
A APPENDIX

A.1 DATASETS

We perform the experiments on ten networks of various sizes and structures. Each network is con-
sidered as undirected and unweighted for the consistency of the experiments. (i) Cora (Sen et al.,
2008) is a citation network regarding machine learning publications which consist of seven cate-
gories. (ii) Dblp (Perozzi et al., 2017) is Perozzi et al. (2017) is a co-authorship network in which
the node labels denote the research fields. (iii) AstroPh (Leskovec et al., 2007) is a collaboration
network constructed by papers submitted to astrophysics category of the e-print archive, ArXiv. The
nodes represent authors, and there is an edge between a pair of nodes if the corresponding authors
have co-authored a paper. (iv) GrQc (Leskovec et al., 2007) is another co-authorship network simi-
larly devised with the papers whose section are labeled as general relativity and quantum cosmology
category. (v) Facebook (Leskovec & Mcauley, 2012) is a social network built with the data obtained
by a survey conducted through a Facebook application. (vi) HepTh (Leskovec et al., 2007) is a col-
laboration network constructed with the works of the high energy physics category of ArXiv. (vii)
Amazon (Yang & Leskovec, 2015a) is a network constructed by crawling the Amazon website in
which the node labels show the product categories. We consider the top 5, 000 categories in the clas-
sification experiments. (viii) YouTube (Yang & Leskovec, 2015b; Mislove et al., 2007) is a social
network built by the video-sharing platform allowing its users to form connections and groups. (ix)
Flickr (Mislove et al., 2007) network has been crawled from the image sharing application Flickr in
which links indicate the connections between the users. (x) Flixster (Zafarani & Liu, 2009) has been
extracted from the social-networking movie platform allowing its users to share movie ratings and
meet with other users sharing similar interests. The detailed statistics of the networks are provided
in Table 1.

Table 1: Statistics of networks. N : number of nodes, M : number of edges, d∗: average node degree
Network N M d∗

Cora 2, 708 5, 278 3.898
Dblp 27, 199 66, 832 4.914

AstroPh 17, 903 197, 031 22.010
GrQc 5, 242 14, 496 5.531

Facebook 4, 039 88, 234 43.691
HepTh 8, 638 24, 827 5.748

Amazon 334, 868 925, 876 5.530
YouTube 1, 138, 499 2, 990, 443 5.253

Flickr 1, 715, 255 15, 555, 042 18.137
Flixster 2, 523, 386 7, 918, 801 6.276

A.2 BASELINE METHODS

In our experiments, we have run various graph representation learning methods in order to evaluate
the performance of our proposed approach. (i) DEEPWALK (Perozzi et al., 2014) that generates a set
of fixed-length node sequences by performing a uniform random walking strategy and extracts the
embeddings by maximizing the co-occurrence probabilities of nodes within a certain window size.
(ii) NODE2VEC (Grover & Leskovec, 2016) employing the same methodology to learn the node
representations, but introduces two additional parameters to manipulate the random walk more flex-
ibly. (iii) LINE (Tang et al., 2015) that learns node embedding vectors by optimizing the first- and
second-order proximity information. (iv) NETMF (Qiu et al., 2018) learns embeddings by factor-
izing the pointwise mutual information matrix constructed by using the node co-occurrences in the
random walks. (v) NETSMF (Qiu et al., 2019) that is a scalable extension of the NETMF method
(Qiu et al., 2018) which aims to learn representations by factorizing the designed pointwise mu-
tual information matrix. (vi) RANDNE (Zhang et al., 2018) that targets large networks and extracts
the embedding vectors by applying iterative Gaussian random projections. (vii) PRONE (Zhang
et al., 2019) that initially learns the node representations by an efficient sparse matrix factorization
and the node embeddings are enhanced with spectral propagation operations. (viii) LOUVAINNE
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(Bhowmick et al., 2020) that firstly extracts level-specific embeddings for each subgraph in the con-
structed hierarchy of subgraphs such that the final node representations are obtained by aggregating
these level-specific embeddings.

A.3 PARAMETER SETTINGS

We set the common parameters of the random walk-based approaches, such as window size, the
number of walks, and walk length to mostly preferred well-performing values 10, 80, and 10, re-
spectively. The number of negative samples for NODE2VEC and LINE were chosen as 5 since they
perform pretty well. We chose 0.01 for the damping parameter of LOUVAINNE and fixed the rank
parameter of NETSMF to 256 and the number of rounds to 2, 000. We have chosen smaller values
for the number of rounds on the large-scale networks because of the high memory demand. As
suggested by the authors, we run the RANDNE approach with the adjacency matrix for q = 2 and
weights = [1, 1, 10−2] and we performed the experiments with the recommended defaults values
for the parameters of the PRONE algorithm. For the SH-LDM and SH-LDM-RE we optimize the
negative log-likelihood via the Adam (Kingma & Ba, 2017) optimizer while setting the learning
rate to lr = 0.1 for the all networks. We initialize the latent variables using the top-k eigenvec-
tors of the adjacency matrix spectral decomposition (we set maximum k = 10, if the embedding
dimension exceeds that threshold we use zeros for the rest dimensions which guarantees that the
spectral proximity metric is preserved). In addition, we use the first 500 iterations to learn the scale
of the initial latent positions and tune the bias terms. We terminate training after 15, 000 iterations
of the algorithm. Lastly, we build the hierarchical structure by running the k-means procedure every
t = 25 iterations and consider it fixed in any other case. The two proposed models make predictions
directly based on the learned Poisson rates of the test pairs {i, j} which utilize the Euclidean norm
as λij = exp(γi + γj − ||zi − zj ||2).

A.4 EXPERIMENTAL SETUP

For the experimental setup of the link prediction task, we follow the commonly applied strategy
(Perozzi et al., 2014; Grover & Leskovec, 2016), and we remove half of the edges of a given net-
work by keeping the residual network connected. Since this strategy is not feasible for large-scale
networks, we hide 30% of the edges for these networks. The edges in the residual network form
the positive samples for the training set, and the removed links are considered the positive instances
for the testing set. We sample the same number of node pairs that are not the edges of the original
network to construct the negative instances for the testing and training sets. We utilize the residual
network to learn the node embeddings and design a feature vector for each node pair sample by
applying a binary operator (Grover & Leskovec, 2016). The detailed list of the operators are given
in Table 2

Table 2: Binary operators for constructing feature vectors for node pair samples. Each definition
corresponds to d-th coordinate of the embedding vectors zi and zj .

Average Hadamard Weighted L1 Weighted L2

Operator (zi,d + zj,d)/2 (zi,d × zj,d) |zi,d − zj,d| |zi,d − zj,d|2

A.4.1 A SPECTRAL CLUSTERING INITIALIZATION

A traditional initialization for LSMs is through the Multidimensional Scaling (MDS) algorithm,
usually applied on the geodesic distance between the nodes of the network (Hoff et al., 2002; Krivit-
sky et al., 2009). Classical MDS is computationally expensive (O(N3)) and thus infeasible for large
datasets. In addition, calculating the full geodesic distance matrix makes this initialization method
prohibited even for computational friendly versions of the algorithm such as split-and-combine MDS
(Tzeng et al., 2008) and Chalmer’s Linear Iteration algorithm (Chalmers, 1996). As a scalable ini-
tialization for the latent variables we use the leaf centroid values of a spectral clustering procedure
using hierarchical k-means over the first k generalized eigenvectors of an affinity matrix which was
set as the adjacency matrix (Lei & Rinaldo, 2015), with other alternatives being any version of the
Laplacian matrix (Jianbo Shi & Malik, 2000; Ng et al., 2001). Solving the eigenproblem for a few
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numbers of eigenvalues can be done efficiently through Lanczos method (Golub & Van Loan, 1996)
due to the high sparsity of real large-scale networks. We use leaf centroid values rather than the cor-
responding eigenvectors since the spectral space does not represent homophily and transitivity in the
same sense as the LDM. Therefore, we use leaf cluster values to provide an initial measurement of
the Euclidean distance between fine groups of network nodes and allow the optimization to discover
the enclosed structure and dynamics. Results using these initialization strategies are provided in the
supplementary material.

A.5 HIERARCHICAL NETWORK VISUALIZATION

In order to discover the underlying structure for large networks, we use the learned embeddings of
SH-LDM-RE and their corresponding cluster labels and re-order the adjacency matrix accordingly.
The results for YouTube, Flickr and Flixster datasets for an embedding size of D = 2 and a tree
height of L = 3 are shown in Figure 1. We witness that SH-LDM-RE successfully captures the
network anatomy and can provide insights on how the structure is propagated across the different
levels of resolution of the extracted network communities.

YouTube Flickr Flixster

Figure 1: Large-scale networks visualizations of the ordered adjacency matrices based on the learned
D = 2 embeddings of SH-LDM-RE for a hierarchical structure of L = 3.

A.6 VISUALIZATION

In this part, we provide a validity test of the t-SNE constructed Space (t-SNES), for all baselines and
proposed methods, as summarized by Figure 2. We provide the labeled-colored True Embedding
Space (TES) for D = 2, as well as for D = 2 and D = 128 mapped to D = 2 via the use of t-SNE
for Cora and DBLP, and report the performance over the tasks of network reconstruction, clustering
and classification respectively reporting the AUC, the Normalized Mutual Information (NMI) and
Micro-F1 scores. As in the main paper we witness that our proposed frameworks SH-LDM and
SH-LDM-RE are have the most consistent performance across the different downstream tasks.

A.7 CLASSIFICATION RESULTS

In Table 3 we provide the Macro-F1 scores for the two large-scale and moderate-sized networks
considered in the main paper. Again, for this metric our proposed methods outperform the baselines
with LOUVAINNE having more or less on par performance. Despite the very good classification per-
formance of LOUVAINNE, our method significantly outperforms the competitor on link prediction
and thus is positioned as a stronger GRL approach.

A.8 TIME COMPLEXITY ANALYSIS

Here, we provide the theoretical complexity in big O notation for all of the considered models and
our proposed frameworks. The results are given in Table A.8 and show that SH-LDM is a powerful
representation learning tool that also scales nicely with the total size of the network. As we can see

3



Cora DBLP

D 2 (TES) 2 (T-SNE) 128 (T-SNE) 2 (TES) 2 (T-SNE) 128 (T-SNE)
D
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(.213, .502, .888) (.179, .202, .907) (.427, .203, .977) (.018, .519, .943) (.036, .307, .903) (.066, .290, .981)
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E

C

(.175, .419, .863) (.147, .226, .841) (.378, .204, .975) (.072, .448, .920) (.004, .306, .820) (.117, .298, .974)

L
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(.000, .197, .630) (.001, .213, .520) (.400, .228, .968) (.000, .328, .625) (.000, .298, .504) (.097, .295, .972)
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(.105, .390, .848) (.060, .380, .783) (.379, .813, .960) (.010, .654, .936) (.047, .657, .942) (.067, .736, .970)
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(.268, .554, .860) (.265, .560, .873) (.397, .836, .970) (.113, .622, .940) (.035, .624, .951) (.114, .823, .975)
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A

N
D

N
E

(.237, .272, .747) (.267, .280, .740) (.251, .777, .928) (.013, .406, .903) (.002, .412, .840) (.006, .788, .948)

L
O

U
V

A
IN

N
E

(.253, .804, .948) (.217, .216, .935) (.268, .222, .941) (.012, .780, .960) (.005, .295, .944) (.008, .290, .951)

P
R

O
N

E

(.193, .450, .878) (.125, .466, .821) (.334, .822, .968) (.012, .574, .919) (.001, .573, .784) (.109, .821, .970)

S
H

-L
D

M

(.212, .789, .975) (.235, .780, .967) (.383, .814, .970) (.047, .793, .985) (.028, .796, .953) (.076, .818, .975)

S
H

-L
D

M
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E

(.283, .805, .975) (.311, .791, .969) (.367, .824, .966) (.036, .805, .985) (.027, .802, .958) (.118, .824, .975)

Figure 2: The first two columns for each dataset represent the node embeddings learned in two-
dimensional space and T-SNE algorithm is applied for the second and the third columns to reduce
the dimension size for the visualization task and to demonstrate the influence of T-SNE algorithm
on the embeddings. For each network, NMI, Micro-F1 and AUC scores are reported, respectively.
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Table 3: Macro-F1 scores for varying representation sizes over two moderate-sized and two large-
scale networks. The symbol ”-” indicates that the running time of the corresponding model takes
more than 20 hours and ”x” shows that the method is not able to run due to insufficient memory
space.

Cora DBLP Amazon YouTube

DIMENSION 2 3 8 2 3 8 2 3 8 2 3 8

DEEPWALK .474 .698 .806 .448 .546 .772 .181 .479 .849 .201 .258 .071
NODE2VEC .368 .653 .816 .370 .470 .780 .069 .221 .801 - - -

LINE .062 .142 .125 .172 .253 .244 .001 .001 .001 .059 .069 .071
NETMF .350 .629 .785 .604 .660 .726 x x x x x x

NETSMF .534 .682 .802 .571 .692 .783 .280 .512 .734 .230 .271 .310
RANDNE .213 .265 .458 .354 .426 .586 .204 .372 .697 .128 .135 .186

LOUVAINNE .789 .792 .793 .757 .791 .802 .920 .922 .924 .307 .306 .306
PRONE .413 .574 .756 .552 .609 .741 .401 .676 .873 .168 .195 .290

SH-LDM .781 .790 .802 .773 .795 .746 .902 .925 .830 .238 .282 .335
SH-LDM-RE .790 .796 .807 .784 .803 .795 .912 .900 .851 .242 .284 .335

from Figure 3 we see that essentially the complexity of SH-LDM grows linearly with the number
of network edges and thus has very similar time complexity as the case-control variant.

Table 4: Complexity analysis of methods. V : vertex set, E: edge set, N : number of walks, L:
walk length, H: height of the hierarchical tree, D: node representation size, k: number of negative
instances, q: order value, c: Chebyshev expansion order, γ: window size, α1 and α2 constants such
as α1, α2 � |V |.

Method Complexity

DEEPWALK O (γ|V | log (|V |)NLD)
NODE2VEC O (γ|V |NLDk)

LINE O (|E|Dk)
NETMF O

(
|V |2D

)
NETSMF O

(
|E|(γ +D) + |V |D2 +D3

)
RANDNE O

(
|V |D2 + |E|Dq

)
LOUVAINNE O (|E|H+ |V |D)

PRONE O
(
|V |D2 + |E|c

)
CC-LDM O (α1|E|D)
SH-LDM O (α2|V | log |V |D)
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Figure 3: Scatter plot on a log-log scale for the number of network edges versus |V | log |V | with
|V | the vertex set, for 63 datasets of the SNAP library (Leskovec & Krevl, 2014).
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A.9 BIPARTITE MODELING

In the main paper, our study concentrates on modeling undirected networks. Nevertheless, SH-
LDM and SH-LDM-RE generalize to both directed and bipartite graphs. In the following, we
provide the mathematical extension for the bipartite case (the directed network formulation of our
proposed model can be considered a special case of the bipartite framework in which self-links are
removed and thus omitted from the below log-likelihood). We further present a case study based
on the Filmtrust bipartite network (Guo et al., 2013) which consists of an adjacency matrix of size
1505 × 2069. For a bipartite network we can formulate the log-likelihood of the Poisson linear
model as:

logP (Y |λ) =
∑
i,j

(
yij log(λij)− λij

)
=

∑
i,j:yij=1

log(λij) −
∑
i,j

λij , (1)

where we have disregarded the term − log (yij !) which is equal to zero for binary networks. Based
on the LDM we can then define the Poisson rate as:

λij = exp
(
ψi + ωj − d

(
wi,vj

))
, (2)

where ψi and ωj are the corresponding random effects and {wi, vj} the latent variables of the two
disjoint sets of network nodes, N1 and N2 respectively. We note that in Eq. equation 2 we can
also include potential covariate information of the network which can be absorbed in the random
effects. Following the same format as of the main paper, we can define a scalable hierarchical
version of a bipartite LDM based on a clustering procedure while again using a multiresolution KD
tree. In this setting, we use our divisive Euclidean distance hierarchical clustering procedure over the
concatenation z = [w;v] of the two sets of latent variables. We can then mimic the steps described
in the methods section of the main paper applied to a non-symmetric case and approximate the
pairwise distance matrix DN1×N2 in the same manner. In this formulation, a centroid is considered
a leaf if the corresponding tree-cluster contains less than log(N1) of the latent variables w or less
than log(N2) of the latent variables v. We thereby define the Scalable Hierarchical-Latent Distance
Model for a bipartite network as:

logP (Y |λ) =
∑
yi,j=1

(
ψi + ωj − ||wi − vj ||2

)
−
∑KL

kL

(∑
i,j∈CkL

e(ψi+ωj−||wi−vj ||2)

)
(3)

−
∑L
l

(∑
kl,k′l

e
−||µkl

−µk′
l
||2

(∑
i∈Ckl

eψi

)(∑
j∈Ck′

l

eωj

))
, (4)

where µk are the latent centroids which have absorbed the dependency of both sets of latent variables
{wi,vj}.
We present the results of a case-study where we used the bipartite version of both SH-LDM and
SH-LDM-RE to analyze Filmtrust. In addition, we evaluate the predictive power of our model
by zeroing out 50% of the network edges which we then try to predict, as also described in the
main paper. Since the proposed spectral clustering initialization method does not generalize to the
bipartite scenario, we initialized randomly both sets of latent variables and leave more accurate
initialization frameworks as future work. The predictive performance is summarized in Table 5,
where we see that both SH-LDM and SH-LDM-RE are able to successfully infer missing links
but with a clear performance gap between them, highlighting the importance of random-effects also
when modeling bipartite networks. Furthermore, it is evident from Figure 4 that both SH-LDM and
SH-LDM-RE can discover and account for the network structure. Lastly, we provide visualizations
of the constructed latent space of SH-LDM and SH-LDM-RE as seen in Figure 4.

Table 5: Predictive performance on the Filmtrust network for embedding dimensionality D = 2.
AUC-ROC AUC-PR

SH-LDM-RE 0.967 0.967
SH-LDM 0.899 0.918
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SH-LDM-RE SH-LDM

Figure 4: Filmtrust network visualizations of the ordered adjacency matrix based on the learned
D = 2 embeddings for a hierarchical structure visualized for L = 2.
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Figure 5: Constructed latent space based on the learned D = 2 embeddings and the leaf centroids
of the constructed hierarchical structure for Filmtrust.
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A.10 HIERARCHICAL EMBEDDINGS AND ADJACENCY MATRIX VISUALIZATIONS

In this section we provide additional visualizations for the networks studied throughout this paper,
for both the case of moderate-sized and large-scale networks.

A.10.1 MODERATE-SIZED NETWORKS

Through the proposed SH-LDM-RE framework we are able to visualize the network structure in
a hierarchical manner. We provide the visualization of the hierarchical centroids for moderate-
sized networks in Figure 6 where we observe how the tree evolves as we move down the hierarchy
expressing with increasing detail the network anatomy. Moreover, we provide the ordered adjacency
matrices for the moderate-sized networks for both SH-LDM and SH-LDM-RE in Figures 7 and 8.
Based on these figures we can observe that both versions of the model can successfully discover the
network structure.
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Figure 6: Moderate-sized networks visualizations of the obtained centroids based on the hierarchical
k-means clustering of the learned D = 2 embeddings for SH-LDM-RE for a hierarchical structure
of L = 4. Each different centroid color represents the tree level which with blue we denote L = 1,
green L = 2, cyan L = 3 and red L = 4. Each colored line denotes in which clusters the parent
cluster splits across the network hierarchy. The size of each centroid is proportional on the number
of network nodes the corresponding cluster contains.

AstroPh HepTh Facebook GrQc

Figure 7: Ordered adjacency matrices for SH-LDM-RE.

AstroPh HepTh Facebook GrQc

Figure 8: Ordered adjacency matrices for SH-LDM.
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A.10.2 LARGE-SCALE NETWORKS

The visualizations of the hierarchical centroids for the large-scale networks is given in Figure 9
where again we observe how the network can be expressed in each level with an increasing amount
of detail and characteristics. The proposed framework shows promising results as a large-scale
network compression tool which is able to maintain high-order information with very few memory
requirements.
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Figure 9: Large-scale networks visualizations of the obtained centroids based on the hierarchical
k-means clustering of the learned D = 2 embeddings for SH-LDM-RE for a hierarchical structure
of L = 4. Each different centroid color represents the tree level which with blue we denote L = 1,
green L = 2, cyan L = 3 and red L = 4. Each colored line denotes in which clusters the parent
cluster splits across the network hierarchy. The size of each centroid is proportional to the number
of network nodes the corresponding cluster contains.

A.11 PREDICTIVE PERFORMANCE ANALYTICAL RESULTS

We here provide results describing the predictive performance of the proposed SH-LDM-RE, SH-
LDM and the different baselines including a direct comparison with the Case-Control Latent Dis-
tance Model (CC-LDM) and with random effects (CC-LDM-RE). We outline the predictive capa-
bilities via the AUC-ROC and AUC-PR metrics. We provide error bars based on an average of three
runs for both our proposed framework and the case-control for the moderate-sized networks. For the
large-scale networks due to time constraints we only provide error bars for our proposed method and
for D = 2, 3. In addition, we were unable to run the case-control variant of the LDM for D = 16
due to our hardware memory limitations. In the main paper, the results are based on a single run for
all models which is found to be almost identical to the mean value of the different runs.

A.11.1 AUC-ROC METRIC

We summarize the AUC-ROC performance metric for the different models while predicting on the
moderate-sized networks in Tables 6 to 9. The obtained results verify that the family of LDMs
such as SH-LDM and CC-LDM outperform the rest of the baselines for small dimensions while
being robust as the dimensionality increases and where also the baselines become more competitive.
Both SH-LDM-RE and CC-LDM-RE outline the importance of random effects when modeling the
different networks. Comparing our proposed method with the case-control version we observe that
there are occasions where both models outperform each other. The gap though is quite more often
for the case of SH-LDM-RE and SH-LDM which usually outperforms the corresponding case-
control version. The predictive performance for the large-scale networks is summarized by Tables
10 to 12, where again we observe that the LDMs outperform the baselines and our proposed method
is again on par with the case-control version. What is more, NETSMF provides quite a competitive
performance equivalent to the LDM family. It is important to note though that both the scalable
NETSMF version as well as the full version NETMF are drastically outperformed in the moderate-
sized networks showing that these models are not robust across different network sizes while our
proposed method as well as the case-control variant are.
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Table 6: AUC-ROC scores for varying dimension sizes on the AstroPh network.
D = 2 D = 3 D = 8 D = 32 D = 64 D = 128

DEEPWALK 0.831 0.883 0.945 0.953 0.955 0.961
NODE2VEC 0.825 0.886 0.951 0.957 0.940 0.902

LINE 0.632 0.832 0.902 0.948 0.955 0.960
NETMF 0.800 0.805 0.814 0.839 0.853 0.868

NETSMF 0.828 0.854 0.891 0.919 0.936 0.943
RANDNE 0.524 0.545 0.554 0.618 0.642 0.681

LOUVAINNE 0.798 0.805 0.813 0.819 0.840 0.864
PRONE 0.768 0.843 0.907 0.947 0.957 0.965

CC-LDM 0.906±0.004 0.925±0.001 0.968±0.001 0.978±0.001 0.976±0.001 0.977±0.001
CC-LDM-RE 0.932±0.002 0.938±0.009 0.974±0.007 0.979±0.000 0.980±0.000 0.979±0.000

FR-LSM 0.917±0.003 0.940±0.001 0.960±0.000 0.961±0.000 0.961±0.001 0.961±0.000
FR-LSM-RE 0.931±0.001 0.948±0.001 0.962±0.001 0.964±0.001 0.964±0.002 0.965±0.001

Table 7: AUC-ROC scores for varying dimension sizes on the GrQc network.
D = 2 D = 3 D = 8 D = 32 D = 64 D = 128

DEEPWALK 0.845 0.886 0.919 0.930 0.936 0.937
NODE2VEC 0.809 0.852 0.884 0.894 0.897 0.895

LINE 0.688 0.867 0.920 0.919 0.918 0.910
NETMF 0.830 0.841 0.860 0.875 0.891 0.916

NETSMF 0.756 0.772 0.805 0.847 0.863 0.883
RANDNE 0.534 0.551 0.560 0.604 0.630 0.660

LOUVAINNE 0.861 0.866 0.868 0.873 0.883 0.898
PRONE 0.818 0.853 0.883 0.915 0.918 0.909

CC-LDM 0.880±0.002 0.888±0.008 0.931± 0.002 0.943±0.001 0.942±0.002 0.940±0.002
CC-LDM-RE 0.908±0.000 0.918±0.003 0.945±0.001 0.949±0.003 0.945±0.003 0.950±0.001

SH-LDM 0.898±0.003 0.916±0.002 0.944± 0.000 0.946±0.001 0.946±0.001 0.947±0.001
SH-LDM-RE 0.910±0.001 0.929± 0.002 0.953±0.004 0.953±0.000 0.952±0.000 0.953±0.001

Table 8: AUC-ROC scores for varying dimension sizes on the Facebook network.
D = 2 D = 3 D = 8 D = 32 D = 64 D = 128

DEEPWALK 0.958 0.978 0.986 0.985 0.984 0.983
NODE2VEC 0.914 0.960 0.988 0.987 0.987 0.988

LINE 0.751 0.958 0.979 0.983 0.982 0.979
NETMF 0.872 0.872 0.936 0.971 0.973 0.974

NETSMF 0.907 0.919 0.976 0.986 0.987 0.987
RANDNE 0.614 0.606 0.657 0.726 0.789 0.815

LOUVAINNE 0.957 0.951 0.958 0.963 0.971 0.973
PRONE 0.900 0.901 0.971 0.983 0.985 0.984

CC-LDM 0.982±0.000 0.989±0.000 0.992±0.000 0.992±0.000 0.992±0.000 0.992±0.000
CC-LDM-RE 0.989±0.001 0.993±0.000 0.994±0.000 0.993±0.000 0.993±0.000 0.993±0.000

SH-LDM 0.980±0.002 0.986±0.000 0.986±0.002 0.987±0.000 0.986±0.000 0.985±0.000
SH-LDM-RE 0.986±0.000 0.990±0.000 0.988±0.002 0.989±0.000 0.989±0.000 0.989± 0.000
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Table 9: AUC-ROC scores for varying dimension sizes on the HepTh network.
D = 2 D = 3 D = 8 D = 32 D = 64 D = 128

DEEPWALK 0.773 0.840 0.874 0.874 0.889 0.896
NODE2VEC 0.780 0.824 0.881 0.871 0.858 0.848

LINE 0.659 0.804 0.874 0.873 0.858 0.857
NETMF 0.757 0.765 0.792 0.819 0.833 0.858

NETSMF 0.705 0.730 0.801 0.836 0.836 0.858
RANDNE 0.519 0.499 0.509 0.531 0.554 0.569

LOUVAINNE 0.774 0.840 0.874 0.874 0.889 0.897
PRONE 0.678 0.705 0.827 0.860 0.872 0.866

CC-LDM 0.799±0.017 0.821±0.009 0.881±0.003 0.904±0.006 0.909±0.005 0.905±0.006
CC-LDM-RE 0.827 ±0.011 0.846±0.005 0.903±0.004 0.916±0.002 0.913±0.002 0.915±0.003

SH-LDM 0.847±0.009 0.863±0.003 0.912±0.001 0.914±0.002 0.915±0.001 0.914±0.002
SH-LDM-RE 0.869±0.005 0.882±0.003 0.923±0.0004 0.926±0.001 0.927±0.001 0.926±0.002

Table 10: AUC-ROC scores for varying dimension sizes on the Youtube network.
D = 2 D = 3 D = 8 D = 16

DEEPWALK 0.822 0.891 0.921 0.923
NODE2VEC - - - -

LINE 0.660 0.832 0.878 0.890
NETMF x x x x

NETSMF 0.939 0.940 0.949 0.953
RANDNE 0.672 0.700 0.762 0.801

LOUVAINNE 0.820 0.819 0.815 0.829
PRONE 0.691 0.761 0.861 0.879

CC-LDM 0.898 0.902 0.952 *
CC-LDM-RE 0.939 0.946 0.952 *

SH-LDM 0.899±0.002 0.919±0.000 0.935 0.936
SH-LDM-RE 0.950±0.001 0.949±0.001 0.957 0.957

Table 11: AUC-ROC scores for varying dimension sizes on the Flickr network.
D = 2 D = 3 D = 8 D = 16

DEEPWALK 0.889 0.937 0.972 0.977
NODE2VEC - - - -

LINE 0.685 0.889 0.921 0.925
NETMF x x x x

NETSMF 0.974 0.977 0.980 0.983
RANDNE 0.833 0.869 0.903 0.916

LOUVAINNE 0.898 0.899 0.909 0.922
PRONE 0.623 0.819 0.908 0.927

CC-LDM 0.972 0.979 0.990 *
CC-LDM-RE 0.983 0.983 0.990 *

SH-LDM 0.972±0.000 0.979±0.000 0.986 0.983
SH-LDM-RE 0.981±0.001 0.985±0.001 0.988 0.988
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Table 12: AUC-ROC scores for varying dimension sizes on the Flixster network.
D = 2 D = 3 D = 8 D = 16

DEEPWALK 0.820 0.866 0.921 0.932
NODE2VEC - - - -

LINE 0.523 0.868 0.936 0.978
NETMF x x x x

NETSMF 0.987 0.987 0.987 0.988
RANDNE 0.700 0.739 0.835 0.886

LOUVAINNE 0.735 0.718 0.746 0.726
PRONE 0.756 0.803 0.846 0.868

CC-LDM 0.882 0.919 0.955 *
CC-LDM-RE 0.962 0.964 0.967 *

SH-LDM 0.898±0.001 0.917±0.001 0.932 0.933
SH-LDM-RE 0.962±0.002 0.965±0.005 0.971 0.972

A.11.2 AUC-PR METRIC

We summarize the AUC-PR performance metric for the different models while predicting on the
moderate-sized networks in Tables 13 to 16. The obtained results again verify that the family of
LDMs outperforms the baselines, especially for low-dimensions. The large-scale network perfor-
mance is summarized by Tables 18 to 17 and verify the surplus of the expressive power LDMs have.
If we compare again our proposed framework with the case-control variant we see that indeed these
methods are on par.

Table 13: AUC-PR scores for varying dimension sizes on the AstroPh network.
D = 2 D = 3 D = 8 D = 32 D = 64 D = 128

DEEPWALK 0.791 0.868 0.952 0.963 0.965 0.969
NODE2VEC 0.787 0.875 0.955 0.966 0.952 0.920

LINE 0.757 0.778 0.916 0.959 0.964 0.970
NETMF 0.789 0.798 0.807 0.829 0.841 0.859

NETSMF 0.667 0.765 0.874 0.951 0.965 0.972
RANDNE 0.550 0.564 0.576 0.645 0.675 0.713

LOUVAINNE 0.854 0.857 0.861 0.865 0.877 0.891
PRONE 0.755 0.835 0.914 0.958 0.972 0.979

CC-LDM 0.923±0.003 0.940±0.000 0.974±0.000 0.981±0.000 0.980±0.001 0.981±0.001
CC-LDM-RE 0.945± 0.001 0.951±0.006 0.978±0.001 0.982± 0.001 0.983±0.000 0.983±0.001

SH-LDM 0.930±0.001 0.949± 0.001 0.967±0.001 0.968±0.001 0.968±0.000 0.968±0.000
SH-LDM-RE 0.944±0.001 0.957±0.001 0.972 ±0.001 0.971±0.001 0.971±0.000 0.972±0.000

Table 14: AUC-PR scores for varying dimension sizes on the GrQc network.
D = 2 D = 3 D = 8 D = 32 D = 64 D = 128

DEEPWALK 0.834 0.900 0.939 0.948 0.955 0.955
NODE2VEC 0.748 0.863 0.927 0.929 0.931 0.931

LINE 0.791 0.852 0.941 0.945 0.944 0.941
NETMF 0.862 0.872 0.887 0.903 0.919 0.940

NETSMF 0.729 0.769 0.847 0.913 0.933 0.947
RANDNE 0.541 0.554 0.579 0.643 0.676 0.704

LOUVAINNE 0.904 0.905 0.906 0.910 0.915 0.923
PRONE 0.832 0.868 0.908 0.940 0.940 0.935

CC-LDM 0.912±0.002 0.917±0.005 0.949±0.001 0.958±0.000 0.957±0.001 0.956±0.001
CC-LDM-RE 0.932±0.002 0.939±0.002 0.960±0.001 0.962±0.001 0.960±0.001 0.963±0.000

SH-LDM 0.924±0.001 0.939±0.001 0.959±0.000 0.961±0.001 0.960±0.000 0.961±0.001
SH-LDM-RE 0.935±0.001 0.946±0.001 0.963±0.001 0.965±0.001 0.964±0.000 0.965±0.000
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Table 15: AUC-PR scores for varying dimension sizes on the Facebook network.
D = 2 D = 3 D = 8 D = 32 D = 64 D = 128

DEEPWALK 0.948 0.971 0.983 0.985 0.985 0.984
NODE2VEC 0.886 0.947 0.984 0.983 0.983 0.984

LINE 0.833 0.953 0.973 0.982 0.979 0.972
NETMF 0.882 0.881 0.930 0.965 0.964 0.967

NETSMF 0.905 0.921 0.971 0.983 0.985 0.985
RANDNE 0.667 0.656 0.708 0.772 0.833 0.855

LOUVAINNE 0.949 0.946 0.947 0.949 0.956 0.958
PRONE 0.863 0.901 0.966 0.985 0.989 0.990

CC-LDM 0.983 ± 0.000 0.988 ±0.000 0.909 ±0.000 0.990 ±0.000 0.990 ±0.001 0.990 ±0.001
CC-LDM-RE 0.990 ± 0.001 0.992 ±0.000 0.993 ±0.000 0.992 ± 0.000 0.992 ±0.000 0.992 ±0.000

SH-LDM 0.978 ±0.001 0.985 ± 0.000 0.986 ±0.000 0.985 ±0.000 0.985 ±0.000 0.984 ±0.000
SH-LDM-RE 0.987 ±0.000 0.989 ±0.000 0.989 ±0.001 0.989 ±0.000 0.989 ±0.000 0.989±0.000

Table 16: AUC-PR scores for varying dimension sizes on the HepTh network.
D = 2 D = 3 D = 8 D = 32 D = 64 D = 128

DEEPWALK 0.765 0.846 0.896 0.896 0.914 0.923
NODE2VEC 0.759 0.835 0.910 0.911 0.903 0.894

LINE 0.766 0.803 0.900 0.908 0.900 0.898
NETMF 0.778 0.790 0.817 0.847 0.863 0.886

NETSMF 0.733 0.755 0.830 0.876 0.885 0.903
RANDNE 0.527 0.498 0.511 0.534 0.559 0.580

LOUVAINNE 0.818 0.824 0.827 0.840 0.846 0.851
PRONE 0.695 0.726 0.858 0.895 0.903 0.902

CC-LDM 0.838 ± 0.015 0.857 ±0.007 0.907 ±0.003 0.928 ±0.004 0.931 ±0.003 0.928 ±0.004
CC-LDM-RE 0.864 ± 0.009 0.879 ±0.003 0.925 ±0.002 0.936 ± 0.001 0.934 ±0.001 0.935 ±0.001

SH-LDM 0.869 ±0.006 0.891 ± 0.002 0.931 ±0.001 0.934 ±0.001 0.934 ±0.001 0.934 ±0.001
SH-LDM-RE 0.891 ±0.001 0.908 ±0.002 0.940 ±0.001 0.943 ±0.001 0.943 ±0.001 0.944±0.001

Table 17: AUC-PR scores for varying dimension sizes on the Youtube network.
D = 2 D = 3 D = 8 D = 16

DEEPWALK 0.804 0.880 0.934 0.939
NODE2VEC - - - -

LINE 0.766 0.818 0.882 0.905
NETMF x x x x

NETSMF 0.954 0.955 0.962 0.964
RANDNE 0.724 0.751 0.810 0.845

LOUVAINNE 0.859 0.859 0.859 0.865
PRONE 0.641 0.746 0.845 0.892

CC-LDM 0.916 0.922 0.960 *
CC-LDM-RE 0.955 0.959 0.963 *

SH-LDM 0.914±0.001 0.933±0.001 0.951 0.950
SH-LDM-RE 0.954±0.001 0.960±0.001 0.967 0.969
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Table 18: AUC-PR scores for varying dimension sizes on the Flickr network.
D = 2 D = 3 D = 8 D = 16

DEEPWALK 0.836 0.923 0.975 0.981
NODE2VEC - - - -

LINE 0.694 0.902 0.969 0.976
NETMF x x x x

NETSMF 0.980 0.983 0.984 0.986
RANDNE 0.866 0.895 0.920 0.929

LOUVAINNE 0.917 0.913 0.920 0.928
PRONE 0.722 0.715 0.875 0.961

CC-LDM 0.978 0.982 0.992 *
CC-LDM-RE 0.987 0.991 0.992 *

SH-LDM 0.977±0.000 0.983±0.000 0.990 0.9831
SH-LDM-RE 0.988±0.000 0.990±0.000 0.993 0.991

Table 19: AUC-PR scores for varying dimension sizes on the Flixster network.
D = 2 D = 3 D = 8 D = 16

DEEPWALK 0.776 0.845 0.925 0.943
NODE2VEC - - - -

LINE 0.638 0.873 0.932 0.968
NETMF x x x x

NETSMF 0.987 0.987 0.988 0.988
RANDNE 0.739 0.777 0.864 0.907

LOUVAINNE 0.786 0.779 0.792 0.783
PRONE 0.700 0.784 0.843 0.878

CC-LDM 0.896 0.927 0.960 *
CC-LDM-RE 0.970 0.971 0.973 *

SH-LDM 0.903±0.000 0.924±0.001 0.953 0.948
SH-LDM-RE 0.969±0.001 0.974 ±0.005 0.976 0.979
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A.12 QUALITY OF APPROXIMATION

We provide the negative log-likelihood comparison of SH-LDM and LDM where we input the so-
lution of SH-LDM to the full LDM. The results are summarized in Figures 10 to 12 where we
observe that the SH-LDM likelihood approximation corresponds well with the true full likelihood-
providing systematically slightly lower likelihood estimates which we attribute to the SH-LDM
inference minimizing the hierarchical approximation.
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Figure 10: Negative log likelihood comparison between SH-LDM and LDM for AstroPh datasets
with D = 2.
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Figure 11: Negative log likelihood comparison between SH-LDM and LDM for GrQc dataset with
D = 2.
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Figure 12: Negative log likelihood comparison between SH-LDM and LDM for HepTh dataset
with D = 2.

A.12.1 INITIALIZATION PROCEDURE RESULTS

The configuration of the initial latent positions of the network nodes plays a vital role in the speed of
convergence and the quality of the obtained solution. A popular and successful initialization schema
for Latent Distance Models has been the Multidimensional Scaling (MDS) algorithm, usually ap-
plied on the geodesic distance between the nodes of the network (Hoff et al., 2002; ?). Classical
MDS is computational expensive, returning a complexity of O(N3) and as result not scaling for
large datasets. In addition, calculating the geodesic distance matrix (All-Pairs Shortest Paths) makes
this initialization method prohibited even for computational friendly versions of the algorithm such
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as split-and-combine MDS (Tzeng et al., 2008) and Chalmer’s Linear Iteration algorithm (Chalmers,
1996).

In this paper, we adopt a method for initializing latent space models which respects the computa-
tional constraints both in time and space that the analysis of large network enforces. Our approach
is based on spectral clustering while using the hierarchical k-means procedure introduced previ-
ously. We perform spectral clustering over the first k generalized eigenvectors of the affinity matrix.
Solving the eigenproblem for a few number of eigenvalues can be done efficiently through Lanczos
method (Golub & Van Loan, 1996), due to the high sparsity of real large-scale networks. The clus-
tering phase of the corresponding eigenvectors scales well through the use of the divisive Euclidean
distance hierarchical clustering algorithm.

We initialize the latent positions of the network with their assigned leaf node centroid, obtained
by the divisive Euclidean distance hierarchical clustering procedure. The reason behind using the
centroid values rather than the corresponding eigenvector values, is due to the fact that the spectral
space does not represent homophily and transitivity as in the same sense of the latent space model.
Instead, we use the centroid values to provide an initial measurement about the distance between
group of network nodes and then letting the network to discover the enclosed group structure and
dynamics. Various choices exist for the affinity matrix leading to different spectral clustering algo-
rithms. The most popular choices being the two normalized spectral clustering algorithms of Jianbo
Shi & Malik (2000) and Ng et al. (2001). One potential problem using the Laplacian as the affinity
matrix, is the multiplicity of the zero eigenvalue and the fact that numerical eigensolvers do not cer-
tainly converge to the true corresponding eigenvectors’ values as analyzed in von Luxburg (2007).
Despite that, the author concludes that this phenomenon does not affect dramatically the quality of
clustering. A second problem, is that computing the k smallest eigenvalues of the affinity matrix is
general more complex than calculating the largest. This can be an issue for the case of large scale
networks. For this reason, we perform our spectral clustering directly over the adjacency matrix
which requires the calculation of the largest eigenvalues and has been studied thoroughly in Lei &
Rinaldo (2015).

In order to verify the success of our initialization procedure we predict the missing links for all
networks based on the latent variables obtained by the different frameworks. More specifically we
consider the spectral clustering algorithm of Ng et al. (2001) as (SC-L), the direct spectral decom-
position of the adjacency matrix as (SC-A) and the classical mutlidimensional scaling algorithm as
(MDS). We provide the AUC-ROC results for all the moderate-sized networks and one large-scale
network in Tables 22 to 24. Where for the smaller networks such as GrQc and Facebook we observe
that MDS and SC-L have very similar predictive power and both outperform SC-A. As we increase
the size of the networks (where classical MDS is infeasible) we observe that SC-A completely out-
performs SC-L due to the fact that the numerical eigensolvers of the Laplacian do not converge to
the true corresponding eigenvectors and more attention has to be paid on how we decompose the
Laplacian. This is not the case SC-A since obtaining the largest eigenvalues of the sparse adjacency
matrix seems to be robust.

Table 20: AUC-ROC scores for AstroPh
Dimension D = 2 D = 3 D = 8 D = 10

MDS - - - -

SC-A 0.7881 (0.0009) 0.8010 (0.0004) 0.8392 (0.0001) 0.8359 (0.0006)
SC-L 0.5693 (0.0067) 0.5653 (0.0042) 0.6010 (0.0007) 0.5979 (0.0029)

Table 21: AUC-ROC scores for GrQc
Dimension D = 2 D = 3 D = 8 D = 10

MDS 0.8668 (0.0017) 0.8891 (0.0066) 0.9254 (0.0023) 0.9302 (0.0003)

SC-A 0.7957 (0.0004) 0.7990 (0.0021) 0.8193 (0.0036) 0.8181 (0.0046)
SC-L 0.8646 (0.0002) 0.8716 (0.0009) 0.9014 (0.0001) 0.9074 (0.0001)
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Table 22: AUC-ROC scores for Facebook
Dimension D = 2 D = 3 D = 8 D = 10

MDS 0.8989 (0.0124) 0.9065 (0.0070) 0.9535 (0.0001) 0.9557 (0.0002)

SC-A 0.8727 (0.0005) 0.9230 (0.0001) 0.9459 (0.0005) 0.9279 (0.0021)
SC-L 0.9537 (0.0013) 0.9523 (0.0019) 0.9657 (0.0008) 0.9670 (0.0029)

Table 23: AUC-ROC scores for HepTh
Dimension D = 2 D = 3 D = 8 D = 10

MDS - - - -

SC-A 0.7467 (0.0004) 0.7530 (0.0011) 0.7783 (0.0009) 0.7806 (0.0013)
SC-L 0.7328 (0.0201) 0.7427 (0.0139) 0.7736 (0.0011) 0.7794 (0.0016)

Table 24: AUC-ROC scores for YouTube
Dimension D = 2 D = 3 D = 8 D = 10

MDS - - - -

SC-A 0.5617 (0.0002) 0.5129 (0.0003) 0.7148 (0.0003) 0.7315 (0.0001)
SC-L 0.5036 (0.0007) 0.5029 (0.0004) 0.5028(0.0008) 0.5020 (0.0004)
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