
Under review as a conference paper at ICLR 2024

ODEFORMER: SYMBOLIC REGRESSION OF
DYNAMICAL SYSTEMS WITH TRANSFORMERS

Anonymous authors
Paper under double-blind review

ABSTRACT

We introduce ODEFormer, the first transformer able to infer multidimensional
ordinary differential equation (ODE) systems in symbolic form from the obser-
vation of a single solution trajectory. We perform extensive evaluations on two
datasets: (i) the existing ‘Strogatz’ dataset featuring two-dimensional systems; (ii)
ODEBench, a collection of one- to four-dimensional systems that we carefully
curated from the literature to provide a more holistic benchmark. ODEFormer
consistently outperforms existing methods while displaying substantially improved
robustness to noisy and irregularly sampled observations, as well as faster inference.
We release our code, model and benchmark dataset publicly.

1 INTRODUCTION

Recent triumphs of machine learning (ML) spark growing enthusiasm for accelerating scientific
discovery (Davies et al., 2021; Jumper et al., 2021; Degrave et al., 2022). In particular, inferring
dynamical laws governing observational data is an extremely challenging task that is anticipated to
benefit substantially from modern ML methods. Modeling dynamical systems for forecasting, control,
and system identification has been studied by various communities within ML. Successful modern
approaches are primarily based on advances in deep learning, such as neural ordinary differential
equation (NODE) (see Chen et al. (2018) and many extensions thereof). However, these models
typically lack interpretability due to their black-box nature, which has inspired extensive research
on explainable ML of overparameterized models (Tjoa & Guan, 2020; Dwivedi et al., 2023). An
alternative approach is to directly infer human-readable representations of dynamical laws.

This is the main goal of symbolic regression (SR) techniques, which make predictions in the form
of explicit symbolic mathematical expressions directly from observations. Recent advances in SR
make it a promising alternative to infer natural laws from data and have catalyzed initial successes in
accelerating scientific discoveries (Aréchiga et al., 2021; Udrescu & Tegmark, 2021; Butter et al.,
2021). So far, SR has most commonly been used to infer a function g(x) from paired observations
(x, g(x)) – we call this functional SR. However, in many fields of science, understanding a system
involves deciphering its dynamics, i.e., inferring a function f(x) governing its evolution via an ODE
ẋ = f(x) – we call this setting dynamical SR. The task is then to uncover f from an observed solution
trajectory (t, x(t)), where observations of x(t) may be noisy and times t may be irregularly sampled.

Contributions. In this work, we introduce ODEFormer, the first Transformer trained to infer
dynamical laws in the form of multidimensional ODEs from observational (noisy, irregularly sampled)
data. It relies on large-scale training of a sequence-to-sequence transformer on diverse synthetic data,
leading to efficient and scalable inference for unseen trajectories.

Faced with the lack of benchmarks for dynamical SR (the only existing one, called “Strogatz dataset”
(La Cava et al., 2021), contains only seven two-dimensional systems, and is not integrated with
sufficient precision (Omejc et al., 2023)), we also introduce ODEBench, a more extensive dataset
of 63 ODEs curated from the literature, which model real-world phenomena in dimensions one to
four (see Appendix A for details). On both benchmarks, ODEFormer achieves higher accuracy than
existing methods for irregular, noisy observations while being faster than most competitors. Our
code, models and benchmark dataset are available publicly at anonymized.

1

Under review as a conference paper at ICLR 2024

0 5 10
t

Language death model for two
languages

0 5 10
t

Landau equation (typical
time scale tau = 1)

0 5 10
t

Lotka-Volterra simple (as on
Wikipedia)

0 5 10
t

Duffing equation (weakly
non-linear oscillation)

0 5 10
t

Maxwell-Bloch equations
(laser dynamics)

0 5 10
t

Lorenz equations in
well-behaved periodic regime

0 5 10
t

Binocular rivalry model with
adaptation (oscillations)

0 5 10
t

SEIR infection model
(proportions)

Figure 1: ODEFormer reconstructs noisy and irregularly sampled trajectories well. Ground
truth trajectories (thick lines) are corrupted (5% noise) and unevenly sampled (50% of the equally
spaced points are dropped uniformly at random), yielding the observed trajectories (dots) from which
ODEFormer infers a symbolic ODE. Integrating this ODE from the original initial condition (thin
lines) shows that it approximates the observations well. We display 1, 2, 3 and 4 dimensional ODEs
from our dataset ODEBench – see Appendix A for details and results on the remaining ODEs.

Problem setting and overview. We assume observations {(ti, xi)}i∈[N],1 of a solution x(t) of

ẋ = f(x), for some f : RD → RD ,

where xi can be noisy observations of x(ti) with irregularly sampled ti. The task is to infer f
in symbolic form from the data {(ti, xi)}i∈[N]. As illustrated in Figure 2, ODEFormer is based
on large-scale pre-training on “labelled” examples that consist of randomly generated symbolic
mathematical expressions as the prediction target f and a discrete solution trajectory {(ti, xi)}i∈[N]

as input, which we obtain by integrating ẋ = f(x) for a random initial condition.

2 RELATED WORK

Modeling dynamical systems. We briefly mention some relevant cornerstones from the long history
of modeling dynamical systems from data, each of which has inspired a large body of follow-up work.
Neural ODEs (NODE) (Chen et al., 2018) parameterize the ODE f by a neural network and train it
by backpropagating through ODE solvers (either directly or via adjoint sensitivity methods). NODEs
require no domain knowledge but only represent the dynamics as a generally overparameterized
black-box model void of interpretability. Assuming prior knowledge about the observed data, physics-
informed neural networks (Raissi et al., 2019; Karniadakis et al., 2021) aim to model dynamical
systems using neural networks regularized to satisfy a set of physical constraints. This approach was
recently extended to uncover unknown terms in differential equations (Podina et al., 2023). In this
work, we aim to infer interpretable dynamical equations when no domain knowledge is available.

Approaches to symbolic regression. Symbolic regression aims to find a concise mathematical
function that accurately models the data. While it is possible to generate complex analytical ex-
pressions that fit the observations, an unnecessarily lengthy function is often impractical. Symbolic
regression seeks a balance between fidelity to the data and simplicity of form. Therefore, predictions
are typically also evaluated in terms of some “complexity” metric. Because the symbolic output
makes it difficult to formulate differentiable losses, SR has traditionally benefitted comparably little
from advances in autodifferentiation and gradient-based optimization frameworks. The dominant
approach has thus been based on evolutionary algorithms such as genetic programming (GP) (La Cava
et al., 2016b; 2018; Kommenda et al., 2020; Virgolin et al., 2021; Tohme et al., 2022; Cranmer, 2023),
optionally guided by neural networks (Mundhenk et al., 2021; Udrescu & Tegmark, 2020; Costa et al.,
2021) and recently also employing reinforcement learning (Petersen et al., 2019) – see (La Cava et al.,
2021; Makke & Chawla, 2022) for reviews. Most of these approaches require a separate optimization
for each new observed system, severely limiting scalability.

1We use the notation [N] := {1, . . . , N} and ẋ for the temporal derivative.

2

Under review as a conference paper at ICLR 2024

Encode DecodeTokenize FFN

Embedder Transformer Output Target

mul, 2, x2, |,
cos, add, 1, x1

Input

mul, 3, x2, |,
sin, add, 1, x1

XE
loss

Figure 2: Sketch of our method to train ODEFormer. We generate random ODE systems, integrate
a solution trajectory on a grid of N points x ∈ RD, and train ODEFormer to directly output the ODE
system in symbolic form, supervising the predicted expression via cross-entropy loss.

Transformers for symbolic regression. With the advent of transformer models (Vaswani et al.,
2017), efficient learning of sequence-to-sequence tasks for a broad variety of modalities became
feasible. Paired with large-scale pre-training on synthetic data, transformers have been used for
symbolic tasks such as integration (Lample & Charton, 2019), formal logic (Hahn et al., 2020), and
theorem proving (Polu & Sutskever, 2020). Few recent works applied them to functional SR (Biggio
et al., 2021; Valipour et al., 2021; Kamienny et al., 2022; Vastl et al., 2022) obtaining comparable
results to GP methods, with a key advantage: after one-time pre-training, inference is often orders
of magnitude faster since no training is needed for previously unseen systems. Landajuela et al.
(2022) recently proposed a hybrid system combining and leveraging the advantages of most previous
approaches for state of the art performance on functional SR tasks.

Symbolic regression for dynamical systems. In principle, dynamical SR, inferring f from (t, x(t)),
can be framed as functional SR for (x(t), ẋ(t)) pairs. However, when transitioning from functional
to dynamical symbolic regression, a key challenge is the absence of regression targets ẋ(t) since
temporal derivatives are usually not observed directly. A common remedy is to use numerical
approximations of the missing derivatives as surrogate targets instead. This approach has been
employed in the GP community (Gaucel et al., 2014; La Cava et al., 2016a) and is also key to
the widely used SINDy (Brunton et al., 2016) algorithm which performs sparse linear regression
on a manually pre-defined set of basis functions. While SINDy is computationally efficient, its
modeling capacity is limited to linear combinations of its basis functions. Like in functional SR,
neural networks have also been combined with GP for dynamical SR (Atkinson et al., 2019), and
the divide-and-conquer strategy by Udrescu & Tegmark (2020) has also been extended to inferring
dynamical systems (Weilbach et al., 2021). Finally, Omejc et al. (2023) recently introduced ProGED,
which performs dynamical SR via random search of candidate equations, constrained by probabilistic
context-free grammars (PCFGs). This approach does not require numerical approximations to
temporal derivatives, however, the parameters of the PCFGs need to be carefully tailored to each
problem, which assumes prior knowledge about the ground truth. In the realm of transformers,
d’Ascoli et al. (2022) infer one-dimensional recurrence relations in sequences of numbers, which as
discrete maps are closely related to differential equations. Most related to our work, Becker et al.
(2023) explore a transformer-based approach to dynamical SR for ODEs. However, their method
is limited to univariate ODEs. Such systems exhibit extremely limited behavior, where solution
trajectories can only either monotonically diverge or monotonically approach a fixed value – not even
inflections let alone oscillations are possible (Strogatz, 2000). In this work, we tackle the important
yet unsolved task of efficiently discovering arbitrary non-linear ODE systems in symbolic form
directly from data in multiple dimensions, without assuming prior knowledge of the ground truth.

Theoretical identifiability. Traditionally, the identifiability of ODEs from data has been studied in a
case-by-case analysis for pre-defined parametric functions (Åström & Eykhoff, 1971; Miao et al.,
2011; Villaverde et al., 2016; Hamelin et al., 2020). Recent work made progress on identifiability
within function classes such as linear (in parameters) autonomous ODE systems (Stanhope et al.,
2014; Duan et al., 2020; Qiu et al., 2022) or, in the scalar case, even non-parametric classes such as
analytic, algebraic, continuous, or smooth functions (Scholl et al., 2023). As it stands, it is difficult to
gain practical insights from these results for our setting as they do not conclude whether non-linear
ODEs can practically be uniquely inferred from data – see Appendix B for details.

3 DATA GENERATION

Our method builds on pretraining on a large dataset of ODEs which is assembled as follows.

3

Under review as a conference paper at ICLR 2024

Generating ODEs. For a D-dimensional ODE f , we independently sample the D component
functions f1, . . . , fD as random unary-binary trees following the method of (Lample & Charton,
2019), where internal nodes represent mathematical operators and leaves represent constants or
variables. In our specific procedure, we first sample the system dimension D uniformly from [Dmax]
for a fixed Dmax ∈ N and then perform the following steps for each component function:

1. Sample the number of binary operators b uniformly from [bmax] for a fixed bmax ∈ N.
2. Sample a binary tree with b non-leaf nodes, following the procedure of Lample & Charton (2019).
3. Decorate each non-leaf node with a binary operator sampled from P (+) = 3/4 and P (×) = 1/4.2
4. For each leaf in the tree, sample one of the variables xi for i ∈ [D].
5. Sample the number of unary operators u uniformly from [umax] for a fixed umax ∈ N.
6. Iteratively with u repetitions, select a node whose subtree has a depth smaller than 63 and insert a

new node directly above. Populate the new node with a unary operator that is sampled uniformly
at random from {x 7→ sin(x), x 7→ x−1, x 7→ x2}.

7. Convert the tree into a mathematical expression via preorder traversal (Lample & Charton, 2019).
8. Finally, prepend a coefficient to each term and wrap the argument of any unary operator in an

affine transformation x → a · x + b. Coefficients and constants of affine transformations are
sampled independently from a log-uniform distribution on [cmin, cmax].

Due to random continuous constants (and initial conditions), we almost surely never sample a function
twice. In our experiments, we use Dmax = 6, bmax = 5, umax = 3, (cmin, cmax) = (0.05, 20).

Integrating ODEs. Once the function f is generated, we sample an initial condition x0 ∼ N (0, γID)
for a fixed γ ∈ R>0 and ID the identity matrix, and integrate the ODE from t = 1 to t = T using
the numerical solver scipy.integrate.solve_ivp provided by SciPy (Virtanen et al., 2020)
on a fixed homogeneous grid of N points, where N is sampled uniformly in {50, 51, . . . , 200}. The
solve_ivp function defaults to an adaptive 5th order explicit Runge Kutta method with 4th order
error control (Dormand & Prince, 1980) as well as relative and absolute tolerances of 10−3 and 10−6

respectively. When integration fails, i.e., when the solver throws an error, returns unsuccessfully, or
takes longer than one second, we simply discard the current example. Section 4 explains in detail
that we can fix T and γ during training without loss of generality, as we can rescale observations at
inference time. Hence, we fix γ = 1 and T = 10 during training.

Filtering data. Under the distribution over functions f defined implicitly by our generator, a
substantial fraction of sampled ODEs (and initial conditions) leads to solutions where at least one
component diverges over time. Continued divergence over long time spans is typically deemed
“unphysical”. Among the trajectories that remain finite, we observe that again a substantial fraction
swiftly converges towards a fixed point. Although these solutions may be realistic, their dominance
hampers diversity in our dataset. Also, stable constant observations over long times spans are arguably
rarely of interest. Hence, we use the following heuristics to increase diversity of the generated ODEs.

• If any variable of the solution trajectory exceeds a fixed threshold (102 in our experiments), we
discard the example. This amounts to filtering out divergent systems.

• If the oscillation of all component functions over the last quarter of the integration range is below
a certain threshold (10−3 in our experiments), we discard the example with a probability of 90%.4
This filters out a majority of rapidly converging systems.

Corrupting data. We apply two forms of corruption to the clean solution trajectories:

• Noise: We sample a noise level σ uniformly in [0, 0.1] and corrupt each observation of each
component of the trajectory independently multiplicatively with Gaussian noise: xj(ti) →
(1 + ξ)xj(ti) for j ∈ [D], i ∈ [N] and ξ ∼ N (0, σ). This noise model has been used and argued
for in previous works (d’Ascoli et al., 2022; Becker et al., 2023).

• Subsampling: For each trajectory, we sample a subsampling ratio ρ uniformly in [0, 0.5] and drop
a fraction ρ of the points along the trajectory uniformly at random. Since the equally spaced
original trajectories contained between 50 and 200 points, after subsampling inputs can vary in
length between 25 and 200.

2Subtractions and divisions are included via multiplication with negative numbers and the unary operator
x 7→ x−1 respectively. It has been argued that divisions appear less frequently than additions and multiplications
in “typical” expressions (Guimerà et al., 2020).

3This aims at avoiding deeply nested uninterpretable expressions, which often occur in GP-based SR.
4The oscillation of a function h : [a, b] → R is given by supx∈[a,b] h(x)− infx∈[a,b] f(x).

4

Under review as a conference paper at ICLR 2024

4 MODEL, TRAINING, AND INFERENCE

ODEFormer is an encoder-decoder transformer (Vaswani et al., 2017) for end-to-end dynamical
SR, illustrated in Figure 2. The model comprises 16 attention heads and an embedding dimension
of 512, leading to a total parameter count of 86M. As observed by Charton (2021), we find that
optimal performance is achieved in an asymmetric architecture, using 4 layers in the encoder and 16
in the decoder. Since the time component is explicitly included in the inputs, we remove positional
embeddings from the encoder. Model optimization follows established procedures, with details given
in Appendix C.

Tokenizing numbers. Since numeric input trajectories as well as symbolic target sequences may
contain floating point values, we need an efficient encoding scheme that allows the infinite number
of floats to be sufficiently well conserved by a fixed-size vocabulary. Following Charton (2021),
each number is rounded to four significant digits and disassembled into three components: sign,
mantissa and exponent, each of which is represented by its own token. This tokenization scheme
condenses the vocabulary size to represent floating point values to just 10203 tokens (+, -, 0, ...,
9999, E-100, ..., E100) and works well in practice despite the inherent loss of precision. We also
experimented with three alternative representations: (i) two-token encoding, where the sign and
mantissa are merged together, (ii) one-token encoding where sign, mantissa and exponent are all
merged together, (iii) a two-hot encoding inspired by Schrittwieser et al. (2020) and used by Becker
et al. (2023), which interpolates linearly between fixed, pre-set values to represent continuous values.
These representations have the advantage of decreasing sequence length, and (iii) has the added
benefit of increased numerical precision for the inputs. Since all three alternatives led to worse overall
performance, we used the three token representation (sign, mantissa, exponent).

Embedding numerical trajectories. The above tokenization scheme scales the length of numerical
input sequences by a factor of three. Points (ti, xi) ∈ RD+1 of the trajectory of a D dimensional
ODE system are hence mapped to a token sequence of dimension R(D+1)×3. We feed the token
sequence of each dimension separately to an embedding layer and concatenate the result to obtain a
representation in R((D+1)×3)×demb . Before handing this representation to the encoder it is reduced
such that each original input point corresponds to a single embedding vector (Kamienny et al.,
2022), effectively scaling the input sequence back to its original length. For this, potentially vacant
input dimensions are padded up to Dmax before the resulting 3× (Dmax + 1)× demb-dimensional
vector is processed by a 2-layer fully-connected feed-forward network (FFN) with Sigmoid-weighted
linear unit (SiLU) activations (Elfwing et al., 2018), which projects down to dimension demb. This
embedding process allows a single trained model to flexibly handle input trajectories of variable
lengths as well as ODE systems of different dimensionalities.

Encoding symbolic functions. To encode mathematical expressions, the vocabulary of the decoder
includes specific tokens for all operators and variables, in addition to the tokens used to represent
floating point values. Importantly, the decoder is trained on expressions in prefix notations to relieve
the model from predicting parentheses (Lample & Charton, 2019). With these choices, the target
sequence for an exemplary ODE f(x) = cos(2.4242x) corresponds to following sequence of six
tokens [cos mul + 2424 E-3 x]. For D-dimensional systems, we simply concatenate the
encodings of the D component functions, separated by a special token “|”. With this simple method,
the sequence length scales linearly with the dimensionality of the system, i.e., the number of variables.
While this is unproblematic for small dimensions such as D ≤ Dmax = 6, it may impair the
scalability of our approach.5 As the encoder is only concerned with numeric input trajectories, its
vocabulary only includes tokens for numbers.

Rescaling. During training, the model only observes initial conditions from a standard normal
distribution, and the integration range is fixed to [1, 10]. To accommodate for different scales of initial
conditions and time ranges during inference, we apply the affine transformations t → t̃ = at + b

to rescale the observed time range to [1, 10] and xi(t) → x̃i(t) = xi(t)
xi(t0)

to rescale initial values

to unity. The prediction f̃ that ODEFormer provides on inputs (t̃, x̃) are then transformed as
fi =

dxi

dt = 1
axi(t0)

dx̃i

dt̃
= 1

axi(t0)
f̃i to recover original units.

5A possible alternative would be to treat the decoding of each component function as a separate problem,
adding a specifier to the BOS (beginning of sequence) token to identify which component is to be decoded.

5

Under review as a conference paper at ICLR 2024

Decoding strategy. At inference, we use beam sampling (Van Gael et al., 2008) to decode candidate
equations, and select the candidate with highest reconstruction R2 score.6 The beam temperature
is an important parameter to control diversity – as the beam size increases, it typically becomes
useful to also increase the temperature to maintain diversity. Unless stated otherwise, we perform our
experiments with a beam size of 50 and a temperature of 0.1.

Optional parameter optimization. Most SR methods break the task into two subroutines (possibly
alternating between the two): predicting the optimal “skeleton”, i.e., equation structure, and fitting
the numerical values of the constants. Just like Kamienny et al. (2022), our model is end-to-end,
in the sense that it handles both subroutines simultaneously. However, we also experimented with
adding an extra parameter optimization step, as performed in methods such as ProGED (Omejc et al.,
2023). We describe the details of the parameter optimization procedure in Appendix D and denote
this method as “ODEFormer (opt)”.

5 EVALUATION

Symbolic vs numerical evaluation. When evaluating SR methods, the desired metric is whether
the inferred ODE f̂ perfectly agrees symbolically with the ground truth expression f . However,
such an evaluation is problematic primarily because (i) the ambiguity in representing mathematical
expressions and non-determinism of “simplify” operations in modern computer algebra systems
render comparisons on the symbolic level difficult, and (ii) expressions may differ symbolically,
while evaluating to essentially the same outputs on all possible inputs (e.g., in the presence of a
negligible extra term). Hence, comparing expressions numerically on a relevant range is more reliable
and meaningful. Even modern computer algebra systems include numerical evaluations in equality
checks, which still require choosing a range on which to compare expressions (Meurer et al., 2017).

Evaluation types. For dynamical SR there is a spectrum of reasonable comparisons. We could
simply be interested in finding some ODE f̂ , whose solution approximates the observed trajectory
x(t) on the observed time interval, even if f̂ still differs from f on (parts of) their domain. A more
ambitious goal closer to full identification is to find a f̂ that also approximates the correct trajectories
for unobserved initial conditions. This evaluation, which in our view is most meaningful to assess
dynamical SR, is often absent in the literature, e.g., from Omejc et al. (2023). If an inferred f̂ yields
correct solutions for all initial values and time spans, we would consider it as perfect identification of
f . Accordingly, we evaluate the following aspects of performance in our experiments.

• Reconstruction: we compare the (noiseless, dense) ground truth trajectory with the trajectory
obtained by integrating the predicted ODE from the same initial condition and on the same interval
[1, T] as the ground truth.

• Generalization: we integrate both the ground truth and the inferred ODE for a new, different
initial condition over the same interval [1, T] and compare the obtained trajectories.

Metrics. We consider the following performance metrics.

• Accuracy: A classical performance metric for regression tasks is the coefficient of determination,
defined as R2 = 1 −

∑
i(yi−ŷi)

2∑
i(yi−ȳ)2

∈ (−∞, 1]. Since R2 is unbounded from below, average

R2-scores across multiple predictions may be severely biased by even a single particularly poor
outlier. We therefore instead report the percentage of predictions for which the R2 exceeds a
threshold of 0.9 in the main text and show the distribution of scores in Appendix G.

• Complexity: we define the complexity of a symbolic expression to be the total number of operators,
variables and constants. We acknowledge that this is a crude measure, for example, it would
assign a lower complexity to exp(tan(x)) (complexity=3) than to 1 + 2x (complexity=5). Yet,
there is no agreed-upon meaning of the term “complexity” for a symbolic expression in this
context so that simply counting “constituents” is common in the literature, see e.g. the discussion
in the benchmark by La Cava et al. (2021).

• Inference time: time to produce a prediction.

6Beam search tends to produce candidates which all have the same skeleton, and only differ by small
variations of the constants, leading to a lack of diversity. Beam sampling ensures that randomness is added at
each step of decoding leading to a more diverse set of candidate expressions.

6

Under review as a conference paper at ICLR 2024

2 4 6
dimensions

0

20

40

60

80

100

%
 A

cc
ur

ac
y

(R
2 >

0.
9)

0 2 4 6
unary operators

20 40 60
binary operators

50 100 150 200
points

reconstruction
generalization

clean data
0% noise, 25% subsampling

5% noise, 0% subsampling
5% noise, 25% subsampling

Figure 3: Ablation study on synthetic data. We vary four parameters governing the difficulty of
an example (from left to right): the dimension of the system, the total number of unary and binary
operators, and the number of points in the trajectory. In each panel, we average the results over a
dataset of 10,000 examples. In all cases, we use a beam size of 50.

Corruptions. For all datasets, we also compare models on their robustness to two types of corruption:
(i) we add noise to the observations via xj(ti) → (1+ξ)xj(ti) for j ∈ [D], i ∈ [N] and ξ ∼ N (0, σ);
(ii) we drop a fraction ρ of the observations along the trajectory uniformly at random. We report
results for various noise levels σ and subsampling fractions ρ.

Results on synthetic data. We first assess how the performance of ODEFormer is affected by the
dimensionality of the ODE system, the number of unary and binary operators, and the number of
points in the trajectory. The ablation results on 10,000 synthetic examples with a beam size of 50 are
shown in Figure 3 – we asses the effect of the beam size in Appendix F. We make three observations:

• Performance degrades with the first three parameters as expected, but ODEFormer is surprisingly
insensitive to the number of points in the trajectory.

• Generalization accuracy is substantially lower than reconstruction accuracy as expected, but at
least for low-dimensional systems we achieve non-trivial generalization (e.g., 60% generalization
accuracy vs 85% reconstruction accuracy for 1D).

• ODEFormer copes well with subsampling, but suffers more from noisy trajectories. However, the
effect on generalization is smaller than that on reconstruction.

6 BENCHMARKING DYNAMICAL SYMBOLIC REGRESSION METHODS

Strogatz benchmark. We first consider the “Strogatz dataset”, included in the Penn Machine
Learning Benchmark (PMLB) database (La Cava et al., 2021). It consists of seven ODE systems and
has been used as a benchmark by various SR methods, in particular those specialized on dynamical
SR (Omejc et al., 2023). However, it has several limitations: (i) it is small (only seven unique ODEs,
each integrated for 4 different initial conditions), (ii) it only contains 2-dimensional systems, (iii) it is
not integrated with sufficient precision (Omejc et al., 2023), and (iv) its annotations are misleading
(e.g., claiming that all systems develop chaos even though none of them does).

ODEBench. Faced with these limitations, we introduce ODEBench, an extended benchmark curated
from ODEs that have been used by Strogatz (2000) to model real-world phenomena as well as
well-known systems from Wikipedia. We fix parameter values to obtain the behavior the models
were developed for, and choose two initial conditions for each equation to evaluate generalization.
ODEBench consists of 63 ODEs (1D: 23, 2D: 28, 3D: 10, 4D: 2), four of which exhibit chaotic
behavior. We publicly release ODEBench with descriptions, sources of all equations, and well
integrated solution trajectories – more details are in Appendix A.

Baselines. In our experiments, we extensively compare ODEFormer with (strong representatives of)
existing methods described in Table 1. For each baseline model, we perform a separate hyperparameter
optimization for each run to ensure maximal fairness. Apart from ProGED and SINDy, all baselines
were developed for functional SR. We use them for dynamical SR as described in Section 2, by
computing temporal derivatives ẋi(t) via finite differences with hyperparameter search on the
approximation order and optional use of a Savitzky-Savgol filter for smoothing. For more details,
please refer to Appendix E. Note that our method is the only one which does not require any
hyperparameter tuning or prior knowledge on the set of operators to be used.

7

Under review as a conference paper at ICLR 2024

Table 1: Overview of models. f.d.: finite differences required, ode: method developed for dynamical
SR, T: transformer-based, GP: genetic programming, MC: Monte Carlo, reg: regression

name type ode f.d. description reference

ODEFormer T yes no seq.-to-seq. translation ours
AFP GP no yes age-fitness Pareto optimization (Schmidt & Lipson, 2011)

FE-AFP GP no yes AFP with co-evolved fitness estimates (Schmidt & Lipson, 2011)
EHC GP no yes AFP with epigenetic hillclimbing (La Cava, 2016)

EPLEX GP no yes epsilon-lexicase selection (La Cava et al., 2016b)
PySR GP no yes AutoML-Zero + simulated annealing (Cranmer, 2023)

SINDy reg yes yes sparse linear regression (Brunton et al., 2016)
FFX reg no yes pathwise regularized ElasticNet regression (McConaghy, 2011)

ProGED MC yes no MC on probabilistic context free grammars (Omejc et al., 2023)

=0.0 =0.01 =0.02 =0.03 =0.04 =0.05

0 20 40 60 80 100
% Accuracy (R2 > 0.9)

ODEFormer (opt)
ODEFormer

PySR
FFX
EHC

SINDy (poly)
SINDy (esc)

ProGED (poly)
ProGED

AFP
EPLEX
FE-AFP
SINDy

 = 0

0 20 40 60 80 100
% Accuracy (R2 > 0.9)

 = 0.5

101 103 105 107

complexity
100 101 102 103

inference time [sec.]

(a) Reconstruction on Strogatz

0 20 40 60 80 100
% Accuracy (R2 > 0.9)

ODEFormer (opt)
ODEFormer

PySR
FFX

SINDy (poly)
EHC

ProGED (poly)
ProGED

AFP
SINDy (esc)

FE-AFP
EPLEX
SINDy

 = 0

0 20 40 60 80 100
% Accuracy (R2 > 0.9)

 = 0.5

100 102 104 106

complexity
100 102 104

inference time [sec.]

(b) Reconstruction on ODEBench

Figure 4: Our model achieves state-of-the art performance on both benchmarks considered,
while achieving higher robustness to noise and irregular sampling. We compare ODEFormer
with and without additional parameter optimization using existing methods following the protocol
described in Section 6. We present results for two values of the subsampling parameter ρ and six
values of the noise parameter σ. Whiskers in box plot panels mark minimum and maximum values.

Reconstruction results. We present results on both “Strogatz” and ODEBench in Figure 4. From top
to bottom, we ranked methods by their average accuracy across all noise and subsampling levels. The
ranking is similar on the two benchmarks and ODEFormer achieves the highest average score on both.
The two leftmost panels show that ODEFormer is only occasionally outperformed by PySR when
the data is very clean – as noise and subsampling kick in, ODEFormer gains an increasingly large
advantage over all other methods. In the two rightmost panels of Figure 4, we show the distributions
of complexity and inference time. ODEFormer runs on the order of seconds, versus minutes for all
other methods except SINDy, while maintaining relatively low and consistent equation complexity
even at high noise levels. We show figures for all predictions in Appendix A.

8

Under review as a conference paper at ICLR 2024

=0.0 =0.01 =0.02 =0.03 =0.04 =0.05

0 25 50
% Accuracy (R2 > 0.9)

ODEFormer (opt)
ODEFormer

PySR
EHC

ProGED (poly)
FFX

ProGED
AFP

FE-AFP
SINDy (esc)

EPLEX
SINDy (poly)

SINDy

 = 0

0 25 50
% Accuracy (R2 > 0.9)

 = 0.5

Figure 5: Generalization on ODEBench. We
consider the same setting as in Figure 4.

Generalization results. We present general-
ization results on ODEBench in Figure 5. Con-
sistently across all models, accuracies drop by
about half, meaning that half the correctly recon-
structed ODEs do not match the ground truth
symbolically. This highlights the importance
of evaluating dynamical SR on different initial
conditions. Note, however, that the overall rank-
ings of the different methods is rather consistent
with the reconstruction results, and ODEFormer
achieves the best results on average thanks to its
robustness to noise and subsampling.

7 DISCUSSION AND FUTURE DIRECTIONS

We presented ODEFormer, the first transformer capable of inferring multidimensional ODE systems
from noisy, irregularly observed solution trajectories, as well as ODEBench, a novel benchmark
dataset for dynamical SR. In extensive comparisons, we demonstrate that our model outperforms
existing methods while allowing faster inference. We foresee real-world applications of ODEFormer
across the sciences, for hypothesis generation of dynamical laws underlying experimental observa-
tions. However, in the following we also highlight several limitations of the current method, opening
up interesting directions for future work.

First, we only considered first order ODEs. While any higher-order ODE can be written as a system
of first order ODEs, this does not immediately allow ODEFormer to make predictions based only on
a solution trajectory, since we would still need to approximate time derivatives up to the order of the
ODE. While possible in principle via finite differencing schemes, we would suffer similar drawbacks
as other methods that rely on finite differences from noisy, irregularly sampled data.

Second, ODEFormer only works when all variables are observed. In real-world settings, some
relevant variables may be unknown or unobservable. For example, inferring chemical kinematics
may be challenged by the difficulty in measuring the concentration of reaction intermediates (Burés
& Larrosa, 2023). We may circumvent this issue by randomly masking variables during training
(replacing their observations by a dedicated token), to emulate unobserved variables. While this
raises questions around identifiability and robustness, we plan to explore masking in future work.
This technique could also handle higher-order ODEs by considering the derivatives as unobserved.

Third, based on the four representatives in ODEBench, ODEFormer (as well as all other benchmarked
models) struggles with chaotic systems, which have been argued to provide good assessments for data-
driven modeling and forecasting (Gilpin, 2021). For chaotic systems, understanding properties of the
attractor is often more desirable: nearby trajectories diverge exponentially, rendering identification
notoriously challenging. Dynamical law learning from short (transient) trajectories for chaotic
systems remains an interesting direction for future work.

Lastly, all existing methods for dynamical SR, including ours, perform inference based on a single
observed trajectory. In our opinion, one of the most promising directions for future work is to enable
inference from multiple solution trajectories of the same ODE. Key benefits may include averaging
out possible noise sources as well as improving identifiability, as we “explore the domain of f”.
However, initial experiments with various forms of logit aggregation in ODEFormer’s decoder during
inference did not yield convincing results. In future work, we plan to exploit a cross-attention encoder
to combine the embeddings of the different trajectories to leverage the combined information, in the
spirit of Liu et al. (2023).

We conclude by emphasizing that the difficulty and potential ambiguity in dynamical law learning calls
for caution during deployment. Methods like ODEFormer primarily serve as hypothesis generators,
ultimately requiring further experimental verification, something that can be done well based on
ODEs (rather than black-box models).

9

Under review as a conference paper at ICLR 2024

REPRODUCIBILITY STATEMENT

The reproducibility of our work is ensured through several means. First and foremost, all code,
model weights, and created benchmark datasets will be made publicly available at anonymized
together with notebooks to directly reproduce key aspects of the results. (All evaluations, especially
of all baselines methods are computationally too expensive to include in a single notebook.) We also
describe in detail the data generation in Section 3, our architecture and model choices in Section 4,
and additional details about training in Appendices C and D.

REFERENCES

Nikos Aréchiga, Francine Chen, Yan-Ying Chen, Yanxia Zhang, Rumen Iliev, Heishiro Toyoda,
and Kent Lyons. Accelerating understanding of scientific experiments with end to end symbolic
regression. ArXiv, abs/2112.04023, 2021.

Karl Johan Åström and Peter Eykhoff. System identification—a survey. Automatica, 7(2):123–162,
1971.

Steven Atkinson, Waad Subber, Liping Wang, Genghis Khan, Philippe Hawi, and Roger
Ghanem. Data-driven discovery of free-form governing differential equations. arXiv preprint
arXiv:1910.05117, 2019.

Sören Becker, Michal Klein, Alexander Neitz, Giambattista Parascandolo, and Niki Kilbertus.
Predicting ordinary differential equations with transformers. In International Conference on
Machine Learning (ICML), 2023.

Luca Biggio, Tommaso Bendinelli, Alexander Neitz, Aurelien Lucchi, and Giambattista Parascandolo.
Neural symbolic regression that scales, 2021.

Steven L. Brunton, Joshua L. Proctor, and J. Nathan Kutz. Discovering governing equations from data
by sparse identification of nonlinear dynamical systems. Proceedings of the National Academy
of Sciences, 113(15):3932–3937, 2016. ISSN 0027-8424. doi: 10.1073/pnas.1517384113. URL
https://www.pnas.org/content/113/15/3932.

Jordi Burés and Igor Larrosa. Organic reaction mechanism classification using machine learning.
Nature, 613(7945):689–695, 2023.

Anja Butter, Tilman Plehn, Nathalie Soybelman, and Johann Brehmer. Back to the formula—lhc
edition. arXiv preprint arXiv:2109.10414, 2021.

François Charton. Linear algebra with transformers. arXiv preprint arXiv:2112.01898, 2021.

Ricky TQ Chen, Yulia Rubanova, Jesse Bettencourt, and David K Duvenaud. Neural ordinary
differential equations. Advances in neural information processing systems, 31, 2018.

Allan Costa, Rumen Dangovski, Owen Dugan, Samuel Kim, Pawan Goyal, Marin Soljačić, and
Joseph Jacobson. Fast neural models for symbolic regression at scale, 2021.

Miles Cranmer. Interpretable machine learning for science with pysr and symbolicregression. jl.
arXiv preprint arXiv:2305.01582, 2023.

Stéphane d’Ascoli, Pierre-Alexandre Kamienny, Guillaume Lample, and François Charton. Deep
symbolic regression for recurrent sequences. arXiv preprint arXiv:2201.04600, 2022.

A Davies, P Velickovic, L Buesing, S Blackwell, D Zheng, N Tomasev, R Tanburn, P Battaglia,
C Blundell, A Juhasz, et al. Advancing mathematics by guiding human intuition with ai. Nature,
2021.

Brian de Silva, Kathleen Champion, Markus Quade, Jean-Christophe Loiseau, J Nathan Kutz, and
Steven Brunton. PySINDy: A Python package for the sparse identification of nonlinear dynamical
systems from data. Journal of Open Source Software, 5(49):1–4, 2020.

10

https://www.pnas.org/content/113/15/3932

Under review as a conference paper at ICLR 2024

Jonas Degrave, Federico Felici, Jonas Buchli, Michael Neunert, Brendan Tracey, Francesco Carpanese,
Timo Ewalds, Roland Hafner, Abbas Abdolmaleki, Diego de Las Casas, et al. Magnetic control of
tokamak plasmas through deep reinforcement learning. Nature, 602(7897):414–419, 2022.

John R Dormand and Peter J Prince. A family of embedded runge-kutta formulae. Journal of
computational and applied mathematics, 6(1):19–26, 1980.

X Duan, JE Rubin, and D Swigon. Identification of affine dynamical systems from a single trajectory.
Inverse Problems, 36(8):085004, 2020.

Rudresh Dwivedi, Devam Dave, Het Naik, Smiti Singhal, Rana Omer, Pankesh Patel, Bin Qian,
Zhenyu Wen, Tejal Shah, Graham Morgan, et al. Explainable ai (xai): Core ideas, techniques, and
solutions. ACM Computing Surveys, 55(9):1–33, 2023.

Stefan Elfwing, Eiji Uchibe, and Kenji Doya. Sigmoid-weighted linear units for neural network
function approximation in reinforcement learning. Neural networks, 107:3–11, 2018.

Sébastien Gaucel, Maarten Keijzer, Evelyne Lutton, and Alberto Tonda. Learning dynamical systems
using standard symbolic regression. In Genetic Programming: 17th European Conference, EuroGP
2014, Granada, Spain, April 23-25, 2014, Revised Selected Papers 17, pp. 25–36. Springer, 2014.

William Gilpin. Chaos as an interpretable benchmark for forecasting and data-driven modelling.
arXiv preprint arXiv:2110.05266, 2021.

Roger Guimerà, Ignasi Reichardt, Antoni Aguilar-Mogas, Francesco A Massucci, Manuel Miranda,
Jordi Pallarès, and Marta Sales-Pardo. A bayesian machine scientist to aid in the solution of
challenging scientific problems. Science advances, 6(5):eaav6971, 2020.

Christopher Hahn, Frederik Schmitt, Jens U Kreber, Markus N Rabe, and Bernd Finkbeiner. Teaching
temporal logics to neural networks. arXiv preprint arXiv:2003.04218, 2020.

Frédéric Hamelin, Abderrahman Iggidr, Alain Rapaport, and Gauthier Sallet. Observability, identifia-
bility and epidemiology a survey. arXiv preprint arXiv:2011.12202, 2020.

John Jumper, Richard Evans, Alexander Pritzel, Tim Green, Michael Figurnov, Olaf Ronneberger,
Kathryn Tunyasuvunakool, Russ Bates, Augustin Žídek, Anna Potapenko, et al. Highly accurate
protein structure prediction with alphafold. Nature, 596(7873):583–589, 2021.

Pierre-Alexandre Kamienny, Stéphane d’Ascoli, Guillaume Lample, and Francois Charton. End-to-
end symbolic regression with transformers. In Alice H. Oh, Alekh Agarwal, Danielle Belgrave,
and Kyunghyun Cho (eds.), Advances in Neural Information Processing Systems, 2022. URL
https://openreview.net/forum?id=GoOuIrDHG_Y.

George Em Karniadakis, Ioannis G Kevrekidis, Lu Lu, Paris Perdikaris, Sifan Wang, and Liu Yang.
Physics-informed machine learning. Nature Reviews Physics, 3(6):422–440, 2021.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Michael Kommenda, Bogdan Burlacu, Gabriel Kronberger, and Michael Affenzeller. Parameter
identification for symbolic regression using nonlinear least squares. Genetic Programming and
Evolvable Machines, 21(3):471–501, 2020. doi: 10.1007/s10710-019-09371-3. URL https:
//doi.org/10.1007/s10710-019-09371-3.

William La Cava, Kourosh Danai, and Lee Spector. Inference of compact nonlinear dynamic models
by epigenetic local search. Engineering Applications of Artificial Intelligence, 55:292–306, 2016a.

William La Cava, Lee Spector, and Kourosh Danai. Epsilon-lexicase selection for regression. In
Proceedings of the Genetic and Evolutionary Computation Conference 2016, pp. 741–748, 2016b.

William La Cava, Tilak Raj Singh, James Taggart, Srinivas Suri, and Jason H Moore. Learning concise
representations for regression by evolving networks of trees. arXiv preprint arXiv:1807.00981,
2018.

11

https://openreview.net/forum?id=GoOuIrDHG_Y
https://doi.org/10.1007/s10710-019-09371-3
https://doi.org/10.1007/s10710-019-09371-3

Under review as a conference paper at ICLR 2024

William La Cava, Patryk Orzechowski, Bogdan Burlacu, Fabricio Olivetti de Franca, Marco Virgolin,
Ying Jin, Michael Kommenda, and Jason H Moore. Contemporary symbolic regression methods
and their relative performance. arXiv preprint arXiv:2107.14351, 2021.

William G La Cava. Automatic Development and Adaptation of Concise Nonlinear Models for System
Identification. PhD thesis, University of Massachusetts Amherst, 2016.

Guillaume Lample and François Charton. Deep learning for symbolic mathematics. arXiv preprint
arXiv:1912.01412, 2019.

Mikel Landajuela, Chak Shing Lee, Jiachen Yang, Ruben Glatt, Claudio P Santiago, Ignacio Aravena,
Terrell Mundhenk, Garrett Mulcahy, and Brenden K Petersen. A unified framework for deep
symbolic regression. Advances in Neural Information Processing Systems, 35:33985–33998, 2022.

Yuchen Liu, Natasha Ong, Kaiyan Peng, Bo Xiong, Qifan Wang, Rui Hou, Madian Khabsa, Kaiyue
Yang, David Liu, Donald S Williamson, et al. Mmvit: Multiscale multiview vision transformers.
arXiv preprint arXiv:2305.00104, 2023.

Nour Makke and Sanjay Chawla. Interpretable scientific discovery with symbolic regression: a
review. arXiv preprint arXiv:2211.10873, 2022.

Trent McConaghy. Ffx: Fast, scalable, deterministic symbolic regression technology. In Genetic
Programming Theory and Practice IX, pp. 235–260. Springer, 2011.

Aaron Meurer, Christopher P Smith, Mateusz Paprocki, Ondřej Čertík, Sergey B Kirpichev, Matthew
Rocklin, AMiT Kumar, Sergiu Ivanov, Jason K Moore, Sartaj Singh, et al. Sympy: symbolic
computing in python. PeerJ Computer Science, 3:e103, 2017.

Hongyu Miao, Xiaohua Xia, Alan S Perelson, and Hulin Wu. On identifiability of nonlinear ode
models and applications in viral dynamics. SIAM review, 53(1):3–39, 2011.

Terrell Mundhenk, Mikel Landajuela, Ruben Glatt, Claudio P Santiago, Daniel Faissol, and Brenden K
Petersen. Symbolic regression via deep reinforcement learning enhanced genetic programming
seeding. Advances in Neural Information Processing Systems, 34:24912–24923, 2021.

Jorge Nocedal and Stephen J. Wright. Numerical Optimization. Springer, New York, NY, USA, 2e
edition, 2006.

Nina Omejc, Boštjan Gec, Jure Brence, Ljupčo Todorovski, and Sašo Džeroski. Probabilistic
grammars for modeling dynamical systems from coarse, noisy, and partial data. Researchsquare
preprint rs-2678362, 2023. doi: https://doi.org/10.21203/rs.3.rs-2678362/v1.

Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vincent Michel, Bertrand Thirion, Olivier
Grisel, Mathieu Blondel, Peter Prettenhofer, Ron Weiss, Vincent Dubourg, Jak Vanderplas, Alexan-
dre Passos, David Cournapeau, Matthieu Brucher, Matthieu Perrot, and Édouard Duchesnay.
Scikit-learn: Machine learning in Python. JMLR, 2011.

Brenden K Petersen, Mikel Landajuela Larma, T Nathan Mundhenk, Claudio P Santiago, Soo K Kim,
and Joanne T Kim. Deep symbolic regression: Recovering mathematical expressions from data
via risk-seeking policy gradients. arXiv preprint arXiv:1912.04871, 2019.

Lena Podina, Brydon Eastman, and Mohammad Kohandel. Universal physics-informed neural
networks: Symbolic differential operator discovery with sparse data. In Andreas Krause, Emma
Brunskill, Kyunghyun Cho, Barbara Engelhardt, Sivan Sabato, and Jonathan Scarlett (eds.), Pro-
ceedings of the 40th International Conference on Machine Learning, volume 202 of Proceedings
of Machine Learning Research, pp. 27948–27956. PMLR, 23–29 Jul 2023.

Stanislas Polu and Ilya Sutskever. Generative language modeling for automated theorem proving.
arXiv preprint arXiv:2009.03393, 2020.

Xing Qiu, Tao Xu, Babak Soltanalizadeh, and Hulin Wu. Identifiability analysis of linear ordinary
differential equation systems with a single trajectory. Applied Mathematics and Computation, 430:
127260, 2022.

12

Under review as a conference paper at ICLR 2024

Maziar Raissi, Paris Perdikaris, and George E Karniadakis. Physics-informed neural networks: A
deep learning framework for solving forward and inverse problems involving nonlinear partial
differential equations. Journal of Computational physics, 378:686–707, 2019.

Michael Schmidt and Hod Lipson. Age-fitness pareto optimization. In Genetic programming theory
and practice VIII, pp. 129–146. Springer, 2011.

Philipp Scholl, Aras Bacho, Holger Boche, and Gitta Kutyniok. The uniqueness problem of physical
law learning. In ICASSP 2023-2023 IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP), pp. 1–5. IEEE, 2023.

Julian Schrittwieser, Ioannis Antonoglou, Thomas Hubert, Karen Simonyan, Laurent Sifre, Simon
Schmitt, Arthur Guez, Edward Lockhart, Demis Hassabis, Thore Graepel, et al. Mastering atari,
go, chess and shogi by planning with a learned model. Nature, 588(7839):604–609, 2020.

Shelby Stanhope, Jonathan E Rubin, and David Swigon. Identifiability of linear and linear-in-
parameters dynamical systems from a single trajectory. SIAM Journal on Applied Dynamical
Systems, 13(4):1792–1815, 2014.

Steven H. Strogatz. Nonlinear Dynamics and Chaos: With Applications to Physics, Biology, Chemistry
and Engineering. Westview Press, 2000.

Erico Tjoa and Cuntai Guan. A survey on explainable artificial intelligence (xai): Toward medical
xai. IEEE transactions on neural networks and learning systems, 32(11):4793–4813, 2020.

Tony Tohme, Dehong Liu, and Kamal Youcef-Toumi. Gsr: A generalized symbolic regression
approach. arXiv preprint arXiv:2205.15569, 2022.

Silviu-Marian Udrescu and Max Tegmark. Ai feynman: a physics-inspired method for symbolic
regression, 2020.

Silviu-Marian Udrescu and Max Tegmark. Symbolic pregression: Discovering physical laws from
raw distorted video. Physical review. E, 103 4-1:043307, 2021.

Mojtaba Valipour, Bowen You, Maysum Panju, and Ali Ghodsi. Symbolicgpt: A generative trans-
former model for symbolic regression. arXiv preprint arXiv:2106.14131, 2021.

Jurgen Van Gael, Yunus Saatci, Yee Whye Teh, and Zoubin Ghahramani. Beam sampling for the
infinite hidden markov model. In Proceedings of the 25th international conference on Machine
learning, pp. 1088–1095, 2008.

Martin Vastl, Jonáš Kulhánek, Jirí Kubalík, Erik Derner, and Robert Babuška. Symformer: End-to-
end symbolic regression using transformer-based architecture. arXiv preprint arXiv:2205.15764,
2022.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. Attention is all you need. In Advances in neural information
processing systems, pp. 5998–6008, 2017.

Alejandro F Villaverde, Antonio Barreiro, and Antonis Papachristodoulou. Structural identifiability
of dynamic systems biology models. PLoS computational biology, 12(10):e1005153, 2016.

Marco Virgolin, Tanja Alderliesten, Cees Witteveen, and Peter AN Bosman. Improving model-based
genetic programming for symbolic regression of small expressions. Evolutionary computation, 29
(2):211–237, 2021.

Pauli Virtanen, Ralf Gommers, Travis E Oliphant, Matt Haberland, Tyler Reddy, David Cournapeau,
Evgeni Burovski, Pearu Peterson, Warren Weckesser, Jonathan Bright, et al. Scipy 1.0: fundamental
algorithms for scientific computing in python. Nature methods, 17(3):261–272, 2020.

Juliane Weilbach, Sebastian Gerwinn, Christian Weilbach, and Melih Kandemir. Inferring the
structure of ordinary differential equations. arXiv preprint arXiv:2107.07345, 2021.

13

Under review as a conference paper at ICLR 2024

A ODEBENCH

ODEBench features a selection of ordinary differential equations primarily from Steven Strogatz’s
book “Nonlinear Dynamics and Chaos” with manually chosen parameter values and initial condi-
tions (Strogatz, 2000). Some other famous known systems have been selected from other sources
such as Wikipedia, which are included in the dictionary entries as well. We selected ODEs primarily
based on whether they have actually been suggested as models for real-world phenomena as well as
on whether they are ‘iconic’ ODEs in the sense that they are often used as examples in textbooks
and/or have recognizable names. Whenever there were ‘realistic’ parameter values suggested, we
chose those.

In this benchmark, we typically include only one set of parameter values per equation. Many of the
ODEs in Strogatz’ book are analyzed in terms of the different limit behavior for different parameter
settings. For some systems that exhibit wildly different behavior for different parameter settings, we
include multiple sets of parameter values as separate equations (e.g., the Lorenz system in chaotic and
non-chaotic regimes). For each equation, we include two sets of manually chosen initial conditions.

There are 23 equations in one dimension, 28 equations in two dimensions, 10 equations in three
dimensions, and 2 equations in four dimensions. This results in a total of 63 equations, 4 of which
display chaotic behavior. We provide the analytical expressions and initial conditions in Tables 2 to 4,
visualizations of a single trajectory for each ODE in Figure 6, and ODEFormer’s predictions for each
ODE in Figure 7.

14

Under review as a conference paper at ICLR 2024

ID System description Equation Parameters Initial values

1 RC-circuit (charging capacitor)
c0− x0

c1
c2

0.7, 1.2, 2.31 [10.0], [3.54]

2 Population growth (naive) c0x0 0.23 [4.78], [0.87]

3 Population growth with carrying ca-
pacity

c0x0 ·
(
1 − x0

c1

)
0.79, 74.3 [7.3], [21.0]

4 RC-circuit with non-linear resistor
(charging capacitor)

−0.5 + 1

e
c0− x0

c1 +1

0.5, 0.96 [0.8], [0.02]

5 Velocity of a falling object with air
resistance

c0 − c1x
2
0 9.81, 0.0021175 [0.5], [73.0]

6 Autocatalysis with one fixed abun-
dant chemical

c0x0 − c1x
2
0 2.1, 0.5 [0.13], [2.24]

7 Gompertz law for tumor growth c0x0 log (c1x0) 0.032, 2.29 [1.73], [9.5]

8 Logistic equation with Allee effect c0x0

(
−1 +

x0
c2

) (
1 − x0

c1

)
0.14, 130.0, 4.4 [6.123], [2.1]

9 Language death model for two lan-
guages

c0 · (1 − x0) − c1x0 0.32, 0.28 [0.14], [0.55]

10 Refined language death model for
two languages

c0x
c1
0 · (1 − x0) − x0 · (1 − c0) (1 − x0)

c1 0.2, 1.2 [0.83], [0.34]

11 Naive critical slowing down (statis-
tical mechanics)

−x3
0 [3.4], [1.6]

12 Photons in a laser (simple) c0x0 − c1x
2
0 1.8, 0.1107 [11.0], [1.3]

13 Overdamped bead on a rotating
hoop

c0 (c1 cos (x0) − 1) sin (x0) 0.0981, 9.7 [3.1], [2.4]

14 Budworm outbreak model with pre-
dation

c0x0 ·
(
1 − x0

c1

)
−

c3x2
0

c22+x2
0

0.78, 81.0, 21.2, 0.9 [2.76], [23.3]

15 Budworm outbreak with predation
(dimensionless)

c0x0 ·
(
1 − x0

c1

)
−

x2
0

x2
0+1

0.4, 95.0 [44.3], [4.5]

16 Landau equation (typical time scale
tau = 1)

c0x0 − c1x
3
0 − c2x

5
0 0.1, -0.04, 0.001 [0.94], [1.65]

17 Logistic equation with harvest-
ing/fishing

c0x0 ·
(
1 − x0

c1

)
− c2 0.4, 100.0, 0.3 [14.3], [34.2]

18 Improved logistic equation with har-
vesting/fishing

c0x0 ·
(
1 − x0

c1

)
− c2x0

c3+x0
0.4, 100.0, 0.24, 50.0 [21.1], [44.1]

19 Improved logistic equation with har-
vesting/fishing (dimensionless)

− c0x0
c1+x0

+ x0 · (1 − x0) 0.08, 0.8 [0.13], [0.03]

20 Autocatalytic gene switching (di-
mensionless)

c0 − c1x0 +
x2
0

x2
0+1

0.1, 0.55 [0.002], [0.25]

21 Dimensionally reduced SIR infec-
tion model for dead people (dimen-
sionless)

c0 − c1x0 − e−x0 1.2, 0.2 [0.0], [0.8]

22 Hysteretic activation of a protein ex-
pression (positive feedback, basal
promoter expression)

c0 +
c1x5

0
c2+x5

0

− c3x0 1.4, 0.4, 123.0, 0.89 [3.1], [6.3]

23 Overdamped pendulum
with constant driving
torque/fireflies/Josephson junc-
tion (dimensionless)

c0 − sin (x0) 0.21 [-2.74], [1.65]

Table 2: Scalar ODEs in ODEBench.

15

Under review as a conference paper at ICLR 2024

ID System description Equation Parameters Initial values

24 Harmonic oscillator without damp-
ing

{
x1

−c0x0
2.1 [0.4, -0.03], [0.0, 0.2]

25 Harmonic oscillator with damping

{
x1

−c0x0 − c1x1
4.5, 0.43 [0.12, 0.043], [0.0, -0.3]

26 Lotka-Volterra competition model
(Strogatz version with sheeps and
rabbits)

{
x0 (c0 − c1x1 − x0)

x1 (c2 − x0 − x1)
3.0, 2.0, 2.0 [5.0, 4.3], [2.3, 3.6]

27 Lotka-Volterra simple (as on
Wikipedia)

{
x0 (c0 − c1x1)

−x1 (c2 − c3x0)
1.84, 1.45, 3.0, 1.62 [8.3, 3.4], [0.4, 0.65]

28 Pendulum without friction

{
x1

−c0 sin (x0)
0.9 [-1.9, 0.0], [0.3, 0.8]

29 Dipole fixed point

{
c0x0x1

−x2
0 + x2

1

0.65 [3.2, 1.4], [1.3, 0.2]

30 RNA molecules catalyzing each oth-
ers replication

{
x0 (−c0x0x1 + x1)

x1 (−c0x0x1 + x0)
1.61 [0.3, 0.04], [0.1, 0.21]

31 SIR infection model only for healthy
and sick

{
−c0x0x1

c0x0x1 − c1x1
0.4, 0.314 [7.2, 0.98], [20.0, 12.4]

32 Damped double well oscillator

{
x1

−c0x1 − x3
0 + x0

0.18 [-1.8, -1.8], [5.8, 0.0]

33 Glider (dimensionless)

{
−c0x

2
0 − sin (x1)

x0 − cos (x1)
x0

0.08 [5.0, 0.7], [9.81, -0.8]

34 Frictionless bead on a rotating hoop
(dimensionless)

{
x1

(−c0 + cos (x0)) sin (x0)
0.93 [2.1, 0.0], [-1.2, -0.2]

35 Rotational dynamics of an object in
a shear flow

{
cos (x0) cot (x1)(
c0 sin2 (x1) + cos2 (x1)

)
sin (x0)

4.2 [1.13, -0.3], [2.4, 1.7]

36 Pendulum with non-linear damping,
no driving (dimensionless)

{
x1

−c0x1 cos (x0) − x1 − sin (x0)
0.07 [0.45, 0.9], [1.34, -0.8]

37 Van der Pol oscillator (standard
form)

{
x1

−c0x1

(
x2
0 − 1

)
− x0

0.43 [2.2, 0.0], [0.1, 3.2]

38 Van der Pol oscillator (simplified
form from Strogatz)

 c0

(
−

x3
0
3

+ x0 + x1

)
− x0

c0

3.37 [0.7, 0.0], [-1.1, -0.7]

39 Glycolytic oscillator, e.g., ADP and
F6P in yeast (dimensionless)

{
c0x1 + x2

0x1 − x0

−c0x0 + c1 − x2
0x1

2.4, 0.07 [0.4, 0.31], [0.2, -0.7]

40 Duffing equation (weakly non-linear
oscillation)

{
x1

c0x1 ·
(
1 − x2

0

)
− x0

0.886 [0.63, -0.03], [0.2, 0.2]

41 Cell cycle model by Tyson for in-
teraction between protein cdc2 and
cyclin (dimensionless)

{
c0

(
c1 + x2

0

)
(−x0 + x1) − x0

c2 − x0

15.3, 0.001, 0.3 [0.8, 0.3], [0.02, 1.2]

42 Reduced model for chlorine dioxide-
iodine-malonic acid rection (dimen-
sionless)


c0 − c1x0x1

x2
0+1

− x0

c2x0

(
− x1

x2
0+1

+ 1

) 8.9, 4.0, 1.4 [0.2, 0.35], [3.0, 7.8]

43 Driven pendulum with linear damp-
ing / Josephson junction (dimension-
less)

{
x1

c0 − c1x1 − sin (x0)
1.67, 0.64 [1.47, -0.2], [-1.9, 0.03]

44 Driven pendulum with quadratic
damping (dimensionless)

{
x1

c0 − c1x1 |x1| − sin (x0)
1.67, 0.64 [1.47, -0.2], [-1.9, 0.03]

45 Isothermal autocatalytic reaction
model by Gray and Scott 1985 (di-
mensionless)

{
c0 · (1 − x0) − x0x

2
1

−c1x1 + x0x
2
1

0.5, 0.02 [1.4, 0.2], [0.32, 0.64]

46 Interacting bar magnets

{
c0 sin (x0 − x1) − sin (x0)

−c0 sin (x0 − x1) − sin (x1)
0.33 [0.54, -0.1], [0.43, 1.21]

47 Binocular rivalry model (no oscilla-
tions)

 −x0 + 1

ec0x1−c1+1

−x1 + 1

ec0x0−c1+1

4.89, 1.4 [0.65, 0.59], [3.2, 10.3]

48 Bacterial respiration model for nu-
trients and oxygen levels


c0 − x0x1

c1x2
0+1

− x0

c2 − x0x1
c1x2

0+1

18.3, 0.48, 11.23 [0.1, 30.4], [13.2, 5.21]

49 Brusselator: hypothetical chemical
oscillation model (dimensionless)

{
c1x

2
0x1 − x0 (c0 + 1) + 1

c0x0 − c1x
2
0x1

3.03, 3.1 [0.7, -1.4], [2.1, 1.3]

50 Chemical oscillator model by
Schnackenberg 1979 (dimension-
less)

{
c0 + x2

0x1 − x0

c1 − x2
0x1

0.24, 1.43 [0.14, 0.6], [1.5, 0.9]

51 Oscillator death model by Ermen-
trout and Kopell 1990

{
c0 + sin (x1) cos (x0)

c1 + sin (x1) cos (x0)
1.432, 0.972 [2.2, 0.67], [0.03, -0.12]

Table 3: 2 dimensional ODEs in ODEBench.

16

Under review as a conference paper at ICLR 2024

ID System description Equation Parameters Initial values

52 Maxwell-Bloch equations (laser dy-
namics)


c0 (−x0 + x1)

c1 (x0x2 − x1)

c2 (−c3x0x1 + c3 − x2 + 1)

0.1, 0.21, 0.34, 3.1 [1.3, 1.1, 0.89], [0.89,
1.3, 1.1]

53 Model for apoptosis (cell death)


c0 − c4x0 − c5x0x1

c9+x0
c1x2 (c8 + x1) − c2x1

c6+x1
− c3x0x1

c7+x1
−c1x2 (c8 + x1) +

c2x1
c6+x1

+
c3x0x1
c7+x1

0.1, 0.6, 0.2, 7.95, 0.05,
0.4, 0.1, 2.0, 0.1, 0.1

[0.005, 0.26, 2.15],
[0.248, 0.0973, 0.0027]

54 Lorenz equations in well-behaved
periodic regime


c0 (−x0 + x1)

c1x0 − x0x2 − x1

−c2x2 + x0x1

5.1, 12.0, 1.67 [2.3, 8.1, 12.4], [10.0,
20.0, 30.0]

55 Lorenz equations in complex peri-
odic regime


c0 (−x0 + x1)

c1x0 − x0x2 − x1

−c2x2 + x0x1

10.0, 99.96, 8/3 [2.3, 8.1, 12.4], [10.0,
20.0, 30.0]

56 Lorenz equations standard parame-
ters (chaotic)


c0 (−x0 + x1)

c1x0 − x0x2 − x1

−c2x2 + x0x1

10.0, 28.0, 8/3 [2.3, 8.1, 12.4], [10.0,
20.0, 30.0]

57 Rössler attractor (stable fixed point)


c3 (−x1 − x2)

c3 (c0x1 + x0)

c3 (c1 + x2 (−c2 + x0))

-0.2, 0.2, 5.7, 5.0 [2.3, 1.1, 0.8], [-0.1, 4.1,
-2.1]

58 Rössler attractor (periodic)


c3 (−x1 − x2)

c3 (c0x1 + x0)

c3 (c1 + x2 (−c2 + x0))

0.1, 0.2, 5.7, 5.0 [2.3, 1.1, 0.8], [-0.1, 4.1,
-2.1]

59 Rössler attractor (chaotic)


c3 (−x1 − x2)

c3 (c0x1 + x0)

c3 (c1 + x2 (−c2 + x0))

0.2, 0.2, 5.7, 5.0 [2.3, 1.1, 0.8], [-0.1, 4.1,
-2.1]

60 Aizawa attractor (chaotic)


−c3x1 + x0 (−c1 + x2)

c3x0 + x1 (−c1 + x2)

c0x2 + c2 + c5x
3
0x2 − 1/3x3

2 −
(
x2
0 + x2

1

)
(c4x2 + 1)

0.95, 0.7, 0.65, 3.5,
0.25, 0.1

[0.1, 0.05, 0.05], [-0.3,
0.2, 0.1]

61 Chen-Lee attractor; system for gyro
motion with feedback control of
rigid body (chaotic)


c0x0 − x1x2

c1x1 + x0x2

c2x2 +
x0x1
c3

5.0, -10.0, -3.8, 3.0 [15, -15, -15], [8, 14, -
10]

62 Binocular rivalry model with adap-
tation (oscillations)


−x0 + 1

ec0x2+c1x1−c2+1

c3 (x0 − x1)

−x2 + 1

ec0x0+c1x3−c2+1

c3 (x2 − x3)

0.89, 0.4, 1.4, 1.0 [2.25, -0.5, -1.13, 0.4],
[0.342, -0.431, -0.86,
0.041]

63 SEIR infection model (proportions)


−c1x0x2

−c0x1 + c1x0x2

c0x1 − c2x2

c2x2

0.47, 0.28, 0.3 [0.6, 0.3, 0.09, 0.01],
[0.4, 0.3, 0.25, 0.05]

Table 4: 3 and 4 dimensional ODEs in ODEBench.

17

Under review as a conference paper at ICLR 2024

2

4

6

8

10
RC-circuit (charging capacitor)

10

20

30

40

Population growth (naive)

20

40

60

Population growth with carrying
capacity

1.0

1.5

2.0

2.5

3.0

3.5

RC-circuit with non-linear
resistor (charging capacitor)

0

20

40

60

Velocity of a falling object
with air resistance

0

1

2

3

4

Autocatalysis with one fixed
abundant chemical

1.75

2.00

2.25

2.50

2.75

Gompertz law for tumor growth

20

40

60

80

Logistic equation with Allee
effect

0.2

0.3

0.4

0.5

Language death model for two
languages

0.0

0.2

0.4

0.6

0.8

Refined language death model for
two languages

1

2

3

Naive critical slowing down
(statistical mechanics)

11

12

13

14

15

16

Photons in a laser (simple)

1.5

2.0

2.5

3.0

Overdamped bead on a rotating
hoop

0

20

40

60

80

Budworm outbreak model with
predation

50

60

70

80

90

Budworm outbreak with predation
(dimensionless)

2

4

6

Landau equation (typical time
scale tau = 1)

20

40

60

80

Logistic equation with
harvesting/fishing

20

40

60

80

Improved logistic equation with
harvesting/fishing

0.2

0.4

0.6

0.8

Improved logistic equation with
harvesting/fishing

(dimensionless)

0.0

0.1

0.2

0.3

Autocatalytic gene switching
(dimensionless)

0

1

2

3

4

Dimensionally reduced SIR
infection model for dead people

(dimensionless)

2.0

2.5

3.0

Hysteretic activation of a
protein expression (positive

feedback, basal promoter
expression)

−2

−1

0

Overdamped pendulum with
constant driving

torque/fireflies/Josephson
junction (dimensionless)

−0.50

−0.25

0.00

0.25

0.50

Harmonic oscillator without
damping

−0.2

−0.1

0.0

0.1

Harmonic oscillator with damping

0

1

2

3

4

5

Lotka-Volterra competition model
(Strogatz version with sheeps

and rabbits)

0

2

4

6

8

Lotka-Volterra simple (as on
Wikipedia)

−2

−1

0

1

2
Pendulum without friction

−2

0

2

Dipole fixed point

0.1

0.2

0.3

0.4

0.5

RNA molecules catalyzing each
others replication

0

2

4

6

SIR infection model only for
healthy and sick

−2

−1

0

1

2

Damped double well oscillator

0

5

10

15

20
Glider (dimensionless)

−2

−1

0

1

2

Frictionless bead on a rotating
hoop (dimensionless)

−3

−2

−1

0

1

Rotational dynamics of an object
in a shear flow

−0.25

0.00

0.25

0.50

0.75

Pendulum with non-linear
damping, no driving

(dimensionless)

−2

−1

0

1

2

Van der Pol oscillator (standard
form)

−2

−1

0

1

2

Van der Pol oscillator
(simplified form from Strogatz)

−0.2

0.0

0.2

0.4

Glycolytic oscillator, e.g., ADP
and F6P in yeast (dimensionless)

−2

−1

0

1

2

Duffing equation (weakly
non-linear oscillation)

0.25

0.50

0.75

1.00

1.25

Cell cycle model by Tyson for
interaction between protein cdc2

and cyclin (dimensionless)

0

2

4

6

8

Reduced model for chlorine
dioxide-iodine-malonic acid

rection (dimensionless)

0

5

10

15

20

Driven pendulum with linear
damping / Josephson junction

(dimensionless)

0

5

10

15

Driven pendulum with quadratic
damping (dimensionless)

0

1

2

3

Isothermal autocatalytic
reaction model by Gray and Scott

1985 (dimensionless)

0.0

0.2

0.4

Interacting bar magnets

0.3

0.4

0.5

0.6

Binocular rivalry model (no
oscillations)

0

10

20

30

40

Bacterial respiration model for
nutrients and oxygen levels

−1

0

1

Brusselator: hypothetical
chemical oscillation model

(dimensionless)

0

1

2

3

Chemical oscillator model by
Schnackenberg 1979

(dimensionless)

0

5

10

15

Oscillator death model by
Ermentrout and Kopell 1990

0.4

0.6

0.8

1.0

1.2

Maxwell-Bloch equations (laser
dynamics)

0.0

0.5

1.0

1.5

2.0

Model for apoptosis (cell death)

2.5

5.0

7.5

10.0

12.5

Lorenz equations in well-behaved
periodic regime

−50

0

50

100

150

Lorenz equations in complex
periodic regime

−20

0

20

40

Lorenz equations standard
parameters (chaotic)

0 5 10
t

−1

0

1

2

Rössler attractor (stable fixed
point)

0 5 10
t

−5

0

5

Rössler attractor (periodic)

0 5 10
t

−10

0

10

20

Rössler attractor (chaotic)

0 5 10
t

−1

0

1

2
Aizawa attractor (chaotic)

0 5 10
t

−20

0

20

40

Chen-Lee attractor; system for
gyro motion with feedback

control of rigid body (chaotic)

0 5 10
t

−1

0

1

2

Binocular rivalry model with
adaptation (oscillations)

0 5 10
t

0.0

0.2

0.4

0.6

SEIR infection model
(proportions)

Figure 6: Solution trajectories of all equations in ODEBench for one of the initial conditions.

18

Under review as a conference paper at ICLR 2024

0 5 10
t

RC-circuit (charging
capacitor)

0 5 10
t

Population growth (naive)

0 5 10
t

Population growth with
carrying capacity

0 5 10
t

RC-circuit with non-linear
resistor (charging

capacitor)

0 5 10
t

Velocity of a falling object
with air resistance

0 5 10
t

Autocatalysis with one fixed
abundant chemical

0 5 10
t

Gompertz law for tumor
growth

0 5 10
t

Logistic equation with Allee
effect

0 5 10
t

Language death model for two
languages

0 5 10
t

Refined language death model
for two languages

0 5 10
t

Naive critical slowing down
(statistical mechanics)

0 5 10
t

Photons in a laser (simple)

0 5 10
t

Overdamped bead on a
rotating hoop

0 5 10
t

Budworm outbreak model with
predation

0 5 10
t

Budworm outbreak with
predation (dimensionless)

0 5 10
t

Landau equation (typical
time scale tau = 1)

0 5 10
t

Logistic equation with
harvesting/fishing

0 5 10
t

Improved logistic equation
with harvesting/fishing

0 5 10
t

Improved logistic equation
with harvesting/fishing

(dimensionless)

0 5 10
t

Autocatalytic gene switching
(dimensionless)

0 5 10
t

Dimensionally reduced SIR
infection model for dead
people (dimensionless)

0 5 10
t

Hysteretic activation of a
protein expression (positive
feedback, basal promoter

expression)

0 5 10
t

Overdamped pendulum with
constant driving

torque/fireflies/Josephson
junction (dimensionless)

0 5 10
t

Harmonic oscillator without
damping

0 5 10
t

Harmonic oscillator with
damping

0 5 10
t

Lotka-Volterra competition
model (Strogatz version with

sheeps and rabbits)

0 5 10
t

Lotka-Volterra simple (as on
Wikipedia)

0 5 10
t

Pendulum without friction

0 5 10
t

Dipole fixed point

0 5 10
t

RNA molecules catalyzing
each others replication

0 5 10
t

SIR infection model only for
healthy and sick

0 5 10
t

Damped double well
oscillator

0 5 10
t

Glider (dimensionless)

0 5 10
t

Frictionless bead on a
rotating hoop

(dimensionless)

0 5 10
t

Rotational dynamics of an
object in a shear flow

0 5 10
t

Pendulum with non-linear
damping, no driving

(dimensionless)

0 5 10
t

Van der Pol oscillator
(standard form)

0 5 10
t

Van der Pol oscillator
(simplified form from

Strogatz)

0 5 10
t

Glycolytic oscillator, e.g.,
ADP and F6P in yeast

(dimensionless)

0 5 10
t

Duffing equation (weakly
non-linear oscillation)

0 5 10
t

Cell cycle model by Tyson
for interaction between
protein cdc2 and cyclin

(dimensionless)

0 5 10
t

Reduced model for chlorine
dioxide-iodine-malonic acid

rection (dimensionless)

0 5 10
t

Driven pendulum with linear
damping / Josephson junction

(dimensionless)

0 5 10
t

Driven pendulum with
quadratic damping

(dimensionless)

0 5 10
t

Isothermal autocatalytic
reaction model by Gray and
Scott 1985 (dimensionless)

0 5 10
t

Interacting bar magnets

0 5 10
t

Binocular rivalry model (no
oscillations)

0 5 10
t

Bacterial respiration model
for nutrients and oxygen

levels

0 5 10
t

Brusselator: hypothetical
chemical oscillation model

(dimensionless)

0 5 10
t

Chemical oscillator model by
Schnackenberg 1979

(dimensionless)

0 5 10
t

Oscillator death model by
Ermentrout and Kopell 1990

0 5 10
t

Maxwell-Bloch equations
(laser dynamics)

0 5 10
t

Model for apoptosis (cell
death)

0 5 10
t

Lorenz equations in
well-behaved periodic regime

0 5 10
t

Lorenz equations in complex
periodic regime

0 5 10
t

Lorenz equations standard
parameters (chaotic)

0 5 10
t

Rössler attractor (stable
fixed point)

0 5 10
t

Rössler attractor (periodic)

0 5 10
t

Rössler attractor (chaotic)

0 5 10
t

Aizawa attractor (chaotic)

0 5 10
t

Chen-Lee attractor; system
for gyro motion with

feedback control of rigid
body (chaotic)

0 5 10
t

Binocular rivalry model with
adaptation (oscillations)

0 5 10
t

SEIR infection model
(proportions)

Figure 7: Predictions of ODEFormer for all equations in ODEBench for the first set of initial
conditions.

19

Under review as a conference paper at ICLR 2024

B IDENTIFIABILITY

Traditionally, when inferring dynamical laws as ODEs from observations, one assumed a parametric
form of the ODE to be known. In addition, typical assumptions included that the state of the system
may not be fully observed, and that one may not be interested in identifying the system fully (all
parameters), but that there are only certain (combinations of) parameters that need to be identified.
For example, in a typical epidemiological model of disease spread, e.g., modelling the fractions of
susceptible, infected, and recovered people (SIR model) in a population, one may only be able to
measure the number of infected people, but may also only be interested in estimating the reproduction
rate (a ratio of two parameters in the full equations). Hence a typical identifiability question would
start from a known system, a known observation function, and a specific target quantity. Researchers
have then developed various general methods and procedures to decide whether such a query is
solvable, i.e., whether the target is identified from the observations within the assumptions (Åström &
Eykhoff, 1971; Miao et al., 2011; Villaverde et al., 2016; Hamelin et al., 2020).

The study of identifiability from observations within larger non-parametric function classes from full
state observations has only been taken up more recently. For example, linear autonomous systems
as well as autonomous systems that are linear in parameters are fairly well understood (Stanhope
et al., 2014; Duan et al., 2020) with Qiu et al. (2022) recently essentially providing closure to this
question. A broad summary of these findings is that linear (in parameters) autonomous systems are
almost always (almost surely) identifiable from a single trajectory for many reasonable measures
(probability distributions) over parameters, i.e., over ODE systems.

When it comes to non-parametric classes such as analytic, algebraic, continuous, or smooth functions,
Scholl et al. (2023) have recently presented the first detailed analysis and results for a broad class of
scalar PDEs. These include ODEs as special cases, however their results only apply to scalar ODEs.
Even though they consider ODEs beyond first order, this still does not include multivariate ODE
systems. In the scalar case, identification from a single solution trajectory is possible for analytic
functions f , but essentially impossible for continuous (or smooth) f (Scholl et al., 2023).7

The function class considered by ODEFormer, i.e., the distribution implied by our generator, pre-
dominantly contains real analytic functions, but not exclusively since x → 1/x is analytic only on
R \ {0}. Hence, it is not clear in which category we fall regarding identifiability.

Crucially, all these theoretical results assume the entire continuous, non-noisy solution trajectory to
be known. Little is known for discrete and noisy observations, where identifiability likely turns from
a yes/no question into one of probabilistic claims given a prior over functions and the assumed noise
model. Hence, current theoretical results do not conclude whether non-linear ODEs can practically
be inferred from data.

C TRAINING DETAILS FOR ODEFORMER

We optimize a cross-entropy loss with the Adam optimizer (with default parameters suggested
by Kingma & Ba (2014)), with a learning rate warming up from 10−7 to 2× 10−4 across the initial
10,000 steps, by decaying via the cosine schedule for the next 300,000 steps. The annealing cycle
then restarts with a damping factor of 3/2 as per Kingma & Ba (2014), resulting in approximately
800,000 optimization steps. We do not use any regularization such as weight decay or dropout. To
efficiently manage the greatly varying input sequence lengths, we group examples of similar lengths
in batches, with the constraint that each batch contains 10,000 tokens. Our model is trained on a set
of about 50M examples pre-generated with 80 CPU cores. When run on a single NVIDIA A100 GPU
with 80GB memory and 8 CPU cores, ODEFormer’s training process takes roughly three days.

D PARAMETER OPTIMIZATION IN ODEFORMER (OPT)

In contrast to all baseline models, ODEFormer is a pretrained model and predicted ODEs are not
explicitly fit to the data observed at inference time. However, similar to Kamienny et al. (2022)

7The intuition here is that linear, polynomial, or more broadly even real analytic scalar univariate functions
can be uniquely extrapolated to all of R when they are known on any open interval. On the other hand, there are
infinitely many ways to extrapolate continuous or smooth functions beyond any interval.

20

Under review as a conference paper at ICLR 2024

we can post-hoc optimize the parameters of a predicted ODE to improve the data fit. Although
parameter estimation for dynamical system is known to be a challenging inference problem, we use
the Broyden-Fletcher-Goldfarb-Shanno algorithm (BFGS) (Nocedal & Wright, 2006) as implemented
in scipy.optimize.minimize (Virtanen et al., 2020) and thus opt for a comparatively simple
local, gradient-based method in the hope that the parameter values predicted by ODEFormer only
need slight refinement. The optimizer solves the following problem

argmin
{p1,...,pk}

loss
[
(x(t0), . . . , x(tn)), solve_ivp(f̂(x; {p1, . . . , pk}), x0 = x(t0), t = (t0, . . . , tn))

]
where {p1, . . . , pk} denotes the set of parameters of the ODE f̂ that was predicted by ODEFormer,
and where (x(t0) . . . , x(tn)) represents the (potentially noisy) observations. We use the negative
variance-weighted R2 score as optimization loss.

E EVALUATION OF BASELINE MODELS

Hyperparameter optimization. All baseline models are fitted to each trajectory separately and
each fit involves a separate hyperparameter optimization. Hyperparameters that are searched over
are listed in Table 5, all other hyperparameters are set to their respective default values. For each
combination of hyperparameters, the model is fitted on the first 70% and scored on the remaining 30%
of a trajectory. To reduce runtime, we parallelize optimization according to GridSearchCV from
scikit-learn (Pedregosa et al., 2011) and set the number of parallel jobs to min(# combinations,
cpu cores (= 48)). After selecting the combination with highest R2 score, the final model is fitted
on the full trajectory.

Finite difference approximations. Except for ProGED, all baseline models require approxima-
tions of temporal derivatives of all state variables of an ODE system as regression targets. To
estimate temporal derivatives we use the central finite difference algorithm as implemented by
FiniteDifference in the pysindy software package (de Silva et al., 2020) and include the
approximation order in the hyperparameter search. For a fair comparison on noisy trajectories we
extend the hyperparameter search to also include optional smoothing of trajectories with a Savitzky-
Savgol filter with a window length of 15 as implemented by SmoothedFiniteDifference
(de Silva et al., 2020).

Vector-valued functions. Some of the baseline implementations (AFP, FE-AFP, EPLEX, EHC,
FFX) do not readily support vector-valued functions (f : RD → RD) but only scalar-valued
functions (f : RD → R). To evaluate these baselines on systems of ODEs, we run them separately
for each component fi : RD → R of the system and combine the predictions for all components
i ∈ {1, . . . , D} via the Cartesian product {f1

1 , . . . , f
K1
1 }×. . .×{f1

D, . . . , fKD

D } where Ki represents
the number of predictions, e.g., the length of the Pareto front, obtained for component i.

Candidate selection. In symbolic regression, one typically faces a trade-off between accuracy
(how well the function/trajectory is recovered) and complexity of the proposed expression. There are
different strategies in the literature to select a single, final equation from the accuracy-complexity
Pareto front, which may bias comparisons across methods along one or the other dimension. For a
fair comparison, we evaluate all equations of a model’s Pareto front and pick the final equation based
on accuracy.

F EFFECT OF BEAM SIZE

In Figure 8, we study the impact of the beam size on reconstruction and generalization performance.
While reconstruction improves with the beam size, generalization hardly changes. This highlights
the importance of using both metrics: the two are not necessarily correlated, and the latter is a much
better proxy of symbolic recovery than the former.

21

Under review as a conference paper at ICLR 2024

Table 5: Hyperparameter names and values for optimization of baseline models. For FFX and
PySR, we optimize over finite difference order and smoother window length but no additional hyper
parameters.

Model Hyperparameter Values

All models finite difference order 2, 3, 4
smoother window length None, 15

AFP
population size 100, 500, 1000
generations 2500, 500, 250

operators [n, v, +, -, *, /, exp, log, 2, 3, sqrt],
[n, v, +, -, *, /, exp, log, 2, 3, sqrt, sin, cos]

EHC
population size 100, 500, 1000
generations 1000, 200, 100

operators [n, v, +, -, *, /, exp, log, 2, 3, sqrt],
[n, v, +, -, *, /, exp, log, 2, 3, sqrt, sin, cos]

EPLEX
population size 100, 500, 1000
generations 2500, 500, 250

operators [n, v, +, -, *, /, exp, log, 2, 3, sqrt],
[n, v, +, -, *, /, exp, log, 2, 3, sqrt, sin, cos]

FE-AFP
population size 100, 500, 1000
generations 2500, 500, 250

operators [n, v, +, -, *, /, exp, log, 2, 3, sqrt],
[n, v, +, -, *, /, exp, log, 2, 3, sqrt, sin, cos]

ProGED grammar
universal, rational

simplerational, trigonometric
polynomial

SINDy

polynomial degree 1, 2, 3, 4, 5, 6, 7, 8, 9, 10

basis functions
[polynomials],

[polynomials, sin, cos, exp],
[polynomials, sin, cos, exp, log, sqrt, 1/x]

optimizer threshold 0.05, 0.1, 0.15
optimizer alpha 0.025, 0.05, 0.075
optimizer max iterations 20, 100

SINDy (esc)

polynomial degree 1, 2, 3, 4, 5, 6, 7, 8, 9, 10

basis functions [polynomials],
[polynomials, sin, cos, exp]

optimizer threshold 0.05, 0.1, 0.15
optimizer alpha 0.025, 0.05, 0.075
optimizer max iterations 20, 100

SINDy (poly)

polynomial degree 1, 2, 3, 4, 5, 6, 7, 8, 9, 10
optimizer threshold 0.05, 0.1, 0.15
optimizer alpha 0.025, 0.05, 0.075
optimizer max iterations 20, 100

2 4 6
dimensions

0.00

0.25

0.50

0.75

1.00

R
2

sc
or

e

fitting
generalization
beam size 1
beam size 50

Figure 8: Increasing the beam size im-
proves reconstruction, but not generaliza-
tion. We plot the average reconstruction and
generalization R2-score on 10,000 noise-free,
densely samples synthetic examples for vari-
ous beam sizes and a temperature of 0.1.

22

Under review as a conference paper at ICLR 2024

G ADDITION RESULTS ON BENCHMARKS

In Figures 9 to 14, we plot histograms to better visualize how each model performs across different
noise conditions, datasets, and evaluation tasks.

0

20 ODEFormer (opt)

0

20 ODEFormer

0

20 PySR

0

20 SINDy (poly)

0

20 FFX

0

20 EHC

0

28 SINDy (esc)

0

 5 ProGED (poly)

0

20 ProGED

0

20 SINDy

0

20 FE-AFP

0

20 EPLEX

invalid <0 0.0 0.2 0.4 0.6 0.8 1.0
R2

0

28 AFP

(a) σ=0

0

20 ODEFormer (opt)

0

20 ODEFormer

0

28 PySR

0

20 SINDy (poly)

0

20 FFX

0

20 EHC

0

20 SINDy (esc)

0

 5 ProGED (poly)

0

20 ProGED

0

28 SINDy

0

20 FE-AFP

0

20 EPLEX

invalid <0 0.0 0.2 0.4 0.6 0.8 1.0
R2

0

20 AFP

(b) σ=0.01

0

20 ODEFormer (opt)

0

20 ODEFormer

0

20 PySR

0

10 SINDy (poly)

0

10 FFX

0

20 EHC

0

20 SINDy (esc)

0

10 ProGED (poly)

0

20 ProGED

0

28 SINDy

0

20 FE-AFP

0

28 EPLEX

invalid <0 0.0 0.2 0.4 0.6 0.8 1.0
R2

0

28 AFP

(c) σ=0.05

Figure 9: Histogram of per equation R2 scores for the reconstruction task on Strogatz. Subfigures
correspond to different noise levels. The y-axis represents counts and is scaled per model for better
visibility of the distribution of scores. The x-axis annotations “invalid” and “<0” respectively denote
the number of invalid predictions as well as the number of predictions that yielded an R2 score below
0. The red dashed line corresponds to the mean R2 score across equations, the black dashed line
corresponds to the median R2 score.

23

Under review as a conference paper at ICLR 2024

0

20 ODEFormer (opt)

0

20 ODEFormer

0

20 PySR

0

20 SINDy (poly)

0

20 FFX

0

20 EHC

0

20 SINDy (esc)

0

10 ProGED (poly)

0

10 ProGED

0

20 SINDy

0

20 FE-AFP

0

28 EPLEX

invalid <0 0.0 0.2 0.4 0.6 0.8 1.0
R2

0

20 AFP

(a) σ=0

0

20 ODEFormer (opt)

0

20 ODEFormer

0

20 PySR

0

20 SINDy (poly)

0

20 FFX

0

10 EHC

0

20 SINDy (esc)

0

10 ProGED (poly)

0

20 ProGED

0

28 SINDy

0

20 FE-AFP

0

20 EPLEX

invalid <0 0.0 0.2 0.4 0.6 0.8 1.0
R2

0

28 AFP

(b) σ=0.01

0

20 ODEFormer (opt)

0

20 ODEFormer

0

10 PySR

0

20 SINDy (poly)

0

20 FFX

0

10 EHC

0

20 SINDy (esc)

0

10 ProGED (poly)

0

20 ProGED

0

28 SINDy

0

20 FE-AFP

0

28 EPLEX

invalid <0 0.0 0.2 0.4 0.6 0.8 1.0
R2

0

28 AFP

(c) σ=0.05

Figure 10: Histogram of per equation R2 scores for the reconstruction task on Strogatz where 50%
of the trajectory are dropped uniformly at random (ρ = 0.5). Subfigures correspond to different noise
levels. The y-axis represents counts and is scaled per model for better visibility of the distribution
of scores. The x-axis annotations “invalid” and “<0” respectively denote the number of invalid
predictions as well as the number of predictions that yielded an R2 score below 0. The red dashed
line corresponds to the mean R2 score across equations, the black dashed line corresponds to the
median R2 score.

24

Under review as a conference paper at ICLR 2024

0

50 ODEFormer (opt)

0

50 ODEFormer

0

63 PySR

0

50 FFX

0

40 SINDy (poly)

0

40 ProGED (poly)

0

50 EHC

0

40 ProGED

0

50 SINDy (esc)

0

50 AFP

0

40 SINDy

0

50 FE-AFP

invalid <0 0.0 0.2 0.4 0.6 0.8 1.0
R2

0

40 EPLEX

(a) σ=0

0

50 ODEFormer (opt)

0

50 ODEFormer

0

63 PySR

0

50 FFX

0

40 SINDy (poly)

0

40 ProGED (poly)

0

50 EHC

0

40 ProGED

0

40 SINDy (esc)

0

40 AFP

0

50 SINDy

0

40 FE-AFP

invalid <0 0.0 0.2 0.4 0.6 0.8 1.0
R2

0

50 EPLEX

(b) σ=0.01

0

40 ODEFormer (opt)

0

40 ODEFormer

0

40 PySR

0

40 FFX

0

20 SINDy (poly)

0

40 ProGED (poly)

0

40 EHC

0

40 ProGED

0

40 SINDy (esc)

0

50 AFP

0

63 SINDy

0

40 FE-AFP

invalid <0 0.0 0.2 0.4 0.6 0.8 1.0
R2

0

61 EPLEX

(c) σ=0.05

Figure 11: Histogram of per equation R2 scores for the reconstruction task on ODEBench. Subfig-
ures correspond to different noise levels. The y-axis represents counts and is scaled per model for
better visibility of the distribution of scores. The x-axis annotations “invalid” and “<0” respectively
denote the number of invalid predictions as well as the number of predictions that yielded an R2

score below 0. The red dashed line corresponds to the mean R2 score across equations, the black
dashed line corresponds to the median R2 score.

25

Under review as a conference paper at ICLR 2024

0

50 ODEFormer (opt)

0

50 ODEFormer

0

61 PySR

0

40 FFX

0

40 SINDy (poly)

0

40 ProGED (poly)

0

40 EHC

0

50 ProGED

0

50 SINDy (esc)

0

40 AFP

0

40 SINDy

0

40 FE-AFP

invalid <0 0.0 0.2 0.4 0.6 0.8 1.0
R2

0

61 EPLEX

(a) σ=0

0

50 ODEFormer (opt)

0

50 ODEFormer

0

40 PySR

0

20 FFX

0

20 SINDy (poly)

0

40 ProGED (poly)

0

40 EHC

0

40 ProGED

0

40 SINDy (esc)

0

40 AFP

0

50 SINDy

0

40 FE-AFP

invalid <0 0.0 0.2 0.4 0.6 0.8 1.0
R2

0

61 EPLEX

(b) σ=0.01

0

50 ODEFormer (opt)

0

40 ODEFormer

0

40 PySR

0

40 FFX

0

40 SINDy (poly)

0

40 ProGED (poly)

0

40 EHC

0

40 ProGED

0

63 SINDy (esc)

0

50 AFP

0

63 SINDy

0

40 FE-AFP

invalid <0 0.0 0.2 0.4 0.6 0.8 1.0
R2

0

61 EPLEX

(c) σ=0.05

Figure 12: Histogram of per equation R2 scores for the reconstruction task on ODEBench where
50% of the trajectory are dropped uniformly at random (ρ = 0.5). Subfigures correspond to
different noise levels. The y-axis represents counts and is scaled per model for better visibility of the
distribution of scores. The x-axis annotations “invalid” and “<0” respectively denote the number of
invalid predictions as well as the number of predictions that yielded an R2 score below 0. The red
dashed line corresponds to the mean R2 score across equations, the black dashed line corresponds to
the median R2 score.

26

Under review as a conference paper at ICLR 2024

0

40 ODEFormer

0

40 ODEFormer (opt)

0

40 FFX

0

40 SINDy (poly)

0

40 PySR

0

40 SINDy (esc)

0

50 ProGED (poly)

0

40 EHC

0

50 ProGED

0

50 FE-AFP

0

40 AFP

0

50 SINDy

invalid <0 0.0 0.2 0.4 0.6 0.8 1.0
R2

0

50 EPLEX

(a) σ=0

0

40 ODEFormer

0

40 ODEFormer (opt)

0

40 FFX

0

40 SINDy (poly)

0

40 PySR

0

40 SINDy (esc)

0

50 ProGED (poly)

0

50 EHC

0

50 ProGED

0

50 FE-AFP

0

50 AFP

0

63 SINDy

invalid <0 0.0 0.2 0.4 0.6 0.8 1.0
R2

0

40 EPLEX

(b) σ=0.01

0

40 ODEFormer

0

40 ODEFormer (opt)

0

40 FFX

0

40 SINDy (poly)

0

40 PySR

0

63 SINDy (esc)

0

50 ProGED (poly)

0

40 EHC

0

50 ProGED

0

50 FE-AFP

0

63 AFP

0

63 SINDy

invalid <0 0.0 0.2 0.4 0.6 0.8 1.0
R2

0

50 EPLEX

(c) σ=0.05

Figure 13: Histogram of per equation R2 scores for the generalization task on ODEBench. Subfig-
ures correspond to different noise levels. The y-axis represents counts and is scaled per model for
better visibility of the distribution of scores. The x-axis annotations “invalid” and “<0” respectively
denote the number of invalid predictions as well as the number of predictions that yielded an R2

score below 0. The red dashed line corresponds to the mean R2 score across equations, the black
dashed line corresponds to the median R2 score.

27

Under review as a conference paper at ICLR 2024

0

40 ODEFormer

0

40 ODEFormer (opt)

0

40 FFX

0

40 SINDy (poly)

0

40 PySR

0

40 SINDy (esc)

0

50 ProGED (poly)

0

40 EHC

0

50 ProGED

0

40 FE-AFP

0

50 AFP

0

50 SINDy

invalid <0 0.0 0.2 0.4 0.6 0.8 1.0
R2

0

54 EPLEX

(a) σ=0

0

40 ODEFormer

0

40 ODEFormer (opt)

0

40 FFX

0

40 SINDy (poly)

0

40 PySR

0

50 SINDy (esc)

0

50 ProGED (poly)

0

50 EHC

0

50 ProGED

0

50 FE-AFP

0

50 AFP

0

63 SINDy

invalid <0 0.0 0.2 0.4 0.6 0.8 1.0
R2

0

50 EPLEX

(b) σ=0.01

0

40 ODEFormer

0

40 ODEFormer (opt)

0

50 FFX

0

50 SINDy (poly)

0

50 PySR

0

63 SINDy (esc)

0

50 ProGED (poly)

0

63 EHC

0

50 ProGED

0

50 FE-AFP

0

63 AFP

0

63 SINDy

invalid <0 0.0 0.2 0.4 0.6 0.8 1.0
R2

0

50 EPLEX

(c) σ=0.05

Figure 14: Histogram of per equation R2 scores for the generalization task on ODEBench where
50% of the trajectory are dropped uniformly at random (ρ = 0.5). Subfigures correspond to
different noise levels. The y-axis represents counts and is scaled per model for better visibility of the
distribution of scores. The x-axis annotations “invalid” and “<0” respectively denote the number of
invalid predictions as well as the number of predictions that yielded an R2 score below 0. The red
dashed line corresponds to the mean R2 score across equations, the black dashed line corresponds to
the median R2 score.

28

	Introduction
	Related Work
	Data Generation
	Model, Training, and Inference
	Evaluation
	Benchmarking Dynamical Symbolic Regression Methods
	Discussion and Future Directions
	ODEBench
	Identifiability
	Training details for ODEFormer
	Parameter optimization in ODEFormer (opt)
	Evaluation of baseline models
	Effect of beam size
	Addition results on benchmarks

