1) and a dimension-independent number of js. Since the algorithm en-
sures ‖Wexj‖ = Θ(1) and ‖W⊤uyj‖ = Θ(1) throughout training, choosing ηu, ηe =
Θ(1) ensures that these conditions continue to hold after each update.

• Adam/signSGD updates:

u′y = uy + ηu sign(δuy), (sign(δuy))i =
(δuy)i
|(δuy)i|

,

e′x = ex + ηe sign(δex), (sign(δex))i =
(δex)i
|(δex)i|

.

Since the updates have coordinates of order Θ(1), in order to ensure that embeddings re-
main of norm Θ(1) after each update, we thus need ηu, ηe = Θ(1/

√
d).

B.2 ADDITIONAL FIGURES

Our theory predicted optimal scaling laws in d−1+α. However, there are some catches behind the
proof:

• The lower bound is true when d � N = 100, otherwise the error can actually reach zero
when d becomes larger than a tipping number dt which compares to N . This fact was
illustrated on Figure 3. Increasing N augments the tipping point dt, rectifying the learning
curve as illustrated on Figure 9.

• This was proven for models where q(x, y) = q(x), and where q(x) is not optimized with
respect to f∗(x). As such, it is not clear if those lower bounds hold for optimization-based
algorithms, although we argue that we do not expect different mechanisms to take place in
the proofs. We illustrate this empirically in the left of Figure 12.

Similarly, the unreasonable effect of learning the embeddings would be highly disappointing if those
were hard to optimize in practice. The right of Figure 12 illustrates how with a few steps, one can
achieve a zero generalization error when learning the embeddings.

In order to better understand gradient updates, Figure 14 shows the dynamic of the association
memory W updated with SGD and a large step size. To validate the approximation (20), Figure 4
plots the generalization error associated with SGD and its theoretical approximation, while Figure 5
illustrates the idealized association scheme qγ associated with a step size γ, batch size one and a
Zipf law on x ∈ [N ].

In order to understand the effect of Adam, we compare it with plain SGD and SGD with rescaled
variance on population data. That is, we consider gradient descent with ∇WL(W ) (16). The rescale
variance SGD, consists in dividing the gradient by the variance of ∇W ℓ(X, f∗(X);W ) (17) when
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Figure 9: Same figure as the right one of Figure 3 yet with a bigger N , here N = 1000. The dashed
curves represent E = .35 · d−1/4 (orange) and E = 3.5 · d−1 (green). They validate the scaling predicted
by theory where we used N = +∞ to get tight polynomial scalings of E (5) with respect to d.

Figure 10: Representation of the weight matrix (u⊤
y Wex)y,x ∈ RM×N for N = 10, M = 5, f∗(x) =

xmod.M . The data x follows a Zipf-law with α = 1 and T = 103. The matrix W is obtained according
to (4) together with the scheme (11). Left: ρ = 0 (10), d = 10, there is not enough memory capacity, and
the model does not succeed to store memories, leading to a large generalization error. Middle left: ρ = 0
(10), d = 50, there is enough memory capacity, we learn the right association y = xmod.M . Middle
right: ρ = 1 (11), d = 10, the weighting q allows to store the most important memories beside having a
small memory capacity. Right: ρ = 1 (11), d = 50, the weighting q is too strong which does not allow to
store memory associated with rare association (bottom of the matrix).

X ∼ p (1). For simplicity, we consider Adam with β1 = β2 = 0, in which case, it equates sign
SGD, i.e., SGD when considering the sign of each entries of ∇WL(W ) in the updates Wt →Wt+1.
Figures 15 and 16 underpins our intuition that the usefulness of Adam lies in its ability to rescale
gradient updates, an effect that could equally be obtained by tuning the learning rate.
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Figure 11: Learning curve of the generalization error E (5) with respect to the number of data processed
by stochastic gradient descent in the setting of Figure 6. Left: comparison on a single run. A big step
size allows to store more memory at the risk of overwriting past association, which explains the higher
variance of the blue curve but its overall better performance. A small step size will avoid loss spikes due to
memory overwriting, but will take more time to store rare associations, leading to worse performance. By
decreasing the learning rates along training, e.g., with the “StepLR” scheduler (Paszke et al., 2019), one
can get the best of both world, i.e., store memories fast at the beginning of training when storage capacity
is underused, while being more cautious at the end of training when there is no more “free” memory space.
Right: Similar plot with N = 30 averaged over one hundred runs.
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Figure 12: Scalings with respect to d for optimization-based algorithms, in the setting of Figure 3. Left:
optimization-based algorithms beat the best algorithm designed by hands with q(x, y) = q(x). Note how
the curve seems to have the same optimal exponent E � d−α+1 (the left part of the figure show similar
slopes for all curves) yet with smaller constant in front, leading to earlier typing point before reaching
zero generalization error due to full storage of all the associations. Middle: Comparison of learning the
sole matrix W (blue), or learning the embeddings e and u (orange), together with the possibility to use
non-linear model uy ReLU(ex) with e and u learned (green). All curves are obtained after 103 updates
with batch size 103. Right: Comparison with the same setting as Figure 7. Learning the embeddings or
going non-linear allows to impressively optimize memory storage, leading to better exponent with respect
to d and earlier tipping point for a fixed number of updates.
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Figure 13: Same as Figure 4 yet with batch size equals one thousands |B| = 103.
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Figure 14: Gradient descent dynamics similar to Figure 6 with d = 10 and a fixed step size γ =
10. From time to time, we represent here t ∈ {0, 4, 5, 6, 8, 9, 11, 30, 32, 37, 49, 62, 75, 90}, stochastic
gradient descent will hit an association that is not properly stored in memory yet (the red boxes). It will
consequently update the weight matrix Wt → Wt+1 (side by side pairs) to store it. When d is big enough,
here d = 10, W will end by storing correctly all associations, leading to perfect generalization for future
examples.
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Figure 15: Comparison between SGD, signSGD and SGD with normalized variance on population gra-
dient seen from the association matrix Wt at different times in the setting of Figure 14. The different
rows correspond to the matrices Wt at time t ∈ {1, 2, 3, 7, 100}. Left: Plain SGD. Middle: Adam with
β1 = β2 = 0, i.e., SignSGD. Right: SGD with normalized variance.

0 50 100

Epoch

10−3

10−1

E
rr

o
r

SGD

sign SGD

norm SGD

0 50 100

Epoch

10−2

G
ra

d
ie

n
t

v
a
ri

a
n

ce

Figure 16: Left: Generalization error in the setting of Figure 15. Observe how SGD with rescaled
variance (in green), an effect that can be done with SGD after adapting the learning rate, actually performs
better than sign SGD (i.e., Adam with β1 = β2 = 0). Right: Variance of SGD along the training. As the
training goes, SGD is losing momentum due to smaller gradient variances, hence smaller updates.
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