
Appendix A: Performance Guarantees

Wasserstein ambiguity sets benefit from measure concentration results that characterize the rate at
which the empirical distribution P̂N converges to the unknown true distribution P0. In the following,
we review existing results from the literature to characterize the finite sample and asymptotic
guarantees of our DR logistic regression (1).

Theorem 6 (Finite Sample Guarantee). Assume that P0 is light-tailed, that is, EP0 [exp(∥ξ∥a)] ≤ A
for some a > 1 and A > 0. Then there are c1, c2 > 0 only depending on P0 through the light-tail
parameters a, A and the feature space dimensions (n,m) such that any optimizer β⋆ to (1) satisfies

[P0]N

(
EP0 [lβ⋆(x, z, y)] ≤ sup

Q∈Bϵ(P̂N )

EQ [lβ⋆(x, z, y)]

)
≥ 1− η

for any confidence level η ∈ (0, 1) and Wasserstein ball radius

ϵ ≥
(
log(c1/η)

c2N

)1/max{m+n+1, 2}

·1
[
N ≥ log(c1/η)

c2

]
+

(
log(c1/η)

c2N

)1/α

·1
[
N <

log(c1/η)

c2

]
.

Recall that [P0]N in the statement of Theorem 6 refers to the N -fold product distribution of
P0 that governs the data set {ξi}[i∈N ] upon which the optimizer(s) β⋆ of problem (1) de-
pend(s) via P̂N . Theorem 6 shows that with arbitrarily high probability 1 − η, the optimal
value supQ∈Bϵ(P̂N ) EQ [lβ⋆(x, z, y)] of our DR logistic regression (1) overestimates the loss
EP0 [lβ⋆(x, z, y)] incurred by any optimal solution β⋆ under the unknown true distribution P0

as long as the radius ϵ of the Wasserstein ball Bϵ(P̂N ) is sufficiently large. Since the categorical
features attain finitely many different values, the bound of Theorem 6 can be sharpened by replacing
m+ n+1 with n+1 if the constants a and A are adapted accordingly. We emphasize that the decay
rate of O(N−1/(n+1)) in Theorem 6 is essentially optimal; see [21, §3].

To study the asymptotic consistency of problem (1) as well as the existence of sparse worst-case
distributions, we first introduce a technical assumption.

Definition 3 (Growth Condition). We say that the DR logistic regression (1) satisfies the growth
condition if (i) the hypotheses β are restricted to a bounded set H ⊆ R1+n+k; and (ii) there is
ξ0 ∈ Ξ and C > 0 such that lβ(ξ) ≤ C[1 + d(ξ, ξ0)] across all β ∈ H and ξ ∈ Ξ.

Lemma 1. If we restrict the hypotheses β to a bounded set H ⊆ R1+n+k, then the DR logistic
regression (1) satisfies the growth condition of Definition 3.

We are now in the position to study the asymptotic consistency of problem (1).

Theorem 7 (Asymptotic Consistency). Under the assumptions of Theorem 6, we have

sup
Q∈BϵN

(P̂N )

EQ [lβ⋆(x, z, y)] −→
N→∞

EP0 [lβ⋆(x, z, y)] P0-a.s.

whenever (ηN , ϵN ) is set according to Theorem 6 for all N ∈ N,
∑

N ηN < ∞, limN→∞ ϵN = 0,
and the growth condition in Definition 3 is satisfied.

Theorem 7 shows that the DR logistic regression (1) achieves asymptotic consistency if the
(un-)confidence parameter η and the radius ϵ of the Wasserstein ball are reduced simultaneously.
Thus, any optimal solution to (1) converges to the optimal solution of the (non-robust) logistic
regression under the unknown true distribution P0 when the size of the data set increases.

The proof of Theorem 1 shows that the optimization problem characterizing the worst-case distribution
Q⋆ ∈ Bϵ(P̂N ) comprises exponentially many decision variables. It is therefore natural to investigate
the complexity of worst-case distributions to our DR logistic regression (1). The next result shows
that there exist worst-case distributions that exhibit a desirable sparsity pattern: their numbers of
atoms scale with the number of data samples.
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Theorem 8 (Existence of Sparse Worst-Case Distributions). Assume that the growth condition in
Definition 3 is satisfied. Then there are worst-case distributions Q⋆ ∈ Bϵ(P̂N ) satisfying

EQ⋆ [lβ⋆(x, z, y)] = sup
Q∈Bϵ(P̂N )

EQ [lβ⋆(x, z, y)]

such that Q⋆ is supported on at most N + 1 atoms.

Our performance guarantees in this section scale with the dimension of the feature space as we seek
for a high confidence of the unknown true distribution being contained in our ambiguity set Bϵ(P̂N ).
A dimension-independent performance guarantee can be obtained along the lines of [7] if one instead
only seeks for a high confidence of the unknown true model β⋆ being contained in the union of
optimal classifiers corresponding to the individual distributions P contained in Bϵ(P̂N ). We refer to
[44] for a detailed review of the achievable performance guarantees of Wasserstein ambiguity sets
with respect to the dimension of the feature space.

Appendix B: Finding the Worst Distribution in Example of Section 2.2

We provide further details here on the derivation of the worst distribution associated with the
benchmark in Section 2.2 where we treat the (only) binary feature as a numerical feature and use the
DR logistic regression algorithm of [31]. We have a single binary feature z ∈ {−1, 1} and there is
no intercept term so the log-loss function is lβ(z, y) = log(1 + exp(−β · y · z)). The true unknown
value of β is β = 1, we have a data set (zi, yi)i∈[N ], and we take p = 1, κ = 1 (distance metric
parameters), and ϵ = 1/(2

√
N). We would like to solve the worst distribution problem

sup
Q∈Bϵ(P̂N )

EQ [lβ(z, y)] . (6)

We can do this by considering the following problem taken from [32, Thm 20] and adopted for our
specific setting:

maximize
θ, {αi}i∈[N]

θ +
1

N

N∑
i=1

[
(1− αi)lβ(z

i, yi) + αilβ(z
i,−yi)

]
subject to θ +

1

N

N∑
i=1

αi = ϵ− γ

0 ≤ αi ≤ 1, i ∈ [N ]

θ ≥ 0.

(7)

It is parametrized by some γ ∈ [0,min{ϵ, 1}] and [32, Thm 20] show that its optimal value for
the case γ = 0 coincides with the optimal value of problem (6). Furthermore, if we denote by
(θ⋆(γ), {α⋆

i (γ)}i∈[N ]) the optimal solutions to (7), then the sequence of probability distributions

Qγ =
1

N

N∑
i=2

[
(1− α⋆

i (γ))δ(zi,yi) + α⋆
i (γ)δ(zi,−yi)

]
+

η(γ)

N
δ
(z1+

θ⋆(γ)N
η(γ)

,y1)

+
1− η(γ)

N

[
(1− α⋆

1(γ))δ(z1,y1) + α⋆
1(γ)δ(z1,−y1)

] (8)

where η(γ) := γ/(θ⋆(γ) + 2− ϵ+ γ), constructs an asymptotically optimal solution to problem (6)
as γ ↓ 0. In order to explicitly characterize this sequence, we derive a closed-form solution to
problem (7). Using the equality constraint to substitute for θ in the objective in (8) yields

maximize
{αi}i∈[N]

ϵ− γ − 1

N

N∑
i=1

αi +
1

N

N∑
i=1

[
(1− αi)lβ(z

i, yi) + αilβ(z
i,−yi)

]
subject to 0 ≤ αi ≤ 1, i ∈ [N ]

ϵ− γ ≥ 1

N

N∑
i=1

αi.
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Ignoring the constant terms in the objective and re-arranging terms yields

maximize
{αi}i∈[N]

N∑
i=1

αi

[
−1 + lβ(z

i,−yi)− lβ(z
i, yi)

]
subject to 0 ≤ αi ≤ 1, i ∈ [N ]

ϵ− γ ≥ 1

N

N∑
i=1

αi.

Since zi ∈ {−1,+1}, i ∈ [N ] holds, we have lβ(z
i,−yi)− lβ(z

i, yi) ∈ {−1,+1}, which implies
that the coefficients of αi in the objective function are non-positive. Hence, α⋆

i = 0, i ∈ [N ] is an
optimal solution to the problem. This implies α⋆

i (γ) = 0, i ∈ [N ] and θ⋆(γ) = ϵ− γ are optimal in
problem (7).

We can then observe from (8) that the worst distribution places 1/N mass on each data point
i = 2, . . . , N , and the remaining 1/N mass is distributed as: (1− η(γ))/N mass on the data point
i = 1 and η(γ)/N mass on the point (z1 + (ϵ−γ)N

γ/2 , y1) which is not in the data-set and in fact is an
infeasible point. In our experiments, we take γ = 10−3, because the optimal value of problem (7)
numerically converges after this value, and one can then verify that in the setting we work with (N =

250) a mass of 10−3

500 is placed on the point with feature z1 + (ϵ−γ)N
γ/2 = 1+

( 1
1
√

N
−10−3)N

10−3/2 ≊ 15, 312

and label y1. This summarizes the specific approach we took to obtain the worst distribution in
Figure 1 and demonstrates the key problem that arises with treating categorical variables as numerical.

Appendix C: Numerical Results on UCI Data-Sets with Mixed Features

We repeat the experiment of the Section 4.2 for the five most popular mixed-feature instances of
the UCI data set [11]. The results are reported in Table 2. All results are reported as medians over
20 random training set-test set splits (80%:20%). Cross-validation is applied for the same set of
parameters as Section 4.2 over identical grids. The conclusions are qualitatively similar to those of
Section 4.2. We highlight, however, that now only two of the lowest classification errors are achieved
by one of the non-robust models, whereas the lowest classification error in each instance is obtained
by at least one of the robust models we propose.

Data Set N n k m LR DRO (κ = 1) DRO (κ = m) r-LR r-DRO (κ = 1) r-DRO (κ = m) MT (κ = 1) MT (κ = m) PI (α = 0.05)

credit-approval 690 6 36 9 14.13% 13.77% 13.04%†‡ 14.13% 14.13% 13.04%†‡ 14.13% 14.13% 13.41%
annealing⋆ 798 6 46 32 2.52% 2.83% 2.52% 2.20% 1.89%†‡ 1.89%†‡ 2.52% 2.20% 12.58%
contraceptive⋆ 1,473 2 15 7 33.16% 33.16% 33.16% 32.82%† 32.99% 32.82%† 33.16% 33.16% 39.63%
hepatite 155 6 23 13 16.13% 16.13% 19.35% 19.35% 17.74% 16.13% 16.13% 16.13% 17.74%
cylinder-bands 539 19 43 15 23.36% 21.50%†‡ 21.50%†‡ 23.36% 21.50%†‡ 22.43% 22.43% 22.43% 30.84%

Table 2: Classification errors of unregularized and Lasso-regularized variants of the classical logistic
regression and our DR regression on UCI benchmark instances with mixed features. We use the same
notation and highlighting conventions as in Table 1.

Data Set N n k m LR DRO (κ = 1) DRO (κ = m) r-LR r-DRO (κ = 1) r-DRO (κ = m) MT (κ = 1) MT (κ = m) PI (α = 0.05)

credit-approval 690 6 36 9 0.11 53.46 55.89 0.09 36.77 43.58 0.36 0.56 0.07 + 0.08
annealing⋆ 798 6 46 32 0.18 62.96 71.09 43.58 22.91 0.24 0.36 0.58 0.10 + 0.12
contraceptive⋆ 1,473 2 15 7 0.14 86.06 81.70 0.15 91.10 84.04 0.52 0.74 0.08 + 0.03
hepatite 155 6 23 13 0.05 9.01 10.59 0.02 2.49 4.86 0.06 0.10 0.01 + 0.05
cylinder-bands 539 19 43 15 0.13 96.10 106.48 0.09 67.09 41.63 0.32 0.59 0.06 + 0.12

Table 3: Median runtimes (in seconds) associated with Table 2.

Appendix D: Further Details on Numerical Experiments

Throughout the numerical experiments, we fixed p = 1 in the ground metric (cf. Definition 2).
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Synthetic data sets: In Section 4.1 we generate synthetic data sets with N data points and m binary
features. The data generation process is summarized in Algorithm 3.

Algorithm 3 Construction of synthetic data sets in Section 4.1.

Sample the components of β0 and βC i.i.d. from a standard normal distribution
Normalize β0 and βC by dividing them with ∥β∥2, where β = (β0,βC)
for i ∈ {1, . . . , N} do

Construct zi ∈ C(2)× . . .× C(2) by sampling zi ∼ {0, 1}m uniformly at random
Find pi, the probability of the ith data point having label +1, by using the ‘true’ β0 and βC:

pi =
[
1 + exp(−[β0 + βC

⊤zi])
]−1

Sample yi ∈ {−1, 1} from a Bernoulli distribution with parameter pi
end for
The synthetic data set is the collection of data points {(zi, yi)}i∈[N ] constructed above

UCI data sets: The datasets of Sections 4.2 and Appendix C were taken from the UCI repository
[11]. Missing values (NaNs) were encoded as a new category of the corresponding feature; the dataset
breast-cancer is an exception, where rows with missing values were dropped. Some data sets include
features that are derivatives of the labels, primary keys of the instances (e.g., the auidology data
set), or they have features with only one possible category (e.g., the annealing and cylinder-bands
data sets). We removed such features manually. We also removed rows that were readily identified
as erroneous (e.g., two rows in cylinder-bands had less columns than required). Data sets with
multi-class (i.e., non-binary) labels were converted to binary labels by distinguishing between the
majority label class and all other classes. If a data set includes separate training and test sets, we
merged them and subsequently applied our training set-test set split as described in the main paper.
As per standard practice, we randomly permuted the rows of each data set before conducting the splits
into training and test sets. For the detailed data processing steps, we refer to the GitHub repository
accompanying this paper, which also contains a sample Python 3 script.1

Implementation of the column-and-constraint generation scheme: In our implementation, we
switch between solving the primal and dual exponential conic reformulation of the DR logistic
regression problem, as we found that sometimes the dual problem can be solved more easily than
the primal. We have further implemented an ‘easing’ step in the column-and-constraint generation
scheme that periodically deletes constraints from W+ and W− whose slacks exceed a pre-specified
threshold. To this end, note that the constraints u+

i,z + v+i,z ≤ 1, (i, z) ∈ W+, in the relaxations of
the exponential conic reformulation (4) have a slack ranging between 0 and 1 by construction. We
implemented variants of our column-and-constraint generation scheme that conduct easing steps either
every 200 iterations or in iteration t = 100 · 1.5k, k ∈ N. We have also implemented variants that
keep the slack threshold constant at 0.05 and where this threshold starts at 0.02 and is subsequently
increased by 0.02 in each easing step. In all of our variants, a constraint is deleted at most once, that
is, it is no longer considered for deletion if it has been reintroduced after a prior deletion. This ensures
that Algorithm 1 terminates in finite time without cycling. Analogous steps have been implemented
for the constraints u−

i,z + v−i,z ≤ 1, (i, z) ∈ W−.

Determining statistical Significance: In the numerical experiments of Section 4.2 we compare the
means of 100 out-of-sample errors attained by several logistic regression methods and also identify
which methods appeared to be statistically significant. In Table 1, for example, a dagger (†) symbol
next to the winning approach denotes statistically significant error improvement over the standard
logistic regression (‘LR’) and a double dagger (‡) symbol denotes such improvement over the second
best approach. Note that if the winning approach is a variant of the DRO methods we propose, then
the second best approach is taken over the methods excluding our methods for a fair comparison.

We add a dagger (†) to the winning approach according to the following approach. Firstly, we
subtract (element-wise) the vector of errors attained by standard logistic regression from the vector
of errors attained by the winning approach. Each element of the new vector is the ‘additional error’
the winning approach has compared to the standard logistic regression. We then try to reject the
hypothesis (at 5%-significance level) that this additional error is non-negative (i.e., we try to reject

1https://github.com/selvi-aras/WassersteinLR
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Data Set N k m LR DRO (κ = 1) DRO (κ = m) r-LR r-DRO (κ = 1) r-DRO (κ = m) MT (κ = 1) MT (κ = m) PI (α = 0.05)

breast-cancer 277 42 9 0.06 218.61 214.83 0.07 15.19 20.52 0.08 0.09 0.02 + 0.07
spect 267 22 22 0.08 32.05 38.95 0.07 20.81 35.50 0.07 0.09 0.02 + 0.03
monks-3 554 11 6 0.12 46.83 42.59 0.08 31.04 42.53 0.12 0.14 0.03 + 0.02
tic-tac-toe 958 18 9 0.20 71.26 69.80 0.13 61.88 64.33 0.23 0.27 0.06 + 0.04
kr-vs-kp 3,196 37 36 1.65 217.98 40.64 0.71 21.79 11.29 2.11 2.87 0.34 + 0.08
balance-scale⋆ 625 16 4 0.15 13.60 17.41 0.19 19.74 24.04 0.21 0.19 0.03 + 0.03
hayes-roth⋆ 160 11 4 0.06 3.67 3.92 0.02 1.12 0.85 0.06 0.06 0.01 + 0.02
lymphography⋆ 148 42 18 0.09 145.46 154.69 0.03 4.83 11.91 0.08 0.09 0.01 + 0.07
car⋆ 1,728 15 6 0.46 168.09 112.33 0.28 210.35 181.63 0.57 0.52 0.11 + 0.05
splices⋆ 3,189 229 60 4.25 4,246.36 4,393.97 1.48 1,169.80 453.73 6.13 10.21 1.55 + 1.77
house-votes-84 435 32 16 0.18 88.56 105.66 0.06 21.6 20.71 0.12 0.16 0.03 + 0.08
hiv 6,590 152 8 8.44 2,874.62 1,598.83 2.20 2,119.26 768.01 10.94 12.93 2.18 + 1.14
primacy-tumor⋆ 339 25 17 0.22 61.75 57.81 0.06 11.93 13.21 0.08 0.12 0.02 + 0.04
audiology⋆ 226 92 69 0.05 18.52 16.10 0.04 9.19 5.28 0.11 0.13 0.04 + 0.16

Table 4: Mean runtimes (in seconds) associated with Table 1.

the hypothesis that the standard logistic regression is at least as good). To this end, we compute the
t-statistic for the mean of the additional errors vector with a hypothesis mean of 0 and sample size of
100. We then compute the cumulative probability of this value via a one-sided t-test (with 100− 1
degrees of freedom) to obtain a p-value. If this value is less than 0.05, then we reject the hypothesis,
concluding that the improvement is significant. Note that, with this approach we implicitly assume the
out-of-sample errors are independent, which is typically not the case [29]. Hence, we acknowledge
that these tests of significance are only approximate. The presence of a double dagger is determined
analogously.

Computing environment: We implemented all algorithms in Julia using MOSEK’s exponential
cone solver as well as JuMP to interact with the solver. We used the high performance computing
cluster of Imperial College London, which runs a Linux operating system as well as Portable Batch
System (PBS) for scheduling the jobs. We ran our experiments as batch jobs on Intel Xeon 2.66GHz
processors with 8GB memory in single-core and single-thread mode. The job descriptions as well as
all PBS commands are included in the GitHub repository.

Runtimes corresponding to Table 1: Table 4 presents the mean runtimes of each method on every
dataset for the experiments corresponding to Table 1. Here, the times reported for ‘LR’ and ‘MT’ are
the times the solver took to solve the corresponding optimization problems. The times corresponding
to ‘DRO’ methods we propose are the total solver times summed for each sub-problem solved
during the column-and-constraint generation scheme, including the identification of the most violated
constraints. The times corresponding to ‘PI’ display the solution time to solve the regularized logistic
regression problems plus the time it takes to identify the regularization parameter as proposed in [7].
The columns of Table 4 are identical to those in Table 1.

Error bars of the experiments: Figures 3 and 4 report the error distributions corresponding to the
experiments of Tables 1 and 2, respectively. In these figures, each of the six sub-plots reports the
errors of a specific model (e.g., regularized DRO with κ = 1). In each sub-plot, the horizontal axis
lists the considered data sets, and the vertical axis visualizes the 100 test errors in box-and-whisker
representation (where the boxes enclose the 25% and 75% quartiles).
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Figure 3: Error bars for the unregularized (left column) and regularized (right column) methods on
the considered UCI datasets with categorical features.
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Figure 4: Error bars for the unregularized (left column) and regularized (right column) methods on
the considered UCI datasets with mixed features.
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Appendix E: Proofs

Our proof of Theorem 1 relies on the following result from the literature, which we state first.
Lemma 2. Consider the convex function hγ(w) := log

(
1 + exp(−γ⊤w + v)

)
for γ, w ∈ Rn and

v ∈ R. Then

sup
w∈Rn

hγ(w)− λ||ŵ −w|| =
{
hγ(ŵ) if ||γ||∗ ≤ λ,

+∞ otherwise

for every λ > 0, where || · ||∗ is the dual norm of || · ||, that is, ||γ||∗ := sup||w||≤1 γ
⊤w.

Proof. The statement immediately follows from Lemma 47 of [32].

Our proof of Theorem 1 follows [31] with two main changes: (i) we handle the categorical features
in z, and (ii) we reformulate the optimization problem as an exponential conic program. Despite the
similarities to the existing result, we include the entire proof to keep the paper self-contained.

Proof of Theorem 1: Recall that ξ = (x, z, y) ∈ Ξ = Rn×C×{−1,+1}. To simplify our notation,
we will use ξ and (x, z, y) interchangeably. The inner problem in (1) can be written as[

maximize
Q

EQ [lβ(x, z, y)]

subject to Q ∈ Bϵ(P̂N )

]
=

 maximize
Q

∫
ξ∈Ξ

lβ(ξ)Q(dξ)

subject to Q ∈ Bϵ(P̂N )

 ,

and replacing Bϵ(P̂N ) with its definition (cf. Definition 1) yields

maximize
Q,Π

∫
ξ∈Ξ

lβ(ξ)Q(dξ)

subject to
∫
(ξ,ξ′)∈Ξ2

d(ξ, ξ′)Π(dξ,dξ′) ≤ ϵ∫
ξ∈Ξ

Π(dξ,dξ′) = P̂N (dξ′) ∀ξ′ ∈ Ξ∫
ξ′∈Ξ

Π(dξ,dξ′) = Q(dξ) ∀ξ ∈ Ξ

Q ∈ P0(Ξ), Π ∈ P0(Ξ
2).

We can substitute Q using the second equality constraint to obtain

maximize
Π

∫
ξ∈Ξ

lβ(ξ)

∫
ξ′∈Ξ

Π(dξ,dξ′)

subject to
∫
(ξ,ξ′)∈Ξ2

d(ξ, ξ′)Π(dξ,dξ′) ≤ ϵ∫
ξ∈Ξ

Π(dξ,dξ′) = P̂N (dξ′) ∀ξ′ ∈ Ξ

Π ∈ P0(Ξ
2).

Denoting by Qi(dξ) := Π(dξ|ξi) the conditional distribution of Π upon the realization of ξ′ = ξi

and exploiting the fact that P̂N is a discrete distribution supported on the N atoms {ξi}i∈[N ], we can
use the marginalized representation Π(dξ,dξ′) = 1

N

∑N
i=1 δξi(dξ′)Qi(dξ) to obtain the equivalent

reformulation

maximize
Qi

1

N

N∑
i=1

∫
ξ∈Ξ

lβ(ξ)Qi(dξ)

subject to
1

N

N∑
i=1

∫
ξ∈Ξ

d(ξ, ξi)Qi(dξ) ≤ ϵ

Qi ∈ P0(Ξ), i ∈ [N ].
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We can now decompose the N variables (distributions) Qi into 2N ·
∏

j kj measures Qi
z,y:

maximize
Qi

z,y

1

N

N∑
i=1

∑
(z,y)∈C×{−1,+1}

∫
x∈Rn

lβ(ξ)Qi
z,y(dx)

subject to
1

N

N∑
i=1

∑
(z,y)∈C×{−1,+1}

∫
x∈Rn

d(ξ, ξi)Qi
z,y(dx) ≤ ϵ

∑
(z,y)∈C×{−1,+1}

∫
x∈Rn

Qi
z,y(dx) = 1 ∀i ∈ [N ]

Qi
z,y ∈ M+(Rn), i ∈ [N ] and (z, y) ∈ C× {−1,+1},

where M+(Rn) denotes the space of non-negative measures supported on Rn. This infinite-
dimensional linear program admits the dual

minimize
λ,u

λϵ+

N∑
i=1

ui

subject to
1

N
· sup
x∈Rn

{
lβ(x, z, y)− λd((x, z, y), ξi)

}
≤ ui ∀i ∈ [N ]

∀(z, y) ∈ C× {−1,+1}
λ ≥ 0, u ∈ RN .

Strong duality holds for any ϵ > 0 due to Proposition 3.4 of [33]. We rewrite the dual problem further
by substituting si := Nui, using Definition 2 to write out d explicitly, as well as breaking down the
dual constraints into separate cases for y = −1 and y = +1:

minimize
λ,s

λϵ+
1

N

N∑
i=1

si

subject to sup
x∈Rn

{lβ(x, z,+1)− λ∥x− xi∥} − λκ · 1[yi ̸= 1]− λdC(z, z
i) ≤ si ∀i ∈ [N ], z ∈ C

sup
x∈Rn

{lβ(x, z,−1)− λ∥x− xi∥} − λκ · 1[yi ̸= −1]− λdC(z, z
i) ≤ si ∀i ∈ [N ], z ∈ C

λ ≥ 0, s ∈ RN

Applying Lemma 2 to the suprema of the above problem results in the reformulation

minimize
λ,s

λϵ+
1

N

N∑
i=1

si

subject to lβ(x
i, z,+1)− λκ · 1[yi ̸= 1]− λdC(z, z

i) ≤ si ∀i ∈ [N ], ∀z ∈ C
lβ(x

i, z,−1)− λκ · 1[yi ̸= −1]− λdC(z, z
i) ≤ si ∀i ∈ [N ], ∀z ∈ C

∥βN∥∗ ≤ λ
λ ≥ 0, s ∈ RN .

For yi = +1, the identities

lβ(x
i, z,+1)− λκ · 1[yi ̸= 1] = lβ(x

i, z, yi)

lβ(x
i, z,−1)− λκ · 1[yi ̸= −1] = lβ(x

i, z,−yi)− λκ

hold; similar identities hold for yi = −1. The above optimization problem thus simplifies to

minimize
λ,s

λϵ+
1

N

N∑
i=1

si

subject to lβ(x
i, z, yi)− λdC(z, z

i) ≤ si ∀i ∈ [N ], ∀z ∈ C
lβ(x

i, z,−yi)− λκ− λdC(z, z
i) ≤ si ∀i ∈ [N ], ∀z ∈ C

∥βN∥∗ ≤ λ
λ ≥ 0, s ∈ RN .

(9)
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Plugging this problem into the overall optimization problem over β ∈ R1+n+k therefore yields

minimize
β,λ,s

λϵ+
1

N

N∑
i=1

si

subject to lβ(x
i, z, yi)− λdC(z, z

i) ≤ si ∀i ∈ [N ], ∀z ∈ C
lβ(x

i, z,−yi)− λκ− λdC(z, z
i) ≤ si ∀i ∈ [N ], ∀z ∈ C

∥βN∥∗ ≤ λ
β = (β0,βN,βC) ∈ R1+n+k, λ ≥ 0, s ∈ RN .

(10)

Finally, we discuss how to reformulate the softplus constraints (i.e., convex constraints with a log-loss
function on the left-hand side and a linear function on the right-hand side) as exponential cone
constraints. To this end, recall that the exponential cone is defined as

Kexp := cl ({(a, b, c) : a ≥ b exp(c/b), a > 0, b > 0}) ⊂ R3,

where cl(·) denotes the closure. Observe further that

log(1 + exp(c)) ≤ a ⇐⇒ 1 + exp(c) ≤ exp(a) ⇐⇒ exp(−a) + exp(c− a) ≤ 1.

Using the auxiliary variables u, v, we can reformulate this constraint as[
u+ v ≤ 1
exp(−a) ≤ u
exp(c− a) ≤ v

]
⇐⇒

[
u+ v ≤ 1
(u, 1,−a) ∈ Kexp

(v, 1, c− a) ∈ Kexp

]
,

where the second system of equations uses the definition of Kexp. Applying this reformulation to
both softplus constraints in our minimization problem results in problem (4) and thus concludes the
proof of the theorem. □

Remark 1 (Exponential Cone Reformulation). The use of exponential conic constraints has a
significant impact on the theoretical complexity of problem (4). We refer to [30] for an overview of
exponential conic programs and to [26] for modeling techniques, respectively. We also note that the
difference in theoretical complexity carries over to a significant difference in practical solvability: In
our experiments, we observe that using the exponential cone solver of MOSEK drastically speeds up
the solution times of our DR logistic regression problem.

Proof of Theorem 2: In view of the first statement, we recall that the strongly NP-hard integer
programming problem is defined as follows [16]:

0/1 INTEGER PROGRAMMING.
Instance. Given are F ∈ Zµ×ν , g ∈ Zµ, c ∈ Zν , ζ ∈ Z.
Question. Is there a vector χ ∈ {0, 1}ν such that Fχ ≤ g and c⊤x ≥ ζ?

Here, Z denotes the set of integers. We claim that the answer to the integer programming problem is
affirmative if and only if the optimal objective value for the DR logistic regression (1) with n = 0,
m = ν, k1 = . . . = km = 2, N = 1 and the loss function

lβ(z, y) =

{
c⊤z if Fz ≤ g,

−M otherwise

and M and ϵ sufficiently large is greater than or equal to ζ . This then immdiately implies that the DR
logistic regression (1) is strongly NP-hard for generic loss functions (which include the above loss
function as a special case).

To see this, note that our reformulation from the proof of Theorem 1, under the assumption that n = 0
and N = 1, shows that problem (1) is equivalent to

minimize
β,λ,s

λϵ+ s

subject to lβ(z, y
1)− λdC(z, z

1) ≤ s ∀z ∈ C
lβ(z,−y1)− λκ− λdC(z, z

1) ≤ s ∀z ∈ C
β = (β0,βC) ∈ Rk+1, λ ≥ 0, s ∈ R.
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Assuming that ϵ is sufficiently large, the optimal λ vanishes, and the problem simplifies further to

minimize
β,s

s

subject to c⊤z ≤ s ∀z ∈ C : Fz ≤ g
−M ≤ s if ∃z ∈ C : Fz ̸≤ g
β = (β0,βC) ∈ Rk+1, s ∈ R

where we have also plugged in the aforementioned loss function. One readily observes that the
optimal value of this problem equals max{c⊤χ : Fχ ≤ g, χ ∈ {0, 1}ν} whenever {Fχ ≤
g, χ ∈ {0, 1}ν} is non-empty and −M otherwise. In particular, the optimal value of the problem is
greater than or equal to ζ if and only if the answer to the integer programming problem is affirmative.

In view of the second statement, we note that the feasible region of problem (1) can be circumscribed
by a convex body as per Definition 2.1.16 of [17], and that Algorithm 2 in Section 3 constitutes
a weak separation oracle for problem (1). The statement thus follows from Corollary 4.2.7 of [17].

Proof of Theorem 3: Consider a class of instances of problem (1) with a Wasserstein radius ϵ < 1,
n = 1 numerical feature, and m = 1 categorical feature with k1 = 2 so that the categorical
feature is binary. We have N = 1 sample with z11 = 0 and y11 = −1. This instance class is
therefore parameterized by the value of the numerical feature x1

1 in the data sample. We now derive
the optimal objective value of problem (1) analytically as a function of x1

1, and show that this
functional dependence on x1

1 cannot be represented by the objective function of any regularized
logistic regression.

For our instance class, the reformulation of our DR logistic regression (1) simplifies to

minimize
λ,s1,β

λϵ+ s1

subject to lβ(x
1
1, z,−1)− λz ≤ s1 ∀z ∈ B

lβ(x
1
1, z, 1)− λκ− λz ≤ s1 ∀z ∈ B

λ ≥ |βN|, s1 ∈ R.

(11)

Assuming further that κ approaches ∞, the constraint λ ≥ 0 (implied by the constraint λ ≥ |βN|)
implies that the second constraint is redundant. Removing this second constraint and substituting s1
into the objective function results in

minimize
λ,β

λϵ+max
{
lβ(x

1
1, 0,−1), lβ(x

1
1, 1,−1)− λ

}
subject to λ ≥ |βN|.

(12)

We now break the minimization over (λ, β) in (12) into a minimization over λ first followed by the
minimization over β. That leads to re-writing (12) as

minimize
β

f(β, x1
1) (13)

where

f(β, x1
1) =

{
minimize

λ
λϵ+max

{
lβ(x

1
1, 0,−1), lβ(x

1
1, 1,−1)− λ

}
subject to λ ≥ |βN|

. (14)

Since the Wasserstein radius satisfies ϵ < 1, it is possible to achieve a reduction in the objective
function choosing values larger than |βN| for λ. Focusing on the minimization over λ in (14), we
recognize that the optimal solution is λ⋆ = g(β, x1

1) := lβ(x
1
1, 1,−1)− lβ(x

1
1, 0,−1) if g(β, x1

1) ≥
|βN|, and λ⋆ = |βN| otherwise. Substituting this optimal value for λ into (14), we obtain

f(β, x1
1) =

{
ϵ · g(β, x1

1) + lβ(x
1
1, 0,−1) if |βN| ≤ g(β, x1

1)

ϵ · |βN|+ lβ(x
1
1, 0,−1) otherwise

= lβ(x
1
1, 0,−1) + h(β, x1

1),

where

h(β, x1
1) := ϵ ·

{
g(β, x1

1) if |βN| ≤ g(β, x1
1)

|βN| otherwise.
= ϵ ·max

{
g(β, x1

1) , |βN|
}
.
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The DR logistic regression problem (13) now becomes

minimize
β

lβ(x
1
1, 0,−1) + h(β, x1

1).

Using the definition of the empirical distribution, the regularized logistic regression for the instance
problem has the form

minimize
β

lβ(x
1
1, 0,−1) +R(β). (15)

The proof concludes by noting that R(β) remains constant across all the instances parameterized
by x1

1 as a regularizer is data-independent. Hence, the objective function of the regularized logistic
regression cannot capture the dependency on x1

1 that we observe in h(β, x1
1) (it is easy to confirm that

h(β, x1
1) is not constant in x1

1). We further notice that the objective function of DR logistic regression
is a non-smooth function of x1

1 while the objective function of regularized logistic regression is a
smooth function of x1

1 by construction.

Remark 2. It is informative to see how the counter-example in the proof of Theorem 3 breaks down
if we assume there are no categorical features. In this case we use the ground metric d(ξ, ξ′) :=
∥x− x′∥+ κ · 1[y ̸= y′]. The constraints in the problem formulation (10) will no longer be indexed
over z and all terms involving z and dC(z, z

i) will disappear. The reformulation with only numerical
features then coincides with that of Corollary 17 in [32]. Our instance class problem from the proof
of Theorem 3 above will then be

minimize
λ,s1,β

λϵ+ s1

subject to lβ(x
1
1,−1) ≤ s1

lβ(x
1
1, 1)− λκ ≤ s1

λ ≥ |βN|, s1 ∈ R.

Taking κ to infinity, we see the second constraint becomes redundant. As λ only appears in one
term in the objective function, the optimal solution is λ⋆ = |βN|. Substituting for s1 in the resulting
objective becomes

minimize
β

lβ(x
1
1,−1) + ϵ|βN|

which is in the form of regularized logistic regression (15). This of course is consistent with [31] who
showed that DR logistic regression without categorical features could be formulated as a regularized
logistic regression problem.

Proof of Theorem 4: It follows from the proof of Theorem 1 that the optimization problems solved
inside the while-loop of Algorithm 1 are equivalent to the relaxations

minimize
β,λ,s

λϵ+
1

N

N∑
i=1

si

subject to lβ(x
i, z, yi)− λdC(z, z

i) ≤ si ∀(i, z) ∈ W+

lβ(x
i, z,−yi)− λκ− λdC(z, z

i) ≤ si ∀(i, z) ∈ W−

∥βN∥∗ ≤ λ
β = (β0,βN,βC) ∈ R1+n+k, λ ≥ 0, s ∈ RN

of problem (10) that is itself equivalent to our DR logistic regression problem (4); the only difference
between our relaxations above and problem (10) is that the index sets (i, z) ∈ [N ]×C in the first two
constraint sets of (10) are replaced with the subsets W+ and W− above. This shows that each value
LBt indeed constitutes a lower bound on the optimal value of problem (4), and that the sequence
{LBt}t of lower bounds is monotonically non-decreasing.

To see that the sequence {UBt}t bounds the optimal value of our DR logistic regression problem (4)
from above, note that a maximum constraint violation of ϑ+ in the first constraint set of (4) implies
that u+

i,z + v+i,z ≤ 1 + ϑ+

(u+
i,z, 1,−si − λdC(z, z

i)) ∈ Kexp

(v+i,z, 1,−yiβN
⊤xi − yiβC

⊤z − yiβ0 − si − λdC(z, z
i)) ∈ Kexp,

 ∀(i, z) ∈ [N ]× C,
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and, by the definition of the exponential cone, this means that for all (i, z) ∈ [N ]× C, we have

exp
[
−si − λdC(z, z

i)
]
+ exp

[
−yiβN

⊤xi − yiβC
⊤z − yiβ0 − si − λdC(z, z

i)
]
≤ 1 + ϑ+.

Dividing both sides by 1 + ϑ+ = exp[log(1 + ϑ+)], the inequality becomes

exp
[
−s′i − λdC(z, z

i)
]
+ exp

[
−yiβN

⊤xi − yiβC
⊤z − yiβ0 − s′i − λdC(z, z

i)
]
≤ 1,

where s′i := si + log(1 + ϑ+). The (potentially) infeasible solution to the relaxed problem of
Algorithm 1 thus allows us to construct a solution to problem (4) that satisfies all members of
the first constraint set by replacing si with s′i := si + log(1 + ϑ+), i ∈ [N ]. Compared to the
solution of the relaxed problem, the objective value of the newly created solution increased by
log(1 + ϑ+). A similar argument can be made for the members of the second constraint set, which
shows that a solution to problem (4) satisfying both constraint sets can be constructed by increasing the
objective value by no more than log(1 + max{ϑ+, ϑ−}). This shows the validity of the upper bound
θ⋆ + log(1 + max{ϑ+, ϑ−}). The fact that the sequence {UBt}t of upper bounds is monotonically
non-increasing, on the other hand, holds by construction since we take the minimum of the derived
upper bound (θ⋆ + log(1 + max{ϑ+, ϑ−}) and the upper bound UBt−1 of the previous iteration.

To see that Algorithm 1 terminates in finite time, note that every iteration t either identifies a violated
constraint (i, z) ∈ [([N ]× C) \W+] ∪ [([N ]× C) \W−] that is subsequently added to W+ and/or
W− (and will thus never again be identified as violated for the same constraint set), or the update
LBt = UBt = θ⋆ is conducted, in which case the algorithm terminates in the next iteration. Finite
termination thus holds since the set [N ]× C of potentially violated constraints is finite.

Additional Intuition Behind Algorithm 2

In the combinatorial optimization problem (5), the decision variables z ∈ C only appear in (monotone
transformations of) the terms −yiβC

⊤z and −λdC(z, z
i). Moreover, the expression [dC(z, z

i)]p

can only attain one of the values δ ∈ {0, . . . ,m} (cf. Definition 2). Conditioning on each possible
value of δ, which records the number of categorical features along which z and zi disagree, we
can therefore maximize the constraint violation by maximizing −yiβC

⊤z along all z ∈ C that
differ from zi in exactly δ categorical features. Finally, since −yiβC

⊤z is linearly separable, that is,
−yiβC

⊤z = −yiβC,1
⊤z1 − . . .− yiβC,m

⊤zm, we can choose the categorical features along which
z and zi disagree iteratively by considering each expression −yiβC

⊤z separately and choosing the
disagreeing feature values greedily based on their individual contribution to the overall constraint
violation.

Proof of Theorem 5 Recall that Algorithm 2 aims to solve the optimization problem

maximize
z

min
u+,v+

{
u+ + v+ :

[
(u+, 1,−si − λdC(z, z

i)) ∈ Kexp

(v+, 1,−yiβN
⊤xi − yiβC

⊤z − yiβ0 − si − λdC(z, z
i)) ∈ Kexp

]}
subject to z ∈ C.

It immediately follows from the definition of Kexp that the above problem can be represented as

maximize
z

exp
[
−si − λdC(z, z

i)
]
+ exp

[
−yiβN

⊤xi − yiβC
⊤z − yiβ0 − si − λdC(z, z

i)
]

subject to z ∈ C.

In this problem, the optimization variable z appears inside the exponential terms as −yiβC
⊤z and

as −λdC(z, z
i). Since increasing the value of one term may decrease the value of the other term,

the above problem does not admit a trivial solution. We next discuss how the above maximization
problem can be decomposed into m+ 1 sub-problems, each of which can be solved efficiently.

Although z may take exponentially many values, notice that the expression dC(z, z
i) =

(
∑

j∈[m] 1[zj ̸= zi
j ])

1/p counts the number of disagreements between the features of z and zi,
which takes a value from the set {0, 1, . . . ,m}. Hence, Algorithm 2 decomposes the above com-
binatorial optimization problem into m+ 1 sub-problems in which the number δ ∈ {0, 1, . . . ,m}
of disagreements between z and zi is fixed and we only need to maximize −yiβC

⊤z for a given
number δ of disagreements. If we can solve each of these sub-problem efficiently, then we can
compare the constraint violations of the optimal z to each sub-problem and pick the largest one as
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the most-violated constraint. We next investigate how each of the m+ 1 sub-problems can be solved
efficiently.

The sub-problem corresponding to a fixed δ ∈ {0, 1, . . . ,m} can be formulated as

maximize
z

−yiβC
⊤z

subject to dC(z, z
i) = δ

z ∈ C.

Denote by J ⊆ [m] : |J | = δ the set of features where z disagrees with zi at optimality. Denote
further by z⋆

j the maximizer of −yi ·βC,j
⊤zj over zj ∈ C(kj)\{zi

j} (cf. the first step of Algorithm 2).
The above sub-problem can then be written as

maximize
J

 m∑
j=1

−yi · βC,j
⊤zi

j

+

∑
j∈J

(−yi · βC,j
⊤z⋆

j )− (−yi · βC,j
⊤zi

j)


subject to J ⊆ [m], |J | = δ.

The first summation above is constant, and the solution of this problem can therefore be uniquely
identified from the solution of the following problem:

maximize
J

∑
j∈J

(−yi · βC,j
⊤(z⋆

j − zi
j))

subject to J ⊆ [m], |J | = δ.

This problem can be solved greedily by selecting the δ largest values of (−yi · βC,j
⊤(z⋆

j − zi
j))

across all j ∈ [m], and those j indexes will be included in J (cf. the ordering π : [m] 7→ [m] and the
selection according to π(j) ≤ δ in Algorithm 2). Instead of sorting (−yi ·βC,j

⊤(z⋆
j − zi

j)), j ∈ [m],
for each sub-problem δ ∈ {0, 1, . . . ,m}, Algorithm 2 sorts those values once in the beginning.

The discussion so far establishes the correctness of Algorithm 2. In view of its runtime, we note that
the aforementioned sorting takes time O(m logm) as each value (−yi · βC,j

⊤(z⋆
j − zi

j)), j ∈ [m]
can be computed in constant time, determining z⋆

j for all j ∈ [m] takes time O(k) since the variables
corresponding to each feature vanish in all but one (known) location, and determining the set J for
each δ ∈ {0, 1, . . . ,m} takes time O(n + m2) since the expression −yiβN

⊤xi only needs to be
computed once.

Proof of Theorem 6: The statement of the theorem follows immediately from Theorems 18 and 19
of [21].

Proof of Lemma 1: The assumption in the statement of the lemma allows us to choose M ∈ R such
that H ⊆ [−M,+M ]1+n+k. We then show that there is ξ0 ∈ Ξ and C > 0 such that

lβ(ξ) ≤ C[1 + d(ξ, ξ0)] ∀β ∈ [−M,M ]1+n+k, ∀ξ ∈ Ξ,

that is, for all β ∈ [−M,M ]1+n+k and all ξ ∈ Ξ we have

log
(
1 + exp

[
−y ·

(
β0 + βN

⊤x+ βC
⊤z
)])

≤ C

1 + ∥x− x0∥+

∑
i∈[m]

1[zi ̸= z0
i ]

1/p

+ κ · 1[y ̸= y0]

 .

To see this, fix any ξ0 = (0, z0, y0) ∈ Ξ. Since κ · 1[y ̸= y0] ≥ 0 and
∑

i∈[m] 1[zi ̸= z0
i ])

1/p ≥ 0

on the right-hand side of the above inequality, it suffices to show that

log
(
1 + exp

[
−y ·

(
β0 + βN

⊤x+ βC
⊤z
)])

≤ C [1 + ∥x∥] ∀β ∈ [−M,M ]1+n+k, ∀ξ ∈ Ξ.

Note that the left-hand side of this inequality can be bounded from above by

1 + exp
[
−y ·

(
β0 + βN

⊤x+ βC
⊤z
)]

≤ 1 + exp
[∣∣β0 + βN

⊤x+ βC
⊤z
∣∣]

≤ 2 exp
[∣∣β0 + βN

⊤x+ βC
⊤z
∣∣] .

28



It is therefore sufficient to show that

log(2 exp
[∣∣β0 + βN

⊤x+ βC
⊤z
∣∣]) ≤ C[1 + ∥x∥] ∀β ∈ [−M,M ]1+n+k,

∀ξ ∈ Ξ
⇐⇒ log(2) +

∣∣β0 + βN
⊤x+ βC

⊤z
∣∣ ≤ C[1 + ∥x∥] ∀β ∈ [−M,M ]1+n+k,

∀ξ ∈ Ξ
⇐⇒ log(2) + max

β∈[−M,M ]1+n+k

{∣∣β0 + βN
⊤x+ βC

⊤z
∣∣} ≤ C[1 + ∥x∥] ∀ξ ∈ Ξ

⇐⇒ log(2) + (M +M∥x∥+Mk) ≤ C[1 + ∥x∥] ∀ξ ∈ Ξ
⇐⇒ log(2) +M(1 + k) +M∥x∥ ≤ C + C∥x∥ ∀ξ ∈ Ξ.

The last condition, however, is readily seen to be satisfied by any C ≥ log(2) +M(1 + k).

Proof of Theorem 7: The statement of the theorem follows directly from Theorem 20 of [21].

Proof of Theorem 8: The existence of an optimal solution follows from Theorem 3 of [42], and
the sparsity of the optimal solution is due to Theorem 4 of [42]. Note that the assumptions of those
theorems are satisfied since the Wasserstein ball Bϵ(P̂N ) is centered at the empirical distribution P̂N ,
which has finite moments by construction.
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